
A Tableaux Decision Procedure
for SHOIQ

Ian Horrocks andUlrike Sattler
Department of Computer Science

University of Manchester, UK
{horrocks |sattler }@cs.man.ac.uk

Abstract
OWL DL, a new W3C ontology language recommendation, is based on

the expressive description logicSHOIN . Although the ontology consis-
tency problem forSHOIN is known to be decidable, up to now there has
been no known “practical” decision procedure, i.e., a goal directed proce-
dure that is likely to perform well with realistic ontology derived problems.
We present such a decision procedure (forSHOIQ, a slightly more expres-
sive logic thanSHOIN ), extending the well known algorithm forSHIQ,
which is the basis for several highly successful implementations.

A short version of this report appears in theProceedings of Nineteenth Inter-
national Joint Conference on Artificial Intelligence(IJCAI 2005).
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1 Introduction

Description Logics (DLs) are a family of logic based knowledge representation
formalisms. Although they have a range of applications (e.g., configuration [14],
and information integration [4]), they are perhaps best known as the basis for
widely used ontology languages such as OIL, DAML+OIL and OWL [10], the
last of which is now a World Wide Web Consortium (W3C) recommendation [2].

The OWL specification describes three language “species”, OWL Lite, OWL
DL and OWL Full, two of which (OWL Lite and OWL DL) are based on ex-
pressive description logics.1 The decision to base these languages on DLs was
motivated by a requirement that key inference problems (such as ontology con-
sistency) be decidable, and hence that it should be possible to provide reasoning
services to support ontology design and deployment [10].

OWL Lite and OWL DL are based on the DLsSHIF and SHOIN
respectively—in fact OWL Lite is just a syntactic subset of OWL DL [10].2 Al-
though the ontology consistency problem forSHOIN is known to be decidable,3

to the best of our knowledge no “practical” decision procedure is known for it, i.e.,
no goal directed procedure that is likely to perform well with realistic ontology de-
rived problems [20, 11]. In this report we present such a decision procedure for
SHOIQ, i.e.,SHOIN extended withqualifiednumber restrictions [7]. The al-
gorithm extends the well-known tableaux algorithm forSHIQ [12], which is the
basis for several highly successful implementations [9, 5, 17].

TheO in SHOIQ denotesnominals, i.e., classes with a singleton extension.
Nominals are a prominent feature of hybrid logics [3], and can also be viewed
as a powerful generalisation ofABox individuals[18, 11]. They occur naturally
in ontologies, e.g., when describing a class such asEUCountries by enumerat-
ing its members, i.e.,{Austria, . . . , UnitedKingdom} (such an enumeration is
equivalent to a disjunction of nominals). This allows applications to infer, e.g.,
that persons who only visitEUCountries can visit at most 15 countries.

One reason why DLs (and propositional modal and dynamic logics) enjoy
good computational properties, such as being robustly decidable, is that they have
some form of tree model property [22], i.e., if an ontology is consistent, then
it has a (form of) tree model. This feature is crucial in the design of tableaux

1OWL Full uses the same language vocabulary as OWL DL, but does not restrict its use to
“well formed formulae”.

2OWL also includesdatatypes, a simple form ofconcrete domain[1]. These can, however, be
treated exactly as inSHOQ(D)/SHOQ(Dn) [11, 16], so we will not complicate our presentation
by considering them here.

3This is an immediate consequence of a reduction of DLs with transitive roles to DLs without
such roles [20] and the fact that applying this reduction toSHOIN yields a fragment of the two
variable fragment of first order logic with counting quantifiers [15].
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algorithms, allowing them to search only for tree like models. More precisely,
DL tableaux algorithms decide consistency of an ontology by trying to construct
an abstraction of a model for it, a so-called “completion graph”. For logics with
the tree model property, we can restrict our search/construction to tree-shaped
completion graphs.

Tableaux algorithms for expressive DLs employ a cycle detection technique
calledblockingto ensure termination. This is of special interest forSHIQ, where
the interaction between inverse roles and number restrictions results in the loss
of the finite model property, i.e., there are consistent ontologies that only admit
infinite models. On such an input, theSHIQ tableaux algorithm generates a
finite tree-shaped completion graph that can beunravelledinto an infinite tree
model, and where a node in the completion graph may stand for infinitely many
elements of the model. Even when the language includes nominals, butexcludes
one of number restrictions or inverse roles [11, 6], or if nominals are restricted
to ABox individuals [13], we can work on forest-shaped completion graphs, with
each nominal (individual) being the root of a tree like section; this causes no
inherent difficulty as the size of the non-tree part of the graph is restricted by the
number of individuals/nominals in the input.

The difficulty in extending theSHOQ or SHIQ algorithms toSHOIQ is
due to the interaction between nominals, number restrictions, and inverse roles,
which leads to thealmostcomplete loss of the tree model property, and causes
the complexity of the ontology consistency problem to jump from ExpTime to
NExpTime [19]. To see this, consider an ontology containing the following two
axioms that use a nominalo to impose an upper bound ofn on the number of
instances of the conceptF :

> v̇ ∃u−.o

o v̇ (6n u.F )

The first statement requires that, in a model of this ontology, every element has
an incomingu-edge fromo; the second statement restricts the number ofu-edges
going fromo to instances ofF to at mostn. In this case, we might need to con-
sider arbitrarily complex relational structures amongst instances ofF , and thus
cannot restrict our attention to completion trees or forests. Let us assume that
our ontology also forces the existence of an infinite number of instances of an-
other concept, sayN , which requires the above mentioned “block and unravel”
technique. The consistency of the whole ontology then crucially depends on the
relations enforced between instances ofF andN , and whether the unravelling of
the N -part violates atmost number restrictions that instances ofF must satisfy.
Summing up, a tableaux algorithm forSHOIQ needs to be able to handle both
arbitrarily complex relational structures and finite tree structures representing in-
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finite trees, and to make sure that all constraints are satisfied (especially number
restrictions on relations between these two parts), while still guaranteeing termi-
nation.

Two key intuitions have allowed us to devise a tableaux algorithm that meets
all of these requirements. The first intuition is that, when extending aSHOIQ
completion graph, we can distinguish those nodes that may be arbitrarily intercon-
nected (so-callednominal nodes) from those nodes that still form a tree structure
(so-called blockable nodes). Fixing a (double exponential) upper bound on the
number of nominal nodes is crucial to proving termination; it is not, however,
enough to guarantee termination, as we may repeatedly create and merge nominal
nodes (a so-called “yo-yo”).

The second intuition is that the yo-yo problem can be overcome by “guess-
ing” the exactnumber of new nominal nodes resulting from interactions between
existing nominal nodes, inverse roles and number restrictions. This guessing is
implemented by a new expansion rule, theNN-rule, which, when applied to a rel-
evant(6nR.C) concept, generates (non-deterministically) between 1 andn new
nominal nodes, all of which are pairwise disjoint. This prevents the repeated yo-
yo construction, and termination is now guaranteed by the upper bound on the
number of nominal nodes and the use of standard blocking techniques for the
blockable nodes. The non-determinism introduced by this rule could clearly be
problematical for large values ofn, but large values in number restrictions are
already known to be problematical forSHIQ. Moreover, the rule has excellent
“pay as you go” characteristics: in case number restrictions are functional (i.e.,
wheren is 1),4 the new rule becomes deterministic; in case there are no interac-
tions between number restrictions, inverse roles and nominals, the rule will never
be applied; in case there are no nominals, the new algorithm will behave like the
algorithm forSHIQ; and in case there are no inverse roles the new algorithm
will behave like the algorithm forSHOQ.

2 Preliminaries

In this section, we introduce the DLSHOIQ. This includes the definition of
syntax, semantics, and inference problems. We start withSHOIQ-roles, then
introduce some abbreviations, and finally defineSHOIQ-concepts.

Definition 1 Let R be a set ofrole nameswith both transitive and normal role
namesR+ ∪RP = R, whereRP ∩R+ = ∅. The set ofSHOIQ-roles(or roles

4A feature of many realistic ontologies; see, e.g., the DAML ontology library athttp://
www.daml.org/ontologies/
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for short) isR ∪ {R− | R ∈ R}. A role inclusion axiomis of the formR v S,
for two rolesR andS. A role hierarchyis a finite set of role inclusion axioms.

An interpretationI = (∆I , ·I) consists of a non-empty set∆I , thedomainof
I, and a function·I which maps every role to a subset of∆I ×∆I such that, for
P ∈ R andR ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ P−I ,
and if 〈x, y〉 ∈ RI and〈y, z〉 ∈ RI , then〈x, z〉 ∈ RI .

An interpretationI satisfies a role hierarchyR if RI ⊆ SI for eachR v S ∈ R;
such an interpretation is called amodelof R.

We introduce some notation to make the following considerations easier.

1. The inverse relation on roles is symmetric, and to avoid considering roles such
asR−−, we define a functionInv which returns the inverse of a role:

Inv(R) :=

{
R− if R is a role name,
S if R = S− for a role nameS.

2. Since set inclusion is transitive andRI ⊆ SI implies Inv(R)I ⊆ Inv(S)I , for
a role hierarchyR, we introducev* R as the transitive-reflexive closure ofv on
R ∪ {Inv(R) v Inv(S) | R v S ∈ R}. We useR ≡R S as an abbreviation for
R v* RS andS v* RR.

3. Obviously, a roleR is transitive if and only if its inverseInv(R) is transitive.
However, in cyclic cases such asR ≡R S, S is transitive ifR or Inv(R) is a
transitive role name. In order to avoid these case distinctions, the functionTrans
returnstrue if R is a transitive role—regardless whether it is a role name, the
inverse of a role name, or equivalent to a transitive role name (or its inverse):
Trans(S,R) := true if, for someP with P ≡R S, P ∈ R+ or Inv(P ) ∈ R+;
Trans(S,R) := false otherwise.

4. A roleR is calledsimplew.r.t.R if Trans(S,R) = false for all S v* RR.

5. In the following, ifR is clear from the context, then we may abuse our notation
and usev* andTrans(S) instead ofv* R andTrans(S,R), and we say that “S is a
simple role” instead of “S is simple w.r.t.R”.

Definition 2 Let NC be a set ofconcept nameswith a subsetNI ⊆ NC of nomi-
nals, and letR be a role hierarchy. The set ofSHOIQ-concepts(or conceptsfor
short) is the smallest set such that

1. every concept nameC ∈ NC is a concept,
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2. if C andD are concepts andR is a role, then(C u D), (C t D), (¬C),
(∀R.C), and(∃R.C) are also concepts (the last two are called universal and
existential restrictions, resp.), and

3. if C is a concept,R is a simple role5 and n ∈ IN, then (6nR.C) and
(>nR.C) are also concepts (called atmost and atleast number restrictions).

The interpretation function·I of an interpretationI = (∆I , ·I) maps, additionally,
every concept to a subset of∆I such that

(C uD)I = CI ∩DI , (C tD)I = CI ∪DI , ¬CI = ∆I \ CI ,
]oI = 1 for all o ∈ NI ,

(∃R.C)I = {x ∈ ∆I | There is ay ∈ ∆I with 〈x, y〉 ∈ RI andy ∈ CI},
(∀R.C)I = {x ∈ ∆I | For ally ∈ ∆I , if 〈x, y〉 ∈ RI , theny ∈ CI},

(6nR.C)I = {x ∈ ∆I | ]RI(x, C) 6 n},
(>nR.C)I = {x ∈ ∆I | ]RI(x, C) > n},

where, for a setM , we denote the cardinality ofM by ]M andRI(x, C) is defined
as{y | 〈x, y〉 ∈ RI andy ∈ CI}.

ForC andD (possibly complex) concepts,C v̇ D is called ageneral concept
inclusion(GCI), and a finite set of GCIs is called aTBox.

An interpretationI satisfiesa GCIC v̇ D if CI ⊆ DI , andI satisfies a TBox
T if I satisfies each GCI inT ; such an interpretation is called amodel ofT .

A conceptC is calledsatisfiable with respect to a role hierarchyR and a
TBox T if there is a modelI of R andT with CI 6= ∅. Such an interpretation
is called amodel ofC w.r.t.R andT . A conceptD subsumesa conceptC w.r.t.
R andT (written C vR,T D) if CI ⊆ DI holds in every modelI of R andT .
Two conceptsC, D areequivalentw.r.t.R andT (writtenC ≡R,T D) if they are
mutually subsuming w.r.t.R andT .

As usual, subsumption and satisfiability can be reduced to each other. Like
in SHIQ, in SHOIQ, we can reduce reasoning w.r.t.general TBoxesand role
hierarchies to reasoning w.r.t. role hierarchies only: we can use an “approxima-
tion” of a universal roleU to internalisea TBox [12]. The only difference for
SHOIQ is that, in the presence of nominals, we also conjoin∃U.o1u . . .u∃U.o`

to the concept internalising the TBox to make sure that the roleU indeed reaches
all nominalsoi occurring in the input. More precisely, aSHOIQ conceptD is
satisfiable w.r.t.T andR iff

D u CT u ∀U.CT u ∃U.o1 u . . . u ∃U.o`

5Restricting number restrictions to simple roles is required in order to yield a decidable logic
(see [12]).
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is satisfiable w.r.t.R∪{U− v U, Trans(U)}∪{R v U | R occurs inT ,R, or D}
, whereo1, . . . , o` are all nominals occurring inD or T andCT = u

C1v̇C2∈T
¬C1 t

C2.
As a consequence, in the remainder of this paper, we restrict our attention

without loss of generality to the satisfiability ofSHOIQ concepts w.r.t. a role
hierarchy.

Finally, we did not choose to make aunique name assumption, i.e., two nom-
inals might refer to the same individual. However, the inference algorithm pre-
sented below can easily be adapted to the unique name case by a suitable initiali-
sation of the inequality relation6 .=.

3 A Tableau for SHOIQ
For ease of presentation, as usual, we assume all concepts to be innegation nor-
mal form(NNF). Each concept can be transformed into an equivalent one in NNF
by pushing negation inwards, making use of de Morgan’s laws and the duality be-
tween existential and universal restrictions, and between atmost and atleast num-
ber restrictions, [13]. For a conceptC, we use¬̇C to denote the NNF of¬C,
and we usesub(C) to denote the set of all subconcepts ofC (includingC). As
usual, for a conceptD and a role hierarchyR, we define the set of “relevant
sub-concepts”cl(D, R) as follows:

cl(D,R) := sub(D) ∪ {¬̇C | C ∈ sub(D)} ∪
{∀S.E | ∀R.E ∈ sub(D) or ¬̇∀R.E ∈ sub(D) andS occurs inR or D}

WhenR is clear from the context, we usecl(D) instead ofcl(D,R).

Definition 3 If D is aSHOIQ-concept in NNF,R a role hierarchy, andRD is
the set of roles occurring inD orR, together with their inverses, a tableauT for
D w.r.t.R is defined to be a triple(S, L, E) such that:S is a set of individuals,L :
S → 2cl(D) maps each individual to a set of concepts which is a subset ofcl(D),
E : RD → 2S×S maps each role inRD to a set of pairs of individuals, and there
is some individuals ∈ S such thatD ∈ L(s). For alls, t ∈ S, C, C1, C2 ∈ cl(D),
R,S ∈ RD, and

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ E(S) andC ∈ L(t)},

it holds that:

(P1) if C ∈ L(s), then¬C /∈ L(s),

(P2) if C1 u C2 ∈ L(s), thenC1 ∈ L(s) andC2 ∈ L(s),
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(P3) if C1 t C2 ∈ L(s), thenC1 ∈ L(s) or C2 ∈ L(s),

(P4) if ∀R.C ∈ L(s) and〈s, t〉 ∈ E(R), thenC ∈ L(t),

(P5) if ∃R.C ∈ L(s), then there is somet ∈ S such that〈s, t〉 ∈ E(R) and
C ∈ L(t),

(P6) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) for someR v* S with Trans(R), then
∀R.C ∈ L(t),

(P7) if (>nS.C) ∈ L(s), then]ST (s, C) > n,

(P8) if (6nS.C) ∈ L(s), then]ST (s, C) 6 n, and

(P9) if (6nS.C) ∈ L(s) and〈s, t〉 ∈ E(S), then{C, ¬̇C} ∩ L(t) 6= ∅,

(P10) if 〈s, t〉 ∈ E(R) andR v* S, then〈s, t〉 ∈ E(S),

(P11) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R)), and

(P12) if o ∈ L(s) ∩ L(t) for someo ∈ NI , thens = t.

Lemma 4 A SHOIQ-conceptD in NNF is satisfiable w.r.t. a role hierarchyR
iff D has a tableau w.r.t.R.

Proof (sketch): Is analogous to the proof found in [12]. Roughly speaking, we
construct a modelI from a tableau by takingS as its interpretation domain and
adding the missing role-successorships for transitive roles. Then, by induction on
the structure of formulae, we prove that, ifC ∈ L(s), thens ∈ CI . (P12) ensures
that nominals are indeed interpreted as singletons.

For the converse, we can easily transform any model into a tableau. 2

4 A tableau algorithm for SHOIQ
From Lemma 4, an algorithm which constructs a tableau for aSHOIQ-concept
D can be used as a decision procedure for the satisfiability ofD with respect to a
role hierarchyR. Such an algorithm will now be described in detail.

We first define and comment on the underlying data structure and correspond-
ing operations. Next, we provide an example of the algorithm’s behaviour, and
explain the techniques we have chosen to design aterminating, sound, and com-
pletealgorithm. Finally, we prove that our algorithm indeed is terminating, sound,
and complete.
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4.1 Definition of the algorithm

Definition 5 Let R be a role hierarchy andD a SHOIQ-concept in NNF. A
completion graphfor D with respect toR is a directed graphG = (V, E, L, 6 .=)
where each nodex ∈ V is labelled with a set

L(x) ⊆ cl(D) ∪NI ∪ {(6mR.C) | (6nR.C) ∈ cl(D) andm ≤ n}

and each edge〈x, y〉 ∈ E is labelled with a set of role namesL(〈x, y〉) containing
(possibly inverse) roles occurring inD or R. Additionally, we keep track of in-
equalities between nodes of the graph with a symmetric binary relation6 .= between
the nodes ofG.

In the following, we often useR ∈ L(〈x, y〉) as an abbreviation for〈x, y〉 ∈ E
andR ∈ L(〈x, y〉).

If 〈x, y〉 ∈ E, theny is called asuccessorof x andx is called apredecessorof
y. Ancestoris the transitive closure of predecessor, anddescendantis the transitive
closure of successor. A nodey is called anR-successor of a nodex if, for some
R′ with R′ v* R, R′ ∈ L(〈x, y〉). A nodey is called aneighbour(R-neighbour)
of a nodex if y is a successor (R-successor) ofx or if x is a successor (Inv(R)-
successor) ofy.

For a roleS and a nodex in G, we define the set ofx’s S-neighbours withC
in their label,SG(x, C), as follows:

SG(x, C) := {y | y is anS-neighbour ofx andC ∈ L(y)}.

G is said to contain aclashif

1. for some concept nameA ∈ NC and nodex of G, {A,¬A} ⊆ L(x), or

2. for some roleS and nodex of G, (6nS.C) ∈ L(x) and there aren + 1 S-
neighboursy0, . . . , yn of x with C ∈ L(yi) for each0 ≤ i ≤ n andyi 6

.
= yj

for each0 ≤ i < j ≤ n, or

3. for someo ∈ NI , there are nodesx 6 .= y with o ∈ L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring inD, then the tableau algorithm
starts with the completion graphG = ({r0, r1 . . . , r`}, ∅, L, ∅) with L(r0) = {D}
andL(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by repeatedly applying the
expansion rules given in Figures 1 and 2, stopping if a clash occurs.

Before describing the tableau algorithm in more detail, we define some terms
and operations used in the (application of the) expansion rules, and directly com-
ment on them:
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Nominal Nodes and Blockable Nodes We distinguish two types of nodes inG,
nominalnodes andblockablenodes. A nodex is a nominal node ifL(x) contains
a nominal. A node that is not a nominal node is a blockable node. A nominal
o ∈ NI is said to benew inG if no node inG haso in its label.
Comment:like ABox individuals [13], nominal nodes can be arbitrarily intercon-
nected. In contrast, blockable nodes are only found in tree-like structures rooted
in nominal nodes (or inr0); a branch of such a tree may simply end, possibly with
a blockednode (defined below) as a leaf, or have an edge leading to a nominal
node. In case a branch ends in a blocked node, we use standardunravelling to
construct a tableau from the completion graph, and thus the resulting tableau will
contain infinitely many copies of the nodes on the path from the blocking node to
the blocked node. This is why there can be no nominal nodes on this path.

In the NN-rule, we usenew nominals to create new nominal nodes—
intuitively, to fix the identity of certain, constrained neighbours of nominal nodes.
As we will show, it is possible to fix an upper bound on the number of nominal
nodes that can be generated in a given completion graph; this is crucial for ter-
mination of the construction, given that blocking cannot be applied to nominal
nodes.

Blocking A nodex is label blockedif it has ancestorsx′, y andy′ such that

1. x is a successor ofx′ andy is a successor ofy′,

2. y, x and all nodes on the path fromy to x are blockable,

3. L(x) = L(y) andL(x′) = L(y′), and

4. L(〈x′, x〉) = L(〈y′, y〉).

In this case, we say thaty blocksx. A node isblockedif either it is label blocked
or it is blockable and its predecessor is blocked; if the predecessor of a safe node
x is blocked, then we say thatx is indirectly blocked.
Comment:blocking is defined exactly as forSHIQ, with the only difference that,
in the presence of nominals, we must take care that none of the nodes between a
blocking and a blocked one is a nominal node.

Generating and Shrinking Rules and Safe Neighbours The >-, ∃- and
NN-rules are calledgenerating rules, and the6- and theo-rule are calledshrink-
ing rules. An R-neighboury of a nodex is safeif (i) x is blockable or if (ii)x is
a nominal node andy is not blocked.
Comment: generating rules add new nodes to the completion graph, whereas
shrinking rules remove nodes—they merge all information concerning one node
into another one (e.g., to satisfy atmost number restrictions), and then remove
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the former node. We need the safety ofR-neighbours to ensure that enoughR-
neighbours for nominal nodes are generated.

Pruning When a nodey is mergedinto a nodex, we “prune” the completion
graph by removingy and, recursively, all blockable successors ofy. More pre-
cisely, pruning a nodey (written Prune(y)) in G = (V, E, L, 6 .=) yields a graph
that is obtained fromG as follows:

1. for all successorsz of y, remove〈y, z〉 from E and, if z is blockable,
Prune(z);

2. removey from V .

Merging In some rules, we “merge” one node into another node. Intuitively,
when we merge a nodey into a nodex, we addL(y) to L(x), “move” all the
edges leadingto y so that they lead tox and “move” all the edges leading from
y to nominal nodes so that they lead fromx to the same nominal nodes; we then
removey (and blockable sub-trees belowy) from the completion graph. More pre-
cisely, merging a nodey into a nodex (writtenMerge(y, x)) in G = (V, E, L, 6 .=)
yields a graph that is obtained fromG as follows:

1. for all nodesz such that〈z, y〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add〈z, x〉 to E and setL(〈z, x〉) =
L(〈z, y〉),

(b) if 〈z, x〉 ∈ E, then setL(〈z, x〉) = L(〈z, x〉) ∪ L(〈z, y〉),
(c) if 〈x, z〉 ∈ E, then setL(〈x, z〉) = L(〈x, z〉) ∪ {Inv(S) | S ∈

L(〈z, y〉)}, and

(d) remove〈z, y〉 from E;

2. for all nominal nodesz such that〈y, z〉 ∈ E

(a) if {〈x, z〉, 〈z, x〉} ∩ E = ∅, then add〈x, z〉 to E and setL(〈x, z〉) =
L(〈y, z〉),

(b) if 〈x, z〉 ∈ E, then setL(〈x, z〉) = L(〈x, z〉) ∪ L(〈y, z〉),
(c) if 〈z, x〉 ∈ E, then setL(〈z, x〉) = L(〈z, x〉) ∪ {Inv(S) | S ∈

L(〈y, z〉)}, and

(d) remove〈y, z〉 from E;

3. setL(x) = L(x) ∪ L(y);
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4. addx 6 .= z for all z such thaty 6 .= z; and

5. Prune(y).

If y was merged intox, we callx a direct heir of y, and we use being anheir of
another node for the transitive closure of being a “direct heir”.
Comment:merging is the generalisation of what is often done to satisfy an atmost
number restriction for a nodex in case thatx has too many neighbours. However,
since we might need to merge nominal nodes that are related in some arbitrary,
non-tree-like way, merging gets slightly more tricky since we must take care of all
incoming and outgoing edges. The usage of “heir” is quite intuitive since, aftery
has been merged intox, x has “inherited” all ofy’s properties, i.e., its label, its
inequalities, and its incoming and outgoing edges (except for any outgoing edges
removed byPrune).

Level (of Nominal Nodes) Let o1, . . . , o` be all the nominals occurring in the
input conceptD. We define thelevelof a node inductively as follows:

• each (nominal) nodex with anoi ∈ L(x), 1 ≤ i ≤ `, is of level 0, and

• a nominal nodex is of level i if x is not of some levelj < i andx has a
neighbour that is of leveli− 1.

Comment:if a node with a lower level is merged into another node, the level of the
latter node may be reduced, but it can never be increased becauseMerge preserves
all edges connecting nominal nodes. The completion graph initially contains only
level 0 nodes.

Strategy (of Rule Application) the expansion rules are applied according to the
following strategy:

1. theo-rule is applied with highest priority,

2. next, the6- and theNN-rule are applied, and they are applied first to nom-
inal nodes with lower levels (before they are applied to nodes with higher
levels). In case they are both applicable to the same node, theNN-rule is
applied first.

3. all other rules are applied with a lower priority.

Comment:this strategy is necessary for termination, and in particular to fix an
upper bound on the number of applications of theNN-rule. The general idea is to
apply shrinking rules before any other rules (with the exception that theNN-rule
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is applied to a nodebeforeapplying the6-rule to it), and to apply these “crucial”
rules to lower level nodes before applying them to higher level nodes.

We are now ready to finish the description of the tableau algorithm:
A completion graph iscompleteif it contains a clash, or when none of the

rules is applicable. If the expansion rules can be applied toD andR in such a
way that they yield a complete, clash-free completion graph, then the algorithm
returns “D is satisfiablew.r.t.R”, and “D is unsatisfiablew.r.t.R” otherwise.

4.2 Example application of the algorithm

We consider two examples, a rather easy one and a slightly more tricky one.
First, consider the TBox

T = {A v̇ ∃R.(A u ∃R.A),
A v̇ o}.

As described in Section 2, to decide the satisfiability ofA w.r.t.T (and the empty
role hierarchy), we test the following concept

A u CT u ∀U.CT u ∃U.o

for satisfiability w.r.t.{R v U,R− v U}, whereU is transitive andCT = (¬A t
∃R.(A u ∃R.A)) u (¬A t o).

Our tableau algorithm starts with a completion graph consisting of two nodes,
r0 andr1, with L(r0) = {AuCT u∀U.CT u∃U.o} andL(r1) = {o}. After some
applications of theu- and thet-rule (the latter in such a way that we do not get a
clashA,¬A ∈ L(r0)), we obtain a completion graph with

L(r0) = {A, CT ,∃R.(A u ∃R.A), o, ∀U.CT ,∃U.o}.

Now theo-rule is applied immediately, and we merger0 andr1, which leaves
us with a single node, sayr0.

Next, we apply the∃-rule three times and theu-rule several times, which
yields three new nodesx0, x1, andy0, wherex0 is anR-successors ofr0, y0 is a
U -successor ofr0, andx1 is anR-successor ofx0 with

L(x0) = {A u ∃R.A,A, ∃R.A},
L(x1) = {A},
L(y0) = {o}.

Next, we mergey0 into r0 using theo-rule, which makesr0 aU -successor of itself.
Sincex0 is alsoU -successor ofr0, we can apply the∀-rule and the∀+-rule to

∀U.CT ∈ L(r0) (recall thatU is transitive), which addsCT and∀U.CT to x0’s
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u-rule: if 1. C1 u C2 ∈ L(x), x is not indirectly blocked, and
2. {C1, C2} 6⊆ L(x)

then setL(x) = L(x) ∪ {C1, C2}
t-rule: if 1. C1 t C2 ∈ L(x), x is not indirectly blocked, and

2. {C1, C2} ∩ L(x) = ∅
then setL(x) = L(x) ∪ {C} for someC ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no safeS-neighboury with C ∈ L(y),

then create a new nodey with L(〈x, y〉) = {S} andL(y) = {C}
∀-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and

2. there is anS-neighboury of x with C /∈ L(y)
then setL(y) = L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), x is not indirectly blocked, and
2. there is someR with Trans(R) andR v* S,
3. there is anR-neighboury of x with ∀R.C /∈ L(y)

then setL(y) = L(y) ∪ {∀R.C}
choose-rule: if 1. (6nS.C) ∈ L(x), x is not indirectly blocked, and

2. there is anS-neighboury of x with {C, ¬̇C} ∩ L(y) = ∅
then setL(y) = L(y) ∪ {E} for someE ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are notn safeS-neighboursy1, . . . , yn of x with

C ∈ L(yi) andyi 6
.= yj for 1 ≤ i < j ≤ n

then createn new nodesy1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, andyi 6

.= yj for 1 ≤ i < j ≤ n.

6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked, and
2. ]SG(z, C) > n and there are twoS-neighboursx, y of z with

C ∈ L(x) ∩ L(y), and notx 6 .= y
then 1. ifx is a nominal node, thenMerge(y, x)

2. else ify is a nominal node or an ancestor ofx, thenMerge(x, y)
3. elseMerge(y, x)

Figure 1: The tableaux expansion rules forSHIQ

label. Similarly, the these rules addCT and∀U.CT to L(x1) when applied to
∀U.CT ∈ L(x0).

After further application of theu- and thet-rule (again, the latter in such a
way that we do not get a clashA,¬A ∈ L(xi)), we obtain a completion graph
with

L(x0) = L(x1) = {A u ∃R.A,A, ∃R.A,CT ,∀U.CT ,∃R.(A u ∃R.A), o}
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o-rule: if for someo ∈ NI there are 2 nodesx, y with o ∈ L(x) ∩ L(y)
and notx 6 .= y

thenMerge(x, y)

NN-rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is a blockable
S-neighboury of x such thatC ∈ L(y) and
x is a successor ofy,

2. there is nom such that1 6 m 6 n, (6mS.C) ∈ L(x),
and there existm nominalS-neighboursz1, . . . , zm of x
with C ∈ L(zi) andzi 6

.= zj for all 1 ≤ i < j ≤ m.
then 1. guessm with 1 6 m 6 n and setL(x) = L(x) ∪ {(6mS.C)}

2. createm new nodesy1, . . . , ym with L(〈x, yi〉) = {S},
L(yi) = {C, oi} for eachoi ∈ NI new inG,
andyi 6

.= yj for 1 ≤ i < j ≤ m,

Figure 2: The new expansion rules forSHOIQ: theo-rule and theNN-rule

Finally, we apply theo-rule twice and obtain a graph that consists of a single node,
sayr0, which is anR-successor of itself, and with

L(r0) = {A, CT ,∃R.(A u ∃R.A), o, ∀U.CT ,∃U.o, A u ∃R.A,∃R.A}.

This completion graph is complete and clash-free, hence our algorithm returns
“satisfiable”. Indeed, it corresponds to a modelI with a single elementsr and
UI = RI = {(r, r)} andAI = oI = {r}. Please notice that our strategy of
applying theo-rule with highest priority was crucial for termination: otherwise,
we might have continued generating an infinite chain ofR-successors ofx2, even
while merging some of thexi with r0.

Secondly, we discuss a slightly more involved example. Here, we do not
present all details, but only sketch the run of the algorithm. We invite the reader
to verify on this example that theNN-rule is indeed needed.

Assume we want to decide the satisfiability ofo1u∃R−
1 .> w.r.t. the following

TBox, where we use> as an abbreviation ofA t ¬A:

T = {o1 v̇ (62R−
1 .>) u ∀R−

1 .∃S1.∃S−2 .∃R2.o2,
o2 v̇ (62R−

2 .>) u ∀R−
2 .∃S2.∃S−1 .∃R1.o1}.

Again, we would internalise our TBox and use a transitive super-roleU of Ri, Si,
and their inverses. LetC be the result of internalisingT into o1 u ∃R−

1 .>. We
start the algorithm with three nodes, sayr0, r1, andr2, but after few applications
of theu-rule toC ∈ L(r0), we findo1 ∈ L(r0), and thus merger0 andr1, keeping
r1. After further applications of theu- and thet-rules (again, without causing a
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clash), we can apply the∃-rule to ∃R−
1 .> ∈ L(r1) and to∃U.oi ∈ L(r1), for

i ∈ {1, 2}. The latter creates two nodes that are immediately merged intor1 and
r2, respectively, and will make eachri aU -successor ofr1. The former creates an
R−

1 -successor ofr1, and we can thus apply the∀-rule to∀R−
1 .∃S1.∃S−2 .∃R2.o2 ∈

L(r1). Next, we can apply three more times the∃-rule, and obtain a chain of the
following form: r1 has anR−

1 -successorx0, which has anS1-successorx1, which
has anS−2 -successorx2, which has anR2-successorx3 with o2 ∈ L(x3). Thus we
need to apply theo-rule and mergex3 into r2, which becomes anR2-successor of
x2. As a consequence, theNN-rule becomes applicable to(62R−

2 .>) ∈ L(r2).6

We guessm = 2 and create two newR−
2 -successorsn1, n2 of r2 with L(ni) =

{ôi} andn1 6
.
= n2. Now r2 has threeR−

2 -neighbours, and we can apply the6 -rule
to r2, to mergex2 into n1. Please note that6 .= prevents us from mergingn1 into n2

or vice versa.
Sincen1 is anR−

2 -neighbour ofr2, the∀-rule adds∃S2.∃S−1 .∃R1.o1 to n1.
Three application of the∃-rule yield a chain similar to the first one:r2 has anR−

2 -
successorn1, which has anS2-successorx′1, which has anS2-successorx′0, which
has anR1-successory with o1 ∈ L(y). Next,y is merged withr1, and thusr1 is
anR1-successor ofx′0. Again, as a consequence, theNN-rule becomes applicable,
and we guess againm = 2 and create two newR−

1 -successorsm1, m2 of r1 with
L(mi) = {õi} andm1 6

.
= m2. Again, we can apply the6 -rule tor1. Assume that

we merge bothx0 andx′0 into m1.
After this, we can apply the∀-rule to add∃S1.∃S−2 .∃R2.o2 to L(m2) and

∃S2.∃S−1 .∃R1.o1 to L(n2). This yields two more chains betweenr1 andr2, both
going viani andmj after two more applications of the6 -rule—once tor1 and
once tor2. Then the tableau algorithm stops with a complete and clash-free com-
pletion graph.

Let us point out some important properties of our algorithm that were having
effects in this application:

• We can apply theNN-rule only to a nominal noder and some(6nR.C) ∈
L(r) if there is a blockable nodex that hasr as itsR−-successor. Hence we
could only apply it tor1 after it got his secondR−

1 -neighbourx′0.

• The newly created nominal nodes made us merge newly createdR−
i -

neighbours ofri immediately into the new nominal nodesnj andm`. With-
out the explicit inequalitiesn1 6 .= n2 and m1 6 .= m2 between these new
nominal nodes, we could have created another kind of “yo-yo” effect: when
applying the6 -rule to(62R−

i .>) ∈ L(ri), we could have always merged
those nodes that both already have the exists restrictions in their labels, and

6We assume that> is present in all node labels.
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to which the∃-rule has already been applied. This would clearly cause
non-termination.

• If one were to implement the algorithm for internalised TBoxes, one should
clearly start with a completion graph where all initial nominal nodesri are
already inter-related via (the approximation of) the universal roleU and
omit the∃U.oi from the input concept. However, for optimisation purposes,
TBoxes will be treated directly, and this is thus not necessary. To treat
TBoxes directly, for each GCIC v̇ D ∈ T , we add¬C tD to the label of
each node, while using standard pre-processing and optimisation techniques
[8].

4.3 Proof of the algorithm’s correctness and termination

Lemma 6 Let D be aSHOIQ concept in NNF andR a role hierarchy.

1. When started withD andR, the tableau algorithm terminates.

2. D has a tableau w.r.t.R if and only if the expansion rules can be applied to
D andR such that they yield a complete, clash-free completion graph.

Proof: Let m = |cl(D)|, k the number of roles and their inverses inD andR,
(n>) the maximal number in atleast number restrictions,(n6) the maximal num-
ber in atmost number restrictions, ando1, . . . , o` be all nominals occurring inD,
and letλ := 22m+k. The algorithm constructs a graph that consists of a set of ar-
bitrarily interconnected nominal nodes, and “trees” of blockable nodes with each
tree rooted inr0 or in a nominal node, and where branches of these trees might
end in an edge leading to a nominal node.

Termination is a consequence of the usualSHIQ conditions with respect to
the blockable tree parts of the graph, plus the fact that there is a bound on the
number of new nominal nodes that can be added toG by the NN-rule. More
precisely, termination is due to the following four properties, the first three of
which are very similar to those used in the termination proof forSHIQ given
in [12], and the last of which provides the upper bound on the number of new
nominal nodes generated by theNN-rule.

1. All but the shrinking rules strictly extend the completion graph by adding
new nodes (and edges) or extending node labels, while neither removing
nodes (or edges) nor removing elements from node labels. This is an obvi-
ous consequence of the definition of the rules.
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2. New nodes are only added by the generating rules, and each of these rules
can be triggered at most once for a given concept in the label of a given
nodex or in its heirs.

This is obvious if no shrinking rule is applied. If such a rule is applied,
then, intuitively, this observation is due to the fact that, if anS-neighbour
y of x is merged into a nodez, thenL(y) is added toL(z), z “inherits”
all of the inequalities fromy, and eitherz is anS-neighbour ofx (if x is a
nominal node or ify is a successor ofx), orx is removed from the graph by
an application ofPrune(x) (if x is a blockable node andx is a successor of
y). More precisely, we distinguish the following three cases.

• For the∃-rule, if it is applied to a concept∃S.C ∈ L(x), then a new
nodey of x is created withL(〈x, y〉) = S andL(y) = C. Subse-
quently, eitherx is removed from the graph, orx has anS-neighbour
y′ which is an heir ofy, i.e., withC ∈ L(y′). Hence the∃-rule is no
longer applicable to∃S.C ∈ L(x).

• For the>-rule, if it is applied to a concept(>nS.C) ∈ L(x), then
n new nodesy1, . . . , yn are created withL(〈x, yi〉) = {S}, L(yi) =
{C}, andyi 6

.
= yj for 1 ≤ i < j ≤ n. Subsequently, eitherx is

removed from the graph, orx hasn S-neighboursy′1, . . . , y
′
n which

are heirs of theyi, i.e., C ∈ L(y′i) andy′i 6
.
= y′j for 1 ≤ i < j ≤ n.

Hence the>-rule is no longer applicable to(>nS.C) ∈ L(x).

• For theNN-rule, if it is applied to a concept(6nS.C) ∈ L(x), then
for somem with 1 6 m 6 n, m new nominal nodesy1, . . . , ym are
created withL(〈x, yi〉) = {S}, L(yi) = {C}, yi 6

.
= yj for 1 ≤ i < j ≤

m, and(6mS.C) ∈ L(x). Subsequently, eitherx is removed from
the graph, or(6mS.C) is still in L(x) and x hasm S-neighbours
y′1, . . . , y

′
m which are heirs of theyi, i.e., C ∈ L(y′i) and y′i 6

.
= y′j

for 1 ≤ i < j ≤ m. Hence theNN-rule is no longer applicable to
(6nS.C) ∈ L(x).

As for theSHIQ case, a generating rule being applied to a concept in the
label of a nodex can generate at most(n>) blockable successors. As there
are at mostm concepts inL(x), a node can have at mostm(n>) blockable
successors.

3. As forSHIQ [12], the blocking condition ensures that the length of a path
consisting entirely of blockable nodes is bounded byλ. This is due to the
fact that, forx a blockable node,L(x) ⊆ cl(D,R) and thus does not contain
any nominals, neither those contained in the input nor those added later by
theNN-rule.
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4. The number of nominal nodes is bounded byO(`(m(n6))λ).

First, we observe that theNN-rule can only be applicable after a nominal
has been added to the label of a blockable nodex in a branch of one of
the blockable “trees” rooted inro or in a nominal node; otherwise, it is
not possible that a blockable node has a nominal node as a successor. Now
o1, . . . , o` are the only nominals that can be added to the label of a blockable
node (we assume that the nodes generated by theNN-rule are nominal nodes
right from their generation), and thusx is a level 0 node, and theo-rule
(which is applied with top priority) will ensure thatx is immediately merged
with an existing level 0 node having the same nominal in its label.

As a consequence of this merging ofx with a nominal node, sayri, it is
possible that the predecessor ofx is merged into a nominal noden1 by the
6-rule (due to the pruning part of merging, this cannot happen to a successor
of x). By definition,n1 is of level 0 or 1. Repeating this argument, it is
possible that all ancestors ofx are merged into nominal nodes.

However, as the maximum length of a sequence of blockable nodes isλ,
blockable ancestors ofx can only be merged into nominal nodes of level
belowλ. This together with the precondition of theNN-rule implies that we
can only apply theNN-rule to nominal nodes of level belowλ.

Secondly, when theNN-rule has been applied to a concept(6nR.C) in the
label of a nodex, it can never be applied again to(6nR.C) in the label of
x or an heir ofx.

The remainder is a simple counting exercise: theNN-rule can be applied
at mostm times to a given nominal node, and each such application can
generate at most(n6) new nominal nodes. AsG was initialised with`
nominal nodes, theNN-rule can be applied at most`m times to level 0 nodes
and can generate at most`m(n6) level 1 nodes; similarly, theNN-rule can
be applied at most̀m(m(n6))i−1 to level i nodes, and generate at most
`(m(n6))i level i + 1 nodes. As theNN-rule is only applicable to nodes
with level < λ and the level of a node or its heirs can only decrease, this
gives an upper bound of

`m
∑

06i<λ

(m(n6))i = `m
1− (m(n6))λ

1−m(n6)

on the number of times that theNN-rule can be applied, and an upper bound
of

`
∑

0<i6λ

(m(n6))i = `
1− (m(n6))λ+1

1−m(n6)
− `

on the number of nominal nodes that can be generated.
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To sum up, there is a boundO(`(m(n6))λ) on the number of nominal nodes
that can be generated, and this implies a bound on the number of blockable nodes.
Hence any sequence of rule applications must eventually result inG being com-
plete.

For the second claim in Lemma 6, for the “if” direction, we can obtain a
tableauT = (S, L′, E) from a complete and clash-free completion graphG by
unravellingblockable “tree” parts of the graph as usual (these are the only parts
where blocking can apply).

More precisely, paths are defined as follows. For a label blocked nodex, let
b(x) denote a node that blocksx.

A path is a sequence of pairs of blockable nodes ofG of the form
p = 〈(x0, x

′
0), . . . , (xn, x

′
n)〉. For such a path, we defineTail(p) :=

xn and Tail′(p) := x′n. With 〈p|(xn+1, x
′
n+1)〉 we denote the path

〈(x0, x
′
0), . . . , (xn, x

′
n), (xn+1, x

′
n+1)〉. The setPaths(G) is defined inductively as

follows:

• For each blockable nodex of G that is a successor of a nominal node or a
root node,〈(x, x)〉 ∈ Paths(G), and

• For a pathp ∈ Paths(G) and a blockable nodey in G:

– if y is a successor ofTail(p) andy is not blocked, then〈p|(y, y)〉 ∈
Paths(G), and

– if y is a successor ofTail(p) andy is blocked, then〈p|(b(y), y)〉 ∈
Paths(G).

Please note that, due to the construction ofPaths, all nodes occurring in a path
are blockable and, forp ∈ Paths(G) with p = 〈p′|(x, x′)〉, x is not blocked,x′ is
blocked iff x 6= x′, andx′ is never indirectly blocked. Furthermore, the blocking
condition impliesL(x) = L(x′).

Next, we useNom(G) for the set of nominal nodes inG, and define a tableau
T = (S, L′, E) from G as follows.
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S= Nom(G) ∪ Paths(G)

L′(p) =

{
L(Tail(p)) if p ∈ Paths(G)
L(p) if p ∈ Nom(G)

E(R) = {〈p, q〉 ∈ Paths(G)× Paths(G) |
q = 〈p|(x, x′)〉 andx′ is anR-successor ofTail(p) or
p = 〈q|(x, x′)〉 andx′ is anInv(R)-successor ofTail(q)} ∪

{〈p, x〉 ∈ Paths(G)× Nom(G) | x is anR-neighbour ofTail(p)} ∪
{〈x, p〉 ∈ Nom(G)× Paths(G) | Tail(p) is anR-neighbour ofx} ∪
{〈x, y〉 ∈ Nom(G)× Nom(G) | y is anR-neighbour ofx}

We already commented above onS, andL′ is straightforward. Unfortunately,
E is slightly cumbersome because we must distinguish between blockable and
nominal nodes.

CLAIM : T is a tableau forD with respect toR.
Firstly, by definition of the algorithm, there is an heirx0 of r0 with D ∈ L(x0).

By the 6-rule, x0 is either a root node or a nominal node, and thus cannot be
blocked. Hence there is somes ∈ S with D ∈ L′(s). Next, we prove thatT
satisfies each (Pi).

• (P1) to (P3) are trivially implied by the definition ofL′ and completeness
of G.

• for (P4), consider a tuple〈s, t〉 ∈ E(R) with ∀R.C ∈ L′(s). We distinguish
four different cases:

– if 〈s, t〉 ∈ Paths(G)× Paths(G), then∀R.C ∈ L(Tail(s)) and

∗ eitherTail′(t) is anR-successor ofTail(s). Hence completeness
impliesC ∈ L(Tail′(t)), and eitherTail′(t) = Tail(t) or the block-
ing condition impliesL(Tail′(t)) = L(Tail(t)).

∗ or Tail′(s) is an Inv(R)-successor ofTail(t). Either Tail′(t) =
Tail(t) or the blocking condition implies∀R.C ∈ L(Tail′(s)),
and thus completeness implies thatC ∈ L(Tail(t)).

– if 〈s, t〉 ∈ Nom(G) × Nom(G), then∀R.C ∈ L(s) and t is anR-
neighbour ofs. Hence completeness impliesC ∈ L(t).

– if 〈s, t〉 ∈ Nom(G) × Paths(G), then∀R.C ∈ L(s) andTail(t) is an
R-neighbour ofs. Hence completeness impliesC ∈ L(Tail(t)).
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– if 〈s, t〉 ∈ Paths(G) × Nom(G), then∀R.C ∈ L(Tail(s)) andt is an
R-neighbour ofTail(s). Hence non-applicability of the∀-rule implies
C ∈ L(t).

In all four cases, by definition ofL′, we haveC ∈ L′(t).

• for (P5), consider somes ∈ S with ∃R.C ∈ L′(s).

– If s ∈ Paths(G), then∃R.C ∈ L(Tail(s)), Tail(s) is not blocked,
and completeness ofT implies the existence of anR-neighboury of
Tail(s) with C ∈ L(y).

∗ If y is a nominal node, theny ∈ S, C ∈ L′(y), and〈s, y〉 ∈ E(R).
∗ If y is blockable and a successor ofTail(s), then〈s|(ỹ, y)〉 ∈ S,

for ỹ = y or ỹ = b(y), C ∈ L′(〈s|(ỹ, y)〉), and〈s, 〈s|(ỹ, y)〉〉 ∈
E(R).

∗ If y is blockable and a predecessor ofTail(s), then
s = 〈p|(y, y)|(Tail(s), Tail′(s))〉, C ∈ L′(〈p|(y, y)〉), and
〈s, 〈p|(y, y)〉〉 ∈ E(R).

– If s ∈ Nom(G), then completeness implies the existence of someR-
successorx of s with C ∈ L(x).

∗ If x is a nominal node, then〈s, x〉 ∈ E(R) andC ∈ L′(x).
∗ If x is a blockable node, thenx is a safeR-neighbour ofs and thus

not blocked. Hence there is a pathp ∈ Paths(G) with Tail(p) =
x, 〈s, p〉 ∈ E(R) andC ∈ L′(p).

• (P6) is analogous to (P4).

• for (P7), consider somes ∈ S with (>nR.C) ∈ L′(s).

– if s ∈ Nom(G), then completeness implies the existence ofn safe
R-neighboursy1, . . . , yn of s with andyj 6= yj, for eachi 6= j, and
C ∈ L(yi), for each1 ≤ i ≤ n. By construction, eachyi corresponds
to ati ∈ S with ti 6= tj, for eachi 6= j:

∗ if yi is blockable, then it cannot be blocked since it is a safe
R-neighbour ofs. Hence there is a path〈p|(yi, yi)〉 ∈ S and
〈s, 〈p|(yi, yi)〉〉 ∈ E(R).

∗ if yi is a nominal node, then〈s, yi〉 ∈ E(R).

– if s ∈ Paths(G), then completeness implies the existence ofn R-
neighboursy1, . . . , yn of Tail(s) with yj 6= yj, for eachi 6= j, and
C ∈ L(yi), for each1 ≤ i ≤ n. By construction, eachyi corresponds
to ati ∈ S with ti 6= tj, for eachi 6= j:

21



∗ if yi is safe, then it can be blocked if it is a successor ofTail(s).
In this case, the “pair” construction in our definition of paths en-
sure that, even ifb(yi) = b(yj), for somei 6= j, we still have
〈p|(b(yi), yi)〉 6= 〈p|(b(yj), bj)〉.

∗ if yi is unsafe, then〈s, yi〉 ∈ E(R).

Hence allti are different and, by construction,C ∈ L′(ti), for each
1 ≤ i ≤ n.

• for (P8), consider somes ∈ S with (6nR.C) ∈ L′(s). Clash-freeness
implies the existence of atmostn R-neighboursyi of s with C ∈ L(yi). By
construction, eacht ∈ S with 〈s, t〉 ∈ E(R) corresponds to anR-neighbour
yi of s or Tail(s), and none of theseR-neighbours gives raise to more than
one suchyi. Moreover, sinceL′(t) = L(yi), (P8) is satisfied.

• (P9) is satisfied due to completeness ofG and the fact that eacht ∈ S with
〈s, t〉 ∈ E(R) corresponds to anR-neighbour ofs (in cases ∈ Nom(G)) or
of Tail(s) (in cases ∈ Paths(G)).

• (P10) and (P11) are immediate consequences of the definition of “R-
successor” and “R-neighbour”.

• (P12) is due to completeness ofG and the fact that nominal nodes are not
“unravelled”.

For the “only if” direction, given a tableauT = (S, L′, E) for D w.r.t.R, we
can apply the non-deterministic rules, i.e., thet-, choose-, 6-, andNN-rule, in
such a way that we obtain a complete and clash-free graph: inductively with the
generation of new nodes, we define a mappingπ from nodes in the completion
graph to individuals inS of the tableau in such a way that,

1. for each nodex, L(x) ⊆ L′(π(x)),

2. for each pair of nodesx, y and each roleR, if y is anR-successor ofx, then
〈π(x), π(y)〉 ∈ E(R), and

3. x 6 .= y impliesπ(x) 6= π(y).

This is analogous to the proof in [12] with the additional observation that, due
to (P12), application of theo-rule does not lead to a clash of the form (3). 2

As an immediate consequence of Lemmas 6 and 4, the tableau algorithm al-
ways terminates, and answers with “D is satisfiable w.r.t.R” iff D is satisfiable
w.r.t. R. Next, subsumption can be reduced to (un)satisfiability. Finally, as we
mentioned in Section 2,SHOIQ can internalise general TBoxes.
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Theorem 7 The tableau algorithm presented in Definition 5 is a decision proce-
dure for satisfiability and subsumption ofSHOIQ concepts w.r.t. TBoxes and
role hierarchies.

5 Outlook

In this report, we have presented what is, to the best of our knowledge, the first
goal-directed decision procedure forSHOIQ (and soSHOIN ). Given that
SHOIQ is NExpTime-complete [19], it is clear that, in the worst case, any de-
cision procedure will behave very badly, i.e., not terminate in practise. However,
the algorithm given here is designed to behave well in many typically encoun-
tered cases, and to exhibit a “pay as you go” behaviour: if an input TBox, role
hierarchy, and concept do not involve any one of inverse roles, number restric-
tions, or nominals, then theNN-rule will not be applied, and the corresponding
non-deterministic guessing is avoided. This is even true for inputs that do involve
all of these three constructors, but only in a “harmless” way. Hence, ourSHOIQ
algorithm can be implemented to perform just as well onSHIQ knowledge bases
as state-of-the-art DL reasoners forSHIQ [9, 5, 17]. To find out whether our al-
gorithm can handle some non-trivial, “true”SHOIQ inputs, we are currently
extending a highly optimised DL reasoner, FaCT++ [21], to implement the algo-
rithm described here.
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