A Tableaux Decision Procedure
for SHOZQ

lan Horrocks andUIlrike Sattler

Department of Computer Science
University of Manchester, UK
{horrocks |[sattler }@cs.man.ac.uk

Abstract

OWL DL, a new W3C ontology language recommendation, is based on
the expressive description logRHOZN . Although the ontology consis-
tency problem folSHOZN is known to be decidable, up to now there has
been no known “practical” decision procedure, i.e., a goal directed proce-
dure that is likely to perform well with realistic ontology derived problems.
We present such a decision procedure §&tO7 Q, a slightly more expres-
sive logic thanSHOZN), extending the well known algorithm f&HZ Q,
which is the basis for several highly successful implementations.

A short version of this report appears in tAReceedings of Nineteenth Inter-
national Joint Conference on Atrtificial Intelligen¢dCAI 2005).

Contents

1 Introduction 1

2 Preliminaries 3

3 A Tableau for SHOZQ 6

4 A tableau algorithm for SHOZQ 7
4.1 Definition of the algorithm 8
4.2 Example application of the algorithm 12
4.3 Proof of the algorithm’s correctness and termination 16

5 Outlook 23

1 Introduction

Description Logics (DLs) are a family of logic based knowledge representation
formalisms. Although they have a range of applications (e.g., configuration [14],
and information integration [4]), they are perhaps best known as the basis for
widely used ontology languages such as OIL, DAML+OIL and OWL [10], the
last of which is now a World Wide Web Consortium (W3C) recommendation [2].

The OWL specification describes three language “species”, OWL Lite, OWL
DL and OWL Full, two of which (OWL Lite and OWL DL) are based on ex-
pressive description logics.The decision to base these languages on DLs was
motivated by a requirement that key inference problems (such as ontology con-
sistency) be decidable, and hence that it should be possible to provide reasoning
services to support ontology design and deployment [10].

OWL Lite and OWL DL are based on the DLSHZF and SHOIN
respectively—in fact OWL Lite is just a syntactic subset of OWL DL [10M-
though the ontology consistency problem & OZN is known to be decidable,
to the best of our knowledge no “practical” decision procedure is known for it, i.e.,
no goal directed procedure that is likely to perform well with realistic ontology de-
rived problems [20, 11]. In this report we present such a decision procedure for
SHOZIQ,i.e.,.SHOIN extended witlqualifiednumber restrictions [7]. The al-
gorithm extends the well-known tableaux algorithm &7 Q [12], which is the
basis for several highly successful implementations [9, 5, 17].

The O in SHOZQ denotesnominals i.e., classes with a singleton extension.
Nominals are a prominent feature of hybrid logics [3], and can also be viewed
as a powerful generalisation #Box individualg18, 11]. They occur naturally
in ontologies, e.g., when describing a class suckl@d€ountries by enumerat-
ing its members, i.e.{Austria, ..., UnitedKingdom} (such an enumeration is
equivalent to a disjunction of nominals). This allows applications to infer, e.g.,
that persons who only visEUCountries can visit at most 15 countries.

One reason why DLs (and propositional modal and dynamic logics) enjoy
good computational properties, such as being robustly decidable, is that they have
some form of tree model property [22], i.e., if an ontology is consistent, then
it has a (form of) tree model. This feature is crucial in the design of tableaux

LOWL Full uses the same language vocabulary as OWL DL, but does not restrict its use to
“well formed formulae”.

20WL also includeslatatypesa simple form ottoncrete domaifil]. These can, however, be
treated exactly as i@HOQ(D)/ISHOQ(D,,) [11, 16], so we will not complicate our presentation
by considering them here.

3This is an immediate consequence of a reduction of DLs with transitive roles to DLs without
such roles [20] and the fact that applying this reductioSt6OZN yields a fragment of the two
variable fragment of first order logic with counting quantifiers [15].

algorithms, allowing them to search only for tree like models. More precisely,
DL tableaux algorithms decide consistency of an ontology by trying to construct
an abstraction of a model for it, a so-called “completion graph”. For logics with
the tree model property, we can restrict our search/construction to tree-shaped
completion graphs.

Tableaux algorithms for expressive DLs employ a cycle detection technique
calledblockingto ensure termination. This is of special interest$6¢tZ Q, where
the interaction between inverse roles and number restrictions results in the loss
of the finite model propertyi.e., there are consistent ontologies that only admit
infinite models. On such an input, t&HZQ tableaux algorithm generates a
finite tree-shaped completion graph that canubeavelledinto an infinite tree
model, and where a node in the completion graph may stand for infinitely many
elements of the model. Even when the language includes nominaksxduties
one of number restrictions or inverse roles [11, 6], or if nominals are restricted
to ABox individuals [13], we can work on forest-shaped completion graphs, with
each nominal (individual) being the root of a tree like section; this causes no
inherent difficulty as the size of the non-tree part of the graph is restricted by the
number of individuals/nominals in the input.

The difficulty in extending th& HOQ or SHZ Q algorithms toSHOZQ is
due to the interaction between nominals, number restrictions, and inverse roles,
which leads to th@lmostcomplete loss of the tree model property, and causes
the complexity of the ontology consistency problem to jump from ExpTime to
NExpTime [19]. To see this, consider an ontology containing the following two
axioms that use a nominalto impose an upper bound af on the number of
instances of the concept

T

0

C Ju .0

C (<nu.F)

The first statement requires that, in a model of this ontology, every element has
an incomingu-edge fromo; the second statement restricts the number-etiges
going fromo to instances of’ to at mostr. In this case, we might need to con-
sider arbitrarily complex relational structures amongst instancds, @nd thus
cannot restrict our attention to completion trees or forests. Let us assume that
our ontology also forces the existence of an infinite number of instances of an-
other concept, say, which requires the above mentioned “block and unravel”
technique. The consistency of the whole ontology then crucially depends on the
relations enforced between instancegodnd NV, and whether the unravelling of

the N-part violates atmost number restrictions that instances afust satisfy.
Summing up, a tableaux algorithm f6fHOZ Q needs to be able to handle both
arbitrarily complex relational structures and finite tree structures representing in-

2

finite trees, and to make sure that all constraints are satisfied (especially number
restrictions on relations between these two parts), while still guaranteeing termi-
nation.

Two key intuitions have allowed us to devise a tableaux algorithm that meets
all of these requirements. The first intuition is that, when extendiSg{&@Z O
completion graph, we can distinguish those nodes that may be arbitrarily intercon-
nected (so-calledominal nodesfrom those nodes that still form a tree structure
(so-called blockable nodgsFixing a (double exponential) upper bound on the
number of nominal nodes is crucial to proving termination; it is not, however,
enough to guarantee termination, as we may repeatedly create and merge nominal
nodes (a so-called “yo-yo”).

The second intuition is that the yo-yo problem can be overcome by “guess-
ing” the exactnumber of new nominal nodes resulting from interactions between
existing nominal nodes, inverse roles and number restrictions. This guessing is
implemented by a new expansion rule, ti-rule, which, when applied to a rel-
evant(<nR.C') concept, generates (non-deterministically) between lranew
nominal nodes, all of which are pairwise disjoint. This prevents the repeated yo-
yo construction, and termination is now guaranteed by the upper bound on the
number of nominal nodes and the use of standard blocking techniques for the
blockable nodes. The non-determinism introduced by this rule could clearly be
problematical for large values of, but large values in number restrictions are
already known to be problematical f6fHZ Q. Moreover, the rule has excellent
“pay as you go” characteristics: in case number restrictions are functional (i.e.,
wheren is 1) the new rule becomes deterministic; in case there are no interac-
tions between number restrictions, inverse roles and nominals, the rule will never
be applied; in case there are no nominals, the new algorithm will behave like the
algorithm forSHZ Q; and in case there are no inverse roles the new algorithm
will behave like the algorithm foSHO Q.

2 Preliminaries

In this section, we introduce the DEHOZQ. This includes the definition of
syntax, semantics, and inference problems. We start $HOZ Q-roles, then
introduce some abbreviations, and finally deffit#g¢ OZ Q-concepts.

Definition 1 Let R be a set ofole nameswith both transitive and normal role
namesR, URp = R, whereRp N R, = (). The set ofSHOZ Q-roles (or roles

4A feature of many realistic ontologies; see, e.g., the DAML ontology librarytigt//
www.daml.org/ontologies/

for short) iSR U {R~ | R € R}. A role inclusion axiomis of the formR C S,
for two rolesRk andS. A role hierarchyis a finite set of role inclusion axioms.

An interpretationZ = (AZ, 1) consists of a non-empty séf’, thedomainof
Z, and a function? which maps every role to a subsetdf x AZ such that, for
PeRandR e R,,

(z.y) € PTiff (y.z) € P~7,
and if (z,y) € R* and(y, z) € R%, then(z, 2) € R~.

An interpretatiori satisfies a role hierarchR if R C SZ foreachR C S € R;
such an interpretation is callechaodelof R.

We introduce some notation to make the following considerations easier.

1. The inverse relation on roles is symmetric, and to avoid considering roles such
asR——, we define a functioinv which returns the inverse of a role:

Inv(R) = R~ if Ris arole name,
" S if R=S" forarole names.

2. Since set inclusion is transitive aff C S% impliesinv(R)* C Inv(S)?, for

a role hierarchyR, we introduce= » as the transitive-reflexive closure ofon
RU{Inv(R) C Inv(S) | RC S € R}. We useR =5 S as an abbreviation for
RERSandS ExR.

3. Obviously, a roleR is transitive if and only if its inversénv(R) is transitive.
However, in cyclic cases such @& =% S, S is transitive if R or Inv(R) is a
transitive role name. In order to avoid these case distinctions, the funictias
returnstrue if R is a transitive role—regardless whether it is a role name, the
inverse of a role name, or equivalent to a transitive role name (or its inverse):
Trans(S,R) := true if, for someP with P =¢ S, P € R, orlnv(P) € R;
Trans(S, R) := false otherwise.

4. Arole R is calledsimplew.r.t. R if Trans(S, R) = false for all S & R.

5. In the following, if R is clear from the context, then we may abuse our notation
and usez andTrans(S) instead of = ; andTrans(S, R), and we say that$ is a
simple role” instead of §' is simple w.r.t.R".

Definition 2 Let N¢ be a set otoncept namewith a subsetV; C N of nomi-
nals and letR be a role hierarchy. The set 8t{OZ Q-conceptgor conceptdor
short) is the smallest set such that

1. every concept nam@ € N¢ is a concept,

2. if C and D are concepts ang is a role, then(C' 1 D), (C' U D), (=C),
(VR.C), and(3R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if C is a concept,R is a simple rolé andn € IN, then(<nR.C) and
(>nR.C) are also concepts (called atmost and atleast number restrictions).

The interpretation functiort of an interpretatio = (AZ, -7) maps, additionally,
every concept to a subset Af such that

(CnD)*=c*nD?*, (CUD)* =Cc*uD?*, -CT = AT\ C7,
fof =1 forall o € Ny,
(3R.C)* ={x € AT | Thereis ay € A* with (z,y) € R* andy € C7},
(VR.C) ={z e AT | Forally € AZ,if (z,y) € R theny € C*},
(<nR.C)* ={z € AT |#R*(z,C) < n},
(=nR.CYF ={xe AT |4{R*(z,C) > n},

where, for a sed/, we denote the cardinality off by 1A/ andRZ(x, C) is defined
as{y | (z,y) € R* andy € C*}.

For C and D (possibly complex) concept§, C D is called ageneral concept
inclusion(GCl), and a finite set of GCls is calledl@ox

An interpretatior? satisfiesa GCIC C D if C* C D?, and7 satisfies a TBox
T if 7 satisfies each GCI ifi; such an interpretation is called@odel of 7.

A conceptC is calledsatisfiable with respect to a role hierarchiy and a
TBox 7 if there is a modell of R and7 with C* # (). Such an interpretation
is called amodel of C w.r.t. R and7. A conceptD subsumes concept’ w.r.t.
R and7 (written C' Cr 7 D) if C* C D? holds in every model of R and7 .
Two conceptg”, D areequivalentw.r.t. R and7 (written C' =% 7 D) if they are
mutually subsuming w.r.iR and7 .

As usual, subsumption and satisfiability can be reduced to each other. Like
in SHZQ, in SHOZQ, we can reduce reasoning w.general TBoxeand role
hierarchies to reasoning w.r.t. role hierarchies only: we can use an “approxima-
tion” of a universal rolel to internalisea TBox [12]. The only difference for
SHOZQ s that, in the presence of nominals, we also confditv, M. ..M30.o0,
to the concept internalising the TBox to make sure that thelvaledeed reaches
all nominalso; occurring in the input. More precisely,&HOZQ conceptD is
satisfiable w.r.t7 andR iff

Dn 07' HVU.OT Il E|U.01 ... HU.Og

SRestricting number restrictions to simple roles is required in order to yield a decidable logic
(see [12]).

is satisfiable w.r.tRU{U~ C U, Trans(U)}U{R C U | Roccursin7, R, or D}

, whereoy, ..., o, are all nominals occurring i or 7 andCr = 1 —CyU
C1CCoeT
Cs.

As a consequence, in the remainder of this paper, we restrict our attention
without loss of generality to the satisfiability STHOZ Q concepts w.r.t. a role
hierarchy.

Finally, we did not choose to makeuaique hame assumptipne., two nom-
inals might refer to the same individual. However, the inference algorithm pre-
sented below can easily be adapted to the unigue name case by a suitable initiali-
sation of the inequality relatiog#.

3 A Tableau for SHOZO

For ease of presentation, as usual, we assume all concepts taégaition nor-

mal form(NNF). Each concept can be transformed into an equivalent one in NNF
by pushing negation inwards, making use of de Morgan’s laws and the duality be-
tween existential and universal restrictions, and between atmost and atleast num-
ber restrictions, [13]. For a conceft, we use~C' to denote the NNF of-C,

and we useaub(C') to denote the set of all subconcepts(ofincluding C). As

usual, for a concepD and a role hierarchyR, we define the set of “relevant
sub-conceptstl(D, R) as follows:

cd(D,R) := sub(D)U{~C | C € sub(D)} U
{VS.E | VR.E € sub(D) or =VR.E € sub(D) andS occurs inR or D}

WhenR is clear from the context, we usH D) instead okl(D, R).

Definition 3 If D is aSHOZQ-concept in NNFR a role hierarchy, an®R p, is
the set of roles occurring iR or R, together with their inverses, a table@uor

D w.rt. R is defined to be a tripléS, £, £) such thatS is a set of individualsf :

S — 2°(") maps each individual to a set of concepts which is a subset b,

& : Rp — 255 maps each role ilR, to a set of pairs of individuals, and there
is some individuak € S such thatD € L(s). Foralls,t € S, C,Cy,C; € cl(D),
R.S € Rp, and

ST(s,0):={t €S| (s,t) € &S)andC € L(t)},
it holds that:
(P1) if C € L(s), then—C ¢ L(s),
(P2) if C1 1 Cy € L(s), thenCy € L(s) andCy € L(s),

6

(P3) if Cl LI CQ € L(S), thenC’l € L(S) or CQ < L(S),
(P4) if VR.C € L(s) and(s,t) € E(R), thenC € L(t),

(P5) if AR.C' € L(s), then there is some € S such that(s,¢) € £(R) and
C e L(t),

(P6) if VS.C € L(s) and(s,t) € E(R) for someR .S with Trans(R), then
VR.C € L(t),

(P7) if (=nS.C) € L(s), thentST (s, C) > n,
(P8) if (<nS.C) € L(s), thentST(s,C) < n, and

(P9) if (<nS.C) € L(s) and(s,t) € &(S), then{C, =C} N L(t) # 0,
(P10) if (s,t) € E(R) andR = S, then(s,t) € £(S),

(P11) (s, t) € E(R)iff (t,s) € E(Inv(R)), and

(P12) if o € L(s) N L(t) for someo € Ny, thens = t.

Lemma 4 A SHOZQ-conceptD in NNF is satisfiable w.r.t. a role hierarcty
iff D has a tableau w.r.iR.

Proof (sketch): Is analogous to the proof found in [12]. Roughly speaking, we
construct a model from a tableau by takin@ as its interpretation domain and
adding the missing role-successorships for transitive roles. Then, by induction on
the structure of formulae, we prove that(ife L(s), thens € CZ. (P12) ensures
that nominals are indeed interpreted as singletons.

For the converse, we can easily transform any model into a tableau. O

4 A tableau algorithm for SHOZQ

From Lemma 4, an algorithm which constructs a tableau 8#&Z Q-concept
D can be used as a decision procedure for the satisfiabilify with respect to a
role hierarchyR. Such an algorithm will now be described in detalil.

We first define and comment on the underlying data structure and correspond-
ing operations. Next, we provide an example of the algorithm’s behaviour, and
explain the techniques we have chosen to desiggmrainating, sound, and com-
pletealgorithm. Finally, we prove that our algorithm indeed is terminating, sound,
and complete.

4.1 Definition of the algorithm

Definition 5 Let R be a role hierarchy and a SHOZQ-concept in NNF. A
completion graptor D with respect toR is a directed grapls = (V, E, L, #)
where each node € V is labelled with a set

L(z) Ccd(D)UN;U{(<mR.C) | (<nR.C) € c(D)andm < n}

and each edgér, y) € E'is labelled with a set of role namég(z, y)) containing
(possibly inverse) roles occurring i or R. Additionally, we keep track of in-
equalities between nodes of the graph with a symmetric binary rel#tlmetween
the nodes of5.

In the following, we often us& € L((x,y)) as an abbreviation far:, y) € £
andR € L((x,y)).

If (z,y) € E,theny is called asuccessoof x andz is called goredecessoof
y. Ancestoiis the transitive closure of predecessor, dadcendans the transitive
closure of successor. A nodes called anR-successor of a nodeif, for some
R with R =R, R' € L({z,y)). A nodey is called aneighbour(R-neighbou}
of a nodex if y is a successori-successor) of or if = is a successofr(v(R)-
successor) of.

For aroleS and a node: in G, we define the set af's S-neighbours withC
in their label, S (z, C), as follows:

SCG(z,C) = {y | y is anS-neighbour ofr andC € L(y)}.
G is said to contain alashif
1. for some concept namé € N¢ and noder of G, {A, —~A} C L(x), or

2. for some roleS and noder of G, (<nS.C') € L(z) and there are + 1 S-
neighboursy, . . ., y, of z with C' € L(y;) for each0 < i < n andy; # y;
foreach0 <i: < j <n,or

3. for somev € Ny, there are nodes # y with o € L(x) N L(y).

If o1,...,0, are all the nominals occurring i, then the tableau algorithm
starts with the completion gragh = ({rg, 71 ...,7¢},0,L,0) with L(rg) = {D}
andL(r;) = {o;} for 1 < i < (. G is then expanded by repeatedly applying the
expansion rules given in Figures 1 and 2, stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we define some terms
and operations used in the (application of the) expansion rules, and directly com-
ment on them:

Nominal Nodes and Blockable Nodes We distinguish two types of nodes(a,
nominalnodes andblockable nodes. A node is a nominal node if (x) contains

a nominal. A node that is not a nominal node is a blockable node. A nominal
o € Ny is said to benew inG if no node InG haso in its label.

Commentlike ABox individuals [13], nominal nodes can be arbitrarily intercon-
nected. In contrast, blockable nodes are only found in tree-like structures rooted
in nominal nodes (or imy); a branch of such a tree may simply end, possibly with

a blockednode (defined below) as a leaf, or have an edge leading to a nhominal
node. In case a branch ends in a blocked node, we use stamuancellingto
construct a tableau from the completion graph, and thus the resulting tableau will
contain infinitely many copies of the nodes on the path from the blocking node to
the blocked node. This is why there can be no nominal nodes on this path.

In the NN-rule, we usenew nominals to create new nominal nodes—
intuitively, to fix the identity of certain, constrained neighbours of nominal nodes.
As we will show, it is possible to fix an upper bound on the number of nominal
nodes that can be generated in a given completion graph; this is crucial for ter-
mination of the construction, given that blocking cannot be applied to nominal
nodes.

Blocking A nodez is label blockedf it has ancestors’, y andy’ such that

1. z is a successor af andy is a successor of,

2. y, z and all nodes on the path frogrto = are blockable,
3. L(z) = L(y) andL(2') = L(y'), and

4. L({z',2)) = Ly, 9)-

In this case, we say thgtblocksz. A node isblockedif either it is label blocked

or it is blockable and its predecessor is blocked; if the predecessor of a safe node
x is blocked, then we say thatis indirectly blocked

Commentblocking is defined exactly as f&fHZ Q, with the only difference that,

in the presence of nominals, we must take care that none of the nodes between a
blocking and a blocked one is a nominal node.

Generating and Shrinking Rules and Safe Neighbours The >-, 3- and
NN-rules are calledenerating rulesand the<- and theo-rule are calleghrink-

ing rules An R-neighboury of a noder is safeif (i) « is blockable or if (i) is

a nominal node angl is not blocked.

Comment: generating rules add new nodes to the completion graph, whereas
shrinking rules remove nodes—they merge all information concerning one node
into another one (e.g., to satisfy atmost number restrictions), and then remove

9

the former node. We need the safety®ineighbours to ensure that enoufh
neighbours for nominal nodes are generated.

Pruning When a nodeg is mergedinto a noder, we “prune” the completion
graph by removing; and, recursively, all blockable successorg,ofMore pre-
cisely, pruning a nodg (written Prune(y)) in G = (V, £, L, #) yields a graph
that is obtained froné as follows:

1. for all successors of y, remove(y, z) from E and, if z is blockable,
Prune(z);

2. removey from V.

Merging In some rules, we “merge” one node into another node. Intuitively,
when we merge a nodg into a noder, we addL(y) to L(z), “move” all the
edges leadingo y so that they lead te and “move” all the edges leading from

y to nominal nodes so that they lead franto the same nominal nodes; we then
removey (and blockable sub-trees belgwfrom the completion graph. More pre-
cisely, merging a nodg into a noder (written Merge(y, z)) in G = (V, E, L, #)
yields a graph that is obtained fro@a as follows:

1. for all nodes: such thatz,y) € F

(@) if {{x,2),(z,2)} N E = 0, then add(z, z) to £ and setl(({z,z)) =
L({z9)),

(b) if (z,2) € E,thensell({z,z)) = L((z,2)) UL({(z,y)),

(c) if (z,z) € E, then setl({(z,z)) = L({x,z)) U{Inv(S) | S €
L((z,9))}, and

(d) remove(z,y) from E;

2. for all nominal nodes such thatly, z) € £

(@) if {(x,2),(z,2)} N E = 0, then add(z, z) to £ and setl((x, z)) =
L((y, 2)),
(b) if (z,2) € E, then setL({x, 2)) = L({(z,2)) UL({y, 2)),

(c) if (z,z) € E, then setl((z,z)) = L({z,z)) U{Inv(S) | S €
L((y, 2))}, and

(d) remove(y, z) from E;

3. setl(z) = L(z) U L(y);

10

4. addx # z for all z such thaty # z; and
5. Prune(y).

If y was merged inta;, we callx adirect heir of y, and we use being dmeir of
another node for the transitive closure of being a “direct heir”.

Commentmerging is the generalisation of what is often done to satisfy an atmost
number restriction for a nodein case that has too many neighbours. However,
since we might need to merge nominal nodes that are related in some arbitrary,
non-tree-like way, merging gets slightly more tricky since we must take care of all
incoming and outgoing edges. The usage of “heir” is quite intuitive since,after
has been merged intg, x has “inherited” all ofy’s properties, i.e., its label, its
inequalities, and its incoming and outgoing edges (except for any outgoing edges
removed byPrune).

Level (of Nominal Nodes) Letoy,..., o, be all the nominals occurring in the
input conceptD. We define thdéevelof a node inductively as follows:

e each (nominal) node with ano; € L(z),1 < i < {, is of level 0, and

e a nominal noder is of leveli if x is not of some leve} < i andz has a
neighbour that is of level — 1.

Commentif a node with a lower level is merged into another node, the level of the
latter node may be reduced, but it can never be increased bedatggepreserves

all edges connecting nominal nodes. The completion graph initially contains only
level 0 nodes.

Strategy (of Rule Application) the expansion rules are applied according to the
following strategy:

1. theo-rule is applied with highest priority,

2. next, the<- and theNN-rule are applied, and they are applied first to nom-
inal nodes with lower levels (before they are applied to nodes with higher
levels). In case they are both applicable to the same nodé\NXRheule is
applied first.

3. all other rules are applied with a lower priority.

Comment:this strategy is necessary for termination, and in particular to fix an
upper bound on the number of applications of ié-rule. The general idea is to
apply shrinking rules before any other rules (with the exception thatieule

11

is applied to a nodbeforeapplying the<-rule to it), and to apply these “crucial”
rules to lower level nodes before applying them to higher level nodes.

We are now ready to finish the description of the tableau algorithm:

A completion graph iompleteif it contains a clash, or when none of the
rules is applicable. If the expansion rules can be applie® tand R in such a
way that they yield a complete, clash-free completion graph, then the algorithm
returns ‘D is satisfiablew.r.t. R”, and “D is unsatisfiablav.r.t. R” otherwise.

4.2 Example application of the algorithm

We consider two examples, a rather easy one and a slightly more tricky one.
First, consider the TBox

T ={AC 3R.(AN3R.A),
ALC ol

As described in Section 2, to decide the satisfiabilitydlof.r.t. 7 (and the empty
role hierarchy), we test the following concept

AN C’]’ |_|\V/U.CT M 3aU.o

for satisfiability w.r.t.{R C U, R~ C U}, whereU is transitive and”r = (—A U
JdR.(AM3R.A)) N (-AUo).

Our tableau algorithm starts with a completion graph consisting of two nodes,
ro andry, with L(rg) = {ANCr NVYU.C7 M 3U0.0} andL(ry) = {o}. After some
applications of the1- and the_l-rule (the latter in such a way that we do not get a
clashA, —A € L(ry)), we obtain a completion graph with

L(ro) = {A,C7,3R.(ANIR.A), 0,VU.C7,3U.0}.

Now theo-rule is applied immediately, and we merggeandr;, which leaves
us with a single node, say.

Next, we apply thed-rule three times and thg-rule several times, which
yields three new nodes), x;, andy,, wherezx, is an R-successors afy, 3, Is a
U-successor ofy, andz; is an R-successor af, with

L(zg) = {ANM3IR.A A JR.A},
L(xl) {A}a
L(wo) = {o}.
Next, we mergey, into r, using theo-rule, which makes, aU-successor of itself.

Sincex is alsoU-successor of,, we can apply th&-rule and thev -rule to
VU.Cr € L(rg) (recall thatU is transitive), which add€§'s andVU.Cr to zy’s

12

M-rule:

Li-rule:

3-rule;

V-rule:

Vi -rule:

>-rule:

<-rule:

chooserule:

if 1. Cy M Cy € L(x), x is not indirectly blocked, and
2.{C1,Cs} € L(x)

then set(z) = L(x) U {C1, Ca}

if1.CrUCy € L(x), x is not indirectly blocked, and
2. {Cl, CQ} N L(%)

then setl(z) = L(z) U {C} for someC € {C1,Cs}

if 1. 35.C € L(z), = is not blocked, and
2. z has no saf&-neighboury with C' € L(y),
then create a new nodewith L((z,y)) = {S} andL(y) = {C}

if 1. VS.C' € L(x), x is not indirectly blocked, and
2. there is arb-neighboury of x with C' ¢ L(y)
then setl(y) = L(y) U{C}

if 1. VS.C € L(z), x is not indirectly blocked, and
2. there is som& with Trans(R) andR = S,
3. there is amR-neighboury of x with VR.C' ¢ L(y)
then setC(y) = L(y) U{VR.C'}

if 1. (<nS.C) € L(z), z is not indirectly blocked, and
2. there is arf-neighboury of x with {C, -C} N L(y) = 0
then set(y) = L(y) U {E} for someE € {C,~C'}

if 1. (>nS.C) € L(z), z is not blocked, and
2. there are not safeS-neighboursgy, . . ., y, of z with
CelL(y;)andy; #yjforl <i<j<mn
then create: new nodesy, . .., y, with L((z,v;)) = {S},
L(yi) = {C}, andy; # y;for1 <i<j<n.

if 1. (<nS.C) € L(z), z is not indirectly blocked, and
2.#5%(z,C) > n and there are tws-neighbourse, y of z with
C e L(x)NL(y), and notr # y
then 1. ifz is a nominal node, theklerge(y, x)
2. else ify is a nominal node or an ancestorxgfthenMerge(z, y)
3. elseMerge(y, x)

label. Similarly, the these rules add, andvU.C to L(x;) when applied to

Figure 1: The tableaux expansion rules &7 Q

VUCT € L(xo)

After further application of th€l- and theLl-rule (again, the latter in such a
way that we do not get a clash, -A € L(x;)), we obtain a completion graph

with

L(zo)

= L(z1) = {AN3R.A, A 3IR.A, Cr,YU.Cr,3R.(AN 3R.A), 0}

13

o-rule: if for someo € Ny there are 2 nodes, y with o € L(z) N L(y)
and notr # y
thenMerge(z, y)

NN-rule: if 1. (<nS.C) € L(z), = is a nominal node, and there is a blockable
S-neighboury of = such that” € L(y) and
x IS a successor af,
2. there is non such thatl < m < n, (<MS.C) € L(x),
and there existn nominalS-neighbours:q, . . ., z, of x
with C' € L(z;) andz; # zj forall1 <i < j < m.
then 1. guess with 1 < m < n and setl(z) = L(z) U {(<mS.C)}
2. createn new nodesyy, . . ., ym With L((z, y;)) = {S},
L(y;) = {C,0;} for eacho; € Ny new inG,
andy; #y;forl <i<j<m,

Figure 2: The new expansion rules 8 OZ Q: theo-rule and theNN-rule

Finally, we apply the-rule twice and obtain a graph that consists of a single node,
sayry, which is anRk-successor of itself, and with

L(ro) = {A,C7,3R.(AN3R.A), 0,VU.C7,3U.0, AT IR.A, IR. A}

This completion graph is complete and clash-free, hence our algorithm returns
“satisfiable”. Indeed, it corresponds to a modelith a single elements and

U? = RT = {(r,r)} and AT = o = {r}. Please notice that our strategy of
applying theo-rule with highest priority was crucial for termination: otherwise,
we might have continued generating an infinite chaiRefuccessors af,, even

while merging some of the; with r.

Secondly, we discuss a slightly more involved example. Here, we do not
present all details, but only sketch the run of the algorithm. We invite the reader
to verify on this example that tieN-rule is indeed needed.

Assume we want to decide the satisfiabilitypf13R; . T w.r.t. the following
TBox, where we usé as an abbreviation of LI —A:

Again, we would internalise our TBox and use a transitive supertraié R;, .S;,
and their inverses. Lef' be the result of internalisin@ into o, M 3R;.T. We
start the algorithm with three nodes, sayr;, andr,, but after few applications
of theM-rule toC' € L(ry), we findo;, € L(ry), and thus merge, andr,, keeping
r1. After further applications of thel- and thel-rules (again, without causing a

14

clash), we can apply thé-rule to3R;.T € L(r;) and to3U.o; € L(ry), for

i € {1,2}. The latter creates two nodes that are immediately merged-jraad
r9, respectively, and will make eaecha U-successor of;. The former creates an
R -successor of;, and we can thus apply therule toVR; .35,.35; .3Rs.00 €
L(ry). Next, we can apply three more times theule, and obtain a chain of the
following form: r; has anRk; -successot,, which has ar;-successor;, which
has anS, -successors, which has am?,-successor; with o, € L(x3). Thus we
need to apply the-rule and merge:; into r,, which becomes aR,-successor of
z,. As a consequence, tiNN-rule becomes applicable (&2R,.T) € L(r,).°
We guessn = 2 and create two neur, -successors,, ny of r, with L(n;) =
{6,} andn; # ny. Nowry has thregk, -neighbours, and we can apply tderule
to ry, to merger, into n;. Please note thaft prevents us from merging, into n,
or vice versa.

Sincen, is an R, -neighbour ofr,, the V-rule adds3S,.3S; .3R;.0; 10 n;.
Three application of thé-rule yield a chain similar to the first one; has ank; -
successon;, which has arb,-successot’, which has arb,-successor;,, which
has anR;-successoy with o; € L(y). Next,y is merged withry, and thus-; is
an R;-successor af(. Again, as a consequence, til-rule becomes applicable,
and we guess agatn = 2 and create two new; -successors:;, ms of r; with
L(m;) = {6;} andm, # ms. Again, we can apply the -rule tor;. Assume that
we merge botlh, andzxj, into m;.

After this, we can apply th&-rule to add3S,.35, .3Rs.00 to L(my) and
35,.357 .3R;.01 to L(ny). This yields two more chains betweenandr,, both
going vian, andm; after two more applications of th€ -rule—once tor; and
once tor,. Then the tableau algorithm stops with a complete and clash-free com-
pletion graph.

Let us point out some important properties of our algorithm that were having
effects in this application:

e We can apply thé&IN-rule only to a nominal node and somé<nR.C) €
L(r) if there is a blockable nodethat has- as itsR~-successor. Hence we
could only apply it tor, after it got his second; -neighbourz;,.

e The newly created nominal nodes made us merge newly cref@fed
neighbours of; immediately into the new nominal nodesandm,. With-
out the explicit inequalities,; # n, andm; # mo between these new
nominal nodes, we could have created another kind of “yo-yo” effect: when
applying the< -rule to (<2R;.T) € L(r;), we could have always merged
those nodes that both already have the exists restrictions in their labels, and

6\We assume that is present in all node labels.

15

to which thed-rule has already been applied. This would clearly cause
non-termination.

¢ If one were to implement the algorithm for internalised TBoxes, one should
clearly start with a completion graph where all initial nominal nodesre
already inter-related via (the approximation of) the universal toland
omit the3U.o; from the input concept. However, for optimisation purposes,
TBoxes will be treated directly, and this is thus not necessary. To treat
TBoxes directly, for each GQI' C D € 7, we add~C U D to the label of
each node, while using standard pre-processing and optimisation techniques

[8].

4.3 Proof of the algorithm’s correctness and termination
Lemma 6 Let D be aSHOZQ concept in NNF and a role hierarchy.

1. When started wittD andR, the tableau algorithm terminates.

2. D has a tableau w.r.R if and only if the expansion rules can be applied to
D andR such that they yield a complete, clash-free completion graph.

Proof: Letm = |cl(D)|, k¥ the number of roles and their inversesZinand R,
(n>) the maximal number in atleast number restrictidms,) the maximal num-
ber in atmost number restrictions, and. . . , o, be all nominals occurring i,
and let) := 22m+k_ The algorithm constructs a graph that consists of a set of ar-
bitrarily interconnected nominal nodes, and “trees” of blockable nodes with each
tree rooted in, or in a nominal node, and where branches of these trees might
end in an edge leading to a nominal node.

Termination is a consequence of the us8&Z Q conditions with respect to
the blockable tree parts of the graph, plus the fact that there is a bound on the
number of new nominal nodes that can be adde@xtby the NN-rule. More
precisely, termination is due to the following four properties, the first three of
which are very similar to those used in the termination proofS®tZ Q given
in [12], and the last of which provides the upper bound on the number of new
nominal nodes generated by tR&l-rule.

1. All but the shrinking rules strictly extend the completion graph by adding
new nodes (and edges) or extending node labels, while neither removing
nodes (or edges) nor removing elements from node labels. This is an obvi-
ous consequence of the definition of the rules.

16

2. New nodes are only added by the generating rules, and each of these rules
can be triggered at most once for a given concept in the label of a given
nodez or in its heirs.

This is obvious if no shrinking rule is applied. If such a rule is applied,
then, intuitively, this observation is due to the fact that, ifneighbour

y of x is merged into a node, thenL(y) is added tol(z), z “inherits”

all of the inequalities fromy, and either: is an.S-neighbour ofz (if x is a
nominal node or ify is a successor af), or z is removed from the graph by
an application oPrune(z) (if x is a blockable node andis a successor of
y). More precisely, we distinguish the following three cases.

e For the3-rule, if it is applied to a conceptS.C' € L(x), then a new
nodey of x is created withl((x,y)) = S andL(y) = C. Subse-
guently, eitherr is removed from the graph, arhas anS-neighbour
y" which is an heir ofy, i.e., withC' € L(y'). Hence thed-rule is no
longer applicable t&lS.C' € L(z).

e For the>-rule, if it is applied to a conceft>nS.C') € L(x), then
n new nodesy, ..., y, are created withl ((x,y;)) = {S}, L(y;) =
{C}, andy; # y; for1 < i < j < n. Subsequently, either is
removed from the graph, ar hasn S-neighboursyy, ...,/ which
are heirs of they;, i.e.,C € L(y;) andy; # y; for1 < i < j < n.
Hence thex-rule is no longer applicable tg>nS.C) € L(x).

e For theNN-rule, if it is applied to a conceft<nS.C') € L(x), then
for somem with 1 < m < n, m new nominal nodeg, ..., y,, are
created withl ((z, y;)) = {S}, L(v;) ={C},yi #Fy;forl <i < j <
m, and(<mS.C) € L(z). Subsequently, either is removed from
the graph, of<mS.C) is still in L(z) andx hasm S-neighbours
Yi,---, Y, which are heirs of they;, i.e.,C € L(y;) andy; # ¥;
for 1 < i < 57 < m. Hence theNN-rule is no longer applicable to
(<nS.C) € L(x).

As for the SHZ Q case, a generating rule being applied to a concept in the
label of a noder can generate at mogt.) blockable successors. As there
are at mostn concepts inC(z), a node can have at mast(n) blockable
successors.

3. AsforSHZQ [12], the blocking condition ensures that the length of a path
consisting entirely of blockable nodes is bounded\byThis is due to the
fact that, forz a blockable nodel, (z) C cl(D, R) and thus does not contain
any nominals, neither those contained in the input nor those added later by
theNN-rule.

17

4. The number of nominal nodes is bounded®y (m(ng))*).

First, we observe that thdN-rule can only be applicable after a nominal

has been added to the label of a blockable nede a branch of one of

the blockable “trees” rooted in, or in a nominal node; otherwise, it is

not possible that a blockable node has a nominal node as a successor. Now
o1, ...,o0p are the only nominals that can be added to the label of a blockable
node (we assume that the nodes generated bythrule are nominal nodes

right from their generation), and thusis a level 0 node, and therule

(which is applied with top priority) will ensure thatis immediately merged

with an existing level 0 node having the same nominal in its label.

As a consequence of this mergingofwith a nominal node, say;, it is
possible that the predecessorof merged into a nominal nodg by the
<-rule (due to the pruning part of merging, this cannot happen to a successor
of x). By definition,n, is of level 0 or 1. Repeating this argument, it is
possible that all ancestors ofare merged into nominal nodes.

However, as the maximum length of a sequence of blockable nodes is
blockable ancestors af can only be merged into nominal nodes of level
below\. This together with the precondition of thN-rule implies that we
can only apply théNN-rule to nominal nodes of level below

Secondly, when thBIN-rule has been applied to a concegtnR.C') in the
label of a noder, it can never be applied again tanR.C') in the label of
x or an heir ofx.

The remainder is a simple counting exercise: é-rule can be applied

at mostm times to a given nominal node, and each such application can
generate at mogin<) new nominal nodes. A& was initialised with?
nominal nodes, thBIN-rule can be applied at mo&t: times to level 0 nodes
and can generate at mdst(n<) level 1 nodes; similarly, thBIN-rule can

be applied at mostm(m(n<))*"! to level: nodes, and generate at most
{(m(ng))" level i + 1 nodes. As theNN-rule is only applicable to nodes
with level < X and the level of a node or its heirs can only decrease, this
gives an upper bound of

‘m Z (m(ng))" = Im

0<i<A

on the number of times that tiNN-rule can be applied, and an upper bound
of

1 — (m(ng))*
1 —m(ng)

1 — (m(ng)**!

1 —m(ng)

0> (mng)) = ¢ —0

0<i<A
on the number of nominal nodes that can be generated.

18

To sum up, there is a bour@(¢(m(n<))*) on the number of nominal nodes
that can be generated, and this implies a bound on the number of blockable nodes.
Hence any sequence of rule applications must eventually resGitbeing com-
plete.

For the second claim in Lemma 6, for the “if” direction, we can obtain a
tableauT’ = (S, L', €) from a complete and clash-free completion gr&ptby
unravellingblockable “tree” parts of the graph as usual (these are the only parts
where blocking can apply).

More precisely, paths are defined as follows. For a label blocked nole
b(x) denote a node that blocks

A path is a sequence of pairs of blockable nodes (@f of the form

p = {((zo,xp),...,(xs,x)). For such a path, we defindail(p) =

z, and Tail'(p) = af. With (p|(z,41,2,,,)) we denote the path
((zo,20), -, (Tn, 2),), (Tnt1,2,,1)). The setPaths(G) is defined inductively as
follows:

e For each blockable nodeof G that is a successor of a nominal node or a
root node((z, x)) € Paths(G), and

e For a pattp € Paths(G) and a blockable nodgin G:

— if y is a successor ofail(p) andy is not blocked, therp|(y,y)) €
Paths(G), and

— if y is a successor ofail(p) andy is blocked, thenp|(b(y),y)) €
Paths(G).

Please note that, due to the constructiorPaths, all nodes occurring in a path
are blockable and, fgr € Paths(G) with p = (p|(z, 2')), = is not blockedy’ is
blocked iff x # 2/, andx’ is never indirectly blocked. Furthermore, the blocking
condition impliesC(x) = L(z').

Next, we uséNom(G) for the set of nominal nodes i@, and define a tableau
T = (S,L', &) from G as follows.

19

S =Nom(G) U Paths(G)

, L(Tail(p)) if p € Paths(G)
L) :{ cw i p e Nom(G)
E(R) = {(p,) € Paths(G) x Paths(G) |

q = (p|(z,2")) andz’ is an R-successor ofail(p) or
p = (¢|(z, 2")) andz’ is anlnv(R)-successor ofail(¢q) } U
(

{{p, z) € Paths(G) x Nom(G) | z is an R-neighbour of Tail(p)} U
{(z,p) € Nom(G) x Paths(G) | Tail(p) is anR-neighbour ofr} U
{{(z,y) € Nom(G) x Nom(G) | y is an R-neighbour ofr}

We already commented above 8nandLl’ is straightforward. Unfortunately,
€ is slightly cumbersome because we must distinguish between blockable and
nominal nodes.
CLAIM : T is a tableau foD with respect toR.

Firstly, by definition of the algorithm, there is an hejrof r, with D € L(x).
By the <-rule, xz, is either a root node or a nominal node, and thus cannot be
blocked. Hence there is somec S with D € L'(s). Next, we prove thai’
satisfies eachH().

e (P1) to (P3) are trivially implied by the definition of’ and completeness
of G.

o for (P4), consider a tuplés, t) € E(R) with VR.C' € L'(s). We distinguish
four different cases:

— if (s,t) € Paths(G) x Paths(G), thenVR.C € L(Tail(s)) and
* eitherTail'(¢) is an R-successor ofail(s). Hence completeness
impliesC' € L(Tail'(t)), and eithefTail’(¢) = Tail(¢) or the block-
ing condition impliesC (Tail'(t)) = L(Tail(t)).
« or Tail'(s) is anInv(R)-successor offail(t). Either Tail'(t) =
Tail(t) or the blocking condition implies¥ R.C' € L(Tail'(s)),
and thus completeness implies tidat L(Tail(t)).

— if (s,t) € Nom(G) x Nom(G), thenVR.C € L(s) andt is an R-
neighbour ofs. Hence completeness impli€se L(t).

— if (s,t) € Nom(G) x Paths(G), thenVR.C' € L(s) andTail(¢) is an
R-neighbour ofs. Hence completeness impli€se L(Tail(t)).

20

— if (s,t) € Paths(G) x Nom(G), thenVR.C' € L(Tail(s)) andt is an
R-neighbour ofTail(s). Hence non-applicability of thé-rule implies
C e L(t).

In all four cases, by definition di’, we haveC' € L'(t).
e for (P5), consider some € S with 3R.C' € L'(s).

— If s € Paths(G), then3R.C' € L(Tail(s)), Tail(s) is not blocked,
and completeness @f implies the existence of aR-neighboury of
Tail(s) with C' € L(y).

« If yis anominal node, thepme S, C € L'(y), and(s

Y

x If y is blockable and a successorofil(s), then(s|(y,y

forg =yoryg =b(y), C € L'({(s[(g,9))), and(s, {s|(y
E(R).

x If y is blockable and a predecessor dfail(s), then

s = (l(y.)|(Tail(s), Tail(s))), C € L((pl(y,y)), and
(s, (P|(y,))) € E(R).

— If s € Nom(G), then completeness implies the existence of séine
successor of s with C' € L(x).
« If z is a nominal node, the(s, z) € £(R) andC € L'(x).

x If x is a blockable node, thenis a safelz-neighbour of and thus
not blocked. Hence there is a patle Paths(G) with Tail(p) =
z, (s,p) € E(R) andC € L'(p).

e (P6) is analogous toH4).

) € E(R).
)) €8,
Y)))

e for (P7), consider some € S with (>nR.C) € L'(s).

— if s € Nom(G), then completeness implies the existence:fafe
R-neighboursy, . .., y, of s with andy; # y;, for eachi # j, and
C € L(y;), for eachl < i < n. By construction, eacl; corresponds
to at; € Swith ¢; # ¢;, for eachi # j:

x if y; is blockable, then it cannot be blocked since it is a safe
R-neighbour ofs. Hence there is a patfp|(y;,y:;)) € S and
(s, (Pl(yi, 2))) € E(R).

« if y; is a nominal node, thes, y;) € E(R).

— if s € Paths(G), then completeness implies the existence:aR-
neighboursy,, . .., y, of Tail(s) with y; # y;, for eachi # j, and
C € L(y;), for eachl < i < n. By construction, eacl; corresponds
to at; € Swith ¢; # ¢;, for eachi # j:

21

 if y; is safe, then it can be blocked if it is a successoraf(s).
In this case, the “pair” construction in our definition of paths en-
sure that, even ib(y;) = b(y;), for somei # j, we still have
(Pl(b(yi), v:1)) 7 (PI(b(y;), b;))-
« if y; is unsafe, thers, y;) € E(R).
Hence allt; are different and, by construction; € L'(¢;), for each
1< <n.

o for (P8), consider some € S with (<nR.C) € L'(s). Clash-freeness
implies the existence of atmostR-neighboursgy; of s with C' € L(y;). By
construction, eache S with (s, t) € £E(R) corresponds to aR-neighbour
y; of s or Tail(s), and none of thes&-neighbours gives raise to more than
one suchy;. Moreover, sinc&’(t) = L(y;), (P8) is satisfied.

e (P9) is satisfied due to completenes®fand the fact that eadhe S with
(s,t) € E(R) corresponds to aR-neighbour ofs (in cases € Nom(G)) or
of Tail(s) (in cases € Paths(G)).

e (P10) and P11) are immediate consequences of the definition &f “
successor” andR-neighbour”.

e (P12) is due to completeness Gf and the fact that nominal nodes are not
“unravelled”.

For the “only if” direction, given a tableall = (S, L', €) for D w.r.t. R, we
can apply the non-deterministic rules, i.e., the choose, <-, andNN-rule, in
such a way that we obtain a complete and clash-free graph: inductively with the
generation of new nodes, we define a mappinigom nodes in the completion
graph to individuals i of the tableau in such a way that,

1. for each node, L(x) C L'(w(x)),

2. for each pair of nodes, y and each rol&, if y is an R-successor of, then
(m(z),m(y)) € E(R), and

3. z # y impliesw(x) # 7 (y).

This is analogous to the proof in [12] with the additional observation that, due
to (P12), application of the-rule does not lead to a clash of the form (3). O

As an immediate consequence of Lemmas 6 and 4, the tableau algorithm al-
ways terminates, and answers with is satisfiable w.r.tR” iff D is satisfiable
w.r.t. R. Next, subsumption can be reduced to (un)satisfiability. Finally, as we
mentioned in Section ZHOZQ can internalise general TBoxes.

22

Theorem 7 The tableau algorithm presented in Definition 5 is a decision proce-
dure for satisfiability and subsumption §tHOZ Q concepts w.r.t. TBoxes and
role hierarchies.

5 Outlook

In this report, we have presented what is, to the best of our knowledge, the first
goal-directed decision procedure f§(HOZQ (and soSHOIN). Given that
SHOZQ is NExpTime-complete [19], it is clear that, in the worst case, any de-
cision procedure will behave very badly, i.e., not terminate in practise. However,
the algorithm given here is designed to behave well in many typically encoun-
tered cases, and to exhibit a “pay as you go” behaviour: if an input TBox, role
hierarchy, and concept do not involve any one of inverse roles, number restric-
tions, or nominals, then thidN-rule will not be applied, and the corresponding
non-deterministic guessing is avoided. This is even true for inputs that do involve
all of these three constructors, but only in a “harmless” way. HenceS®®7Z O
algorithm can be implemented to perform just as wellS6Z Q knowledge bases

as state-of-the-art DL reasoners 8HZ Q [9, 5, 17]. To find out whether our al-
gorithm can handle some non-trivial, “truS’HOZQ inputs, we are currently
extending a highly optimised DL reasoner, FaCT++ [21], to implement the algo-
rithm described here.

References

[1] Franz Baader and Philipp Hanschke. A schema for integrating concrete do-
mains into concept languages. Rnoc. of the 12th Int. Joint Conf. on Atrtifi-
cial Intelligence (IJCAI'91) pages 452—-457, 1991.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, lan Horrocks, Debo-
rah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL
web ontology language reference. W3C Recommendation, 10 February
2004. Available ahttp://www.w3.org/TR/owl-ref/

[3] Patrick Blackburn and Jerry Seligman. Hybrid languagk®f Logic, Lan-
guage and Informatiod:251-272, 1995.

[4] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele
Nardi, and Riccardo Rosati. Description logic framework for information
integration. InProc. of the 6th Int. Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR'9®@ages 2—-13, 1998.

23

[5] Volker Haarslev and Ralf Mller. RACER system description. Froc. of
the Int. Joint Conf. on Automated Reasoning (IJCAR 20adlyme 2083 of
Lecture Notes in Artificial Intelligen¢cgages 701-705. Springer, 2001.

[6] J. Hladik and J. Model. Tableau systems for SHIO and SHIQProc. of
the 2004 Description Logic Workshop (DL 200€EUR, 2004. Available
from ceur-ws.org

[7] Bernhard Hollunder and Franz Baader. Qualifying number restrictions in
concept languages. Technical Report RR-91-03, Deutsches Forschungszen-
trum fur Kunstliche Intelligenz (DFKI), Kaiserslautern (Germany), 1991.
An abridged version appeared ioc. of the 2nd Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning (KR'91)

[8] I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice.
In A. G. Cohn, F. Giunchiglia, and B. Selman, editdPsoc. of the 7th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR-00)
Morgan Kaufmann, Los Altos, 2000.

[9] lan Horrocks and Peter F. Patel-Schneider. FaCT and DLP: Automated rea-
soning with analytic tableaux and related methodsPioc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX'P&Yyes
27-30, 1998.

[10] lan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHZQ and RDF to OWL: The making of a web ontology languagé.
of Web Semanti¢c4(1):7-26, 2003.

[11] lan Horrocks and Ulrike Sattler. Ontology reasoning in 81O Q(D) de-
scription logic. InProc. of the 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2001) pages 199-204, 2001.

[12] lan Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Harald Ganzinger, David McAllester, and
Andrei Voronkov, editorsProc. of the 6th Int. Conf. on Logic for Program-
ming and Automated Reasoning (LPAR9®)mber 1705 in Lecture Notes
in Artificial Intelligence, pages 161-180. Springer, 1999.

[13] lan Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individ-
uals for the description logiSHZ Q. In David McAllester, editorProc. of
the 17th Int. Conf. on Automated Deduction (CADE 2006)Jume 1831 of
Lecture Notes in Computer Scienpages 482—-496. Springer, 2000.

24

[14] Deborah L. McGuinness and Jon R. Wright. An industrial strength descrip-
tion logic-based configuration platformlEEE Intelligent Systemgpages
69-77, 1998.

[15] Leszek Pacholski, Wieslaw Szwast, and Lidia Tendera. Complexity of two-
variable logic with counting. IrProc. of the 12th IEEE Symp. on Logic
in Computer Science (LICS'97pages 318-327. IEEE Computer Society
Press, 1997.

[16] Jeff Pan and lan Horrocks. Web ontology reasoning with datatype groups.
In Dieter Fensel, Katia Sycara, and John Mylopoulos, ediférsg. of the
2003 International Semantic Web Conference (ISWC 20@8hber 2870 in
Lecture Notes in Computer Science, pages 47—63. Springer, 2003.

[17] Pellet OWL reasoner. Maryland Information and Network Dynamics
Lab, 2003. http://www.mindswap.org/2003/pellet/index.
shtml .

[18] Andrea Schaerf. Reasoning with individuals in concept langudgges. and
Knowledge Engineerind 3(2):141-176, 1994.

[19] Stephan Tobies. The complexity of reasoning with cardinality restrictions
and nominals in expressive description logick. of Artificial Intelligence
Research12:199-217, 2000.

[20] Stephan TobiesComplexity Results and Practical Algorithms for Logics in
Knowledge RepresentatiorPhD thesis, LUFG Theoretical Computer Sci-
ence, RWTH-Aachen, Germany, 2001.

[21] Dmitry Tsarkov and lan Horrocks. Efficient reasoning with range and
domain constraints. IrProc. of the 2004 Description Logic Workshop
(DL 2004) pages 41-50, 2004.

[22] Moshe Y. Vardi. Why is modal logic so robustly decidable DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Scieralame 31,
pages 149-184. American Mathematical Society, 1997.

25

