A Tableau Calculus for Multimodal Logics and
Some (Un)Decidability Results

Matteo Baldoni, Laura Giordano, and Alberto Martelli

Dipartimento di Informatica — Universita degli Studi di Torino
Corso Svizzera, 185 — 1-10149 Torino (Italy)
Tel. +39 11 74 29 111, Fax +39 11 75 16 03
{baldoni,laura,mrt}@di.unito.it
http://www.di.unito.it/ argo

Abstract. In this paper we present a prefized analytic tableau calculus
for a class of normal multimodal logics and we present some results about
decidability and undecidability of this class. The class is characterized by
axioms of the form [t1] ... [tn]e D [s1]. .. [sm]ep, called inclusion azioms,
where the ¢;’s and s;’s are constants. This class of logics, called grammar
logics, was introduced for the first time by Farinas del Cerro and Pentto-
nen to simulate the behaviour of grammars in modal logics, and includes
some well-known modal systems. The prefixed tableau method is used to
prove the undecidability of modal systems based on unrestricted, context
sensitive, and context free grammars. Moreover, we show that the class
of modal logics, based on right-reqular grammars, are decidable by means
of the filtration methods, by defining an extension of the Fischer-Ladner
closure.

Keywords: Multimodal logics, Prefixed Tableaux methods, Decidabi-
lity, Formal Grammars.

1 Introduction and Motivations

Modal logics are widely used in artificial intelligence for representing knowledge
and beliefs [19] together with other attitudes in agent systems like, for instance,
goals, intentions and obligations [33]. Moreover, modal logics are well suited for
representing dynamic aspects in agent systems and, in particular, to formalize
reasoning about actions and time. Last but not least, modal logics are shown
useful to extend logic programming languages with new features [3T/I3//4].

In this paper we focus on a class of normal multimodal logics, called grammar
logics, which are characterized by a set of logical axioms of the form:

[t1] .- [tu]p D [s1] - [sm]e (n>0;m > 0) (1)

that we call inclusion azxiom, where the ¢;’s and s;’s are modalities. This class
includes some well-known modal systems such as K, K4, S4 and their multimo-
dal versions. Differently from other logics, such as those studied in [19], these
systems can be non-homogeneous (i.e., every modal operator is not restricted to
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belong to the same system) and can contain some interaction azioms (i.e., every
modal operator is not restricted to be independent from the others).

This class of logics has been introduced by Farinas del Cerro and Penttonen
in [11], where a method to define multimodal logics from formal grammars is
presented, in such a way to simulate the behaviour of grammars. Given a formal
grammar, a modality is associated to each terminal and nonterminal symbol,
while, for each production rule of the form t;---t, — s1---s,,, an associated
inclusion axiom [t1]...[tn]e D [s1] ... [Sm]e is defined. In [11], it is shown that
testing whether a word is generated by the formal grammar is equivalent to
proving a theorem in the logic. Moreover, relying on this relation with formal
grammars, an undecidability result for this class of multimodal logics is proved.
However, in [I1], neither a proof method is presented to deal with the class of
grammar logics nor (un)decidability of restricted subclasses is studied.

In this paper, we develop an analytic tableau calculus for the class of grammar
logics. The calculus is parametric with respect to each modal system in this class.
In particular, it deals with non-homogeneous multimodal systems with arbitrary
interaction azioms of the form ().

The calculus is an extension of the one proposed in [26], which is closely
related to the systems of prefixed tableaux presented in [14]. As a difference with
[14], worlds are not represented by prefixes (which describe paths in the model
from the initial world), but they are given an atomic name and the accessibility
relationships among them are explicitly represented in a graph. The method is
based on the idea of using the characterizing axioms of the logic as “rewrite
rules” which create new paths among worlds in the counter-model construction.

Making use of the tableau calculus we prove the undecidability of the modal
systems based on context sensitive and context-free grammars. Moreover, we
show that the class of modal logics based on right regular grammars is decidable.
We use the well-known filtration methods by defining an extension of the Fischer-
Ladner closure for modal logics. This result is close to those that have been
established for propositional dynamic logic [1220)].

2 Grammar Modal Logics

Let us define a propositional multimodal language £, containing the logical
connectives A, V, D, and -, a set of modal operators of the form [t] and (¢),
where ¢ belongs to a nonempty countable set MOD (the alphabet of modalities)
and a nonempty countable set VAR of propositional variables. MOD and VAR
are disjoint. The set of formulae of the languages are constructed as usual by
means of the propositional variables, the connectives, and the modal operators.

We only consider normal modal logics, that is those ones whose axioma-
tization at least contains the axiom schemas for the classical propositional cal-
culus, modus ponens and necessitation rules, and the axiom schema K(t) :
[t](¢ D ) D ([tlp D [t]y) for all modal operators. In particular, we focus on
normal multimodal logics that are characterized by a set of axiom schemas of
the form (I). We call these logics grammar logics. Let A be a set of inclusion
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axioms, we denote by IZ:“ the grammar logic determined by the set A with £
as underlying language, while we use 824 to denote its characterizing axiom sy-
stems (containing the axioms for normal modalities plus A). As we will see, the
inclusion axioms determine inclusion properties on the accessibility relations.

Some examples of grammar logics are the well-known modal systems K, T
K4, S4 |23], their multimodal versions K, T),, K4, S4, [19], extensions of K,
and S4,, with interaction axioms or with agent “any fool” in [I6/I0|3].

Ezample 1. (The friends puzzle) Peter is a friend of John, so if Peter knows that
John knows something, then John knows that Peter knows that thing. That is,
Ax: [p]ldle D [F]lple, where [p] and [j] are modal operators of type S4 (i.e., Ag:
[ple D ¢, As: [ple D pllple, As: [jle D ¢, and As: [jle D [j]ljle) and they are
used to denote what is known by Peter and John, respectively. Peter is married,
so if Peter’s wife knows something, then Peter knows the same thing, that is,
Ag: [wple D [p]e holds, where [wp] is a modality of type S4 representing the
knowledge of Peter’s wife. John and Peter have an appointment, let us consider
the following situation:

(1) [p]time (3) [wp]([p]time D [j]time)
(2) [p][j]place (4) [p][j](place A time D place)

That is, (1) Peter knows the time of their appointment; (2) Peter also knows
that John knows the place of their appointment. Moreover, (3) Peter’s wife knows
that if Peter knows the time of their appointment, then John knows that too;
(4) Peter knows that if John knows the place and the time of their appointment,
then John knows that he has an appointment. From this situation we will be able
to prove [f][plappointment A [p][jlappointment, that is, each of the two friends
knows that the other one knows that he has an appointment.

In order to define the meaning of a formula, we introduce the notion of
Kripke interpretation. Formally, a Kripke interpretation M is a triple (W, {R; |
t € MOD}, V), consisting of a non-empty set W of “possible worlds” and a set
of binary relations R (one for each t € MOD) on W, and a valuation function
V, that is a mapping from W x VAR to the set {T,F}. We say that R; is the
accessibility relation of the modality [t] and w’ is accessible from w by means of
Ry if (w,w’) € Ry (or wRw').

The meaning of a formula is given by means of a satisfiability relation, denoted
by |=. Let M = (W, {R, | t € MOD}, V) be a Kripke interpretation, w a world in
W and ¢ a formula, then, we say that ¢ is satisfiable in the Kripke interpretation
M at w, denoted by M, w = ¢, if the following conditions hold:

— M,w = ¢ and ¢ € VAR iff V(w, ¢) = T;

- M,w | —p iff M,w [~

- MuwkEeANYift M;wE ¢ and M,w = ¢;

- M,wlEeVyiff M,wlEpor M,w

MwE D¢ iff Mw o or M,w = 1;

M,w = [t]p iff for all w’ € W such that (w,w’) € Ry, M,w' = ¢;

— M,w [ (t)y iff there exists a w’ € W such that (w,w’) € R, and M, w’ |= .
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Let M, be the set of all Kripke interpretations, as defined above. For each
grammar logic IZ‘ we introduce a suitable notion of Kripke A-interpretation, by
adding some restriction on the accessibility relations. More precisely, let M =
(W,{R; | t € MOD}, V) be a Kripke interpretation and let A be a set of inclusion
axioms, we say M is a Kripke A-interpretation if and only if for each axiom
schema [t1][te] ... [tn]e D [s1][s2] - - - [sm]p € A, the following inclusion property
on the accessibility relation holds:

Ri,oRip,0...0R,, DRsy0Rs,0...0R;,, (2)
where “o” means the relation composition Rio Ry = {(w,w”) € W xW | Juw' €
W such that (w,w’) € Ry and (w',w") € Ry )1,

The set of all Kripke A-interpretations is denoted by Mf and it is a subset
of M. Given a Kripke A-intepretation M = (W, {R, | t € MOD}, V) in M%,
we say that a formula ¢ of IZ‘ is satisfiable in M if M,w =4 ¢ for some world
w € W. We say that ¢ is valid in M if —¢ is not satisfiable in M. Moreover, a
formula ¢ is satisfiable if ¢ is A-satisfiable in some Kripke A-interpretation in
M4 and A-valid f it is valid in all Kripke A-interpretations in M7 (in this case,
we write =4 ).

The axiom system Sf‘ is sound and complete axiomatization with respect to
M4 2] (see also [L1] for a subclass).

Due to the similarity between inclusion axioms and production rules in a
grammar, we can associate to a given grammar a corresponding grammar logic.

A grammaris a quadruple G = (V, T, P, S), where V and T are disjoint finite
sets of variables and terminals, respectively. P is a finite set of productions, each
production is of the form o — [, where the form of o and 3 depends on the type
of grammar as followsZ:

Production grammar form for different classes of languages

type-0 type-1 type-2 type-3
ae(VUT)'V(VUT) lae (VUT)*'V(VUT)* aeV aeV
pge(Vun®* Be(VuT)*t Be(VUT)*|B=cAorB=0c
18] < | ceT*, AeV

Finally, S € V is a special variable called the start symbol [21]. We say that the
production o — 3 is applied to the string yad to directly derive o34 in grammar
G (written yad =g 56). The relation derives, =, is the reflexive, transitive
closure of =¢. The language generated by a grammar G, denoted by L(G) is the
set of words {w € T* | S =¢ w}.

Given a formal grammar G = (V, T, P, S), we can associate to it a grammar
logic (based on G) containing the modalities MOD = V U T and characterized

L If m = 0 then we assume Rsy ©Rsy0...0Rs,, =1, where [ is the identity relation
on W.

We denote by “L*” the Kleene closure of the language L (i.e. it denotes zero or
more concatenation of L) and by “+” the positive closure of L (i.e. it denotes one
or more concatenation of L) [21].

2
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by the a axiom schema [t1] ... [tn]e D [s1] ... [Sm]p, one for each production rule
t1 - tp, — 81+ S, € P, where the ¢;’s and s;’s are either in V or in 7.

We will call unrestricted, context sensitive, context-free, and right-regular mo-
dal logic a grammar logic based on a type-0, type-1, type-2, and type-3 grammar,
respectively.

3 A Tableau Calculus for Grammar Logics

Before introducing our tableau calculus, we need to define some notions. We
define a signed formula Z as a formula prefixed by one of the two symbols T and
F (signs). For instance, if ¢ is a formula then, T and F¢ are signed formulae.

Definition 1. Let L be a propositional modal language and let We be a coun-
table non-empty set of constant world symbols (or prefixes). A prefixed signed
formula, w : Z, is a prefix w € We followed by a signed formula Z.

Intuitively, prefixes are used to name worlds, and a formula w : Ty (w : Fy)
on a branch of a tableau means that the formula ¢ is true (false) at the world w
in the Kripke interpretation associated with that branch. We assume that We
contains always at least the prefix i, that is interpreted as the initial world.

Definition 2. Let L be a propositional modal language, an accessibility relation
formula w p; w’, where t € MOD, is a binary relation between prefizes of We.

We say that an accessibility relation formula w p; w’ is true in a tableau
branch if it belongs to that branch and, intuitively, this means that in the Kripke
interpretation associated with that branch (w,w’) € R; holds.

Remark 1. Using prefixed formulae is very common in modal theorem proving
(see [I7] for an historical introduction on the topic). We would like to mention
the well-known prefized tableau systems in [I4] and the TABLEAUX system in
[8]. In [14], differently than here and [26[8], a prefix is a sequence of integers
which represents a world as a path from the initial world to it. As a result,
instead of representing explicitly worlds and accessibility relations of a Kripke
interpretation in a graph, by means of the accessibility relation formulae, [14]
represents them by a set of paths, which can be considered as a spanning tree of
the graph. Similar ideas are also used by other authors, such as the proposals in
[25/18/329].

In order to simplify the presentation of the calculus we use the well-known
uniform notation for signed formulae [T4] (see Fig. ). In the following, we will
often use «, 3, ¥, and 7% as formulae of the corresponding type.

A tableau is a labeled tree where each node consists of a prefized signed formula
or an accessibility relation formula. It is an attempt to build an interpretation in
which a given formula is satisfiable. Starting from a formula ¢, the interpretation
is progressively constructed applying a set of extension rules, which reflect the
semantics of the considered logic. At any stage, a branch of a tableau is a partial
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a a1 | az I¢] B1 | P2
T(p AY)|Te|Ty  F(p AY)|[Fp|Fy v LS
F(p V) |Fo|Fy T(p V1) |Tp|Ty T([tlp) | T F([tlp) |[Fe
F(e D9)|Te|Fy  T(eD9)|Fe|Ty  F((t)e)|Fe  T((t))|Te

F(-¢) |Te|Ty T(-p) |Fp|Fp

Fig. 1. Uniform notation for propositional signed modal formulae.

description of an interpretation. In our case, the tableau method tries to build
Kripke interpretations, one for each branch: the worlds are formed by the prefixes
that appear on the branch, the accessibility relations for the modalities are given
by means of the accessibility relation formulae, and the valuation function is
given by means of the prefixed signed atomic formulae.

Now, we can present the set of extension rules. We say that a prefix w is
used on a tableau branch if it occurs on the branch in some accessibility relation
formula, otherwise we say that the prefix w is new.

Definition 3 ((Extension rules)). Let £ be a modal language and let A be a
set of inclusion axioms, the extension rules for If are given in Fig. [2

w: .8
wia w:
w: oy a-rule ——————— f-rule

W ao w: B |w: P2

. w: o

/ T-Tru.

w:vt wprw rLt
Ly wew v-rule w Mo

/ t /

w' v w pr w

where w’ is new on the branch

’
W Ps; W1+ Wm—1 Ps,, W

; p-rule
w pt; Wy

Wy 1 P, W
where w1, ..., w,,_, are new on the branch
and [t1]...[tn]e D [s1]... [sm]e € A (n > 0 and m > 0)

Fig. 2. Tableau rules for propositional inclusion modal logics.

The interpretation of the different kinds of extension rules is rather easy
taking into account the possible-worlds semantics. The rules for the formula of
type a and (3 are the usual ones of the classical calculus.
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A formula of type ! is true at world w if 1§ is true in all worlds w’ accessible
from w by means of ¢. Therefore, if w : v* occurs on an open branch, we can add
w’ : v} to the end of that branch for any w’ which is accessible from w by means
of R; (such that w p; w' is true on that branch).

A formula of type 7 is true at the world w if there exists a world w’ accessible
from w at which 7{, is true. Therefore, if w : 7 occurs on an open branch, we
can add w’ : 7§ to the end of that branch, provided w’ is new and w p; w’ is
true on it.

The intuition behind p-rule is quite simple. Let us suppose, for instance,

that [t1]...[tn]e D [s1]-..[sm]e € A is an axiom of our grammar logic IZ:“.
If w ps, wi, ..., Wy—1 ps, W are on a branch, then (w,w;) € Ry, ...,
(Wm—1,w") € R, in the Kripke interpretation associated with that branch.
Since [t1]...[tn]e D [s1]--.[sm]e € A then, the corresponding inclusion pro-
perty (2) must holds. Thus, we can add the formulae w py, wi, ..., wl,_; pt, W'
to that branch. Moreover, in the case of m = 0 we can always add the formulae
w py WY, ..., WhH_q pt, w, for every world constant w, provided that wi, ...,

w!,_, are new on the branch.

Remark 2. Tt is worth noting that the p-rule works for the whole class of gram-
mar logics. Nevertheless, the proposed tableau could be easily extended in order
to deal with modal logics which are different than those we have considered.
By introducing new rules, which operate on accessibility relation formulae, one
could also deal with multimodal logics characterized by serial, symmetric, and
Euclidean accessibility relations [2].

We say that a tableau branch is closed if it contains w : Ty and w : Fo for
some formula . A tableau is closed if every branch in it is closed. Finally, let
L be a modal language, A a set of inclusion axioms, and ¢ a formula. Then a
closed tableau for i : Fy obtained by using the tableau rules of Fig. Pl is said to
be a proof of .

Theorem 1. Let IZ“ be grammar logic then, a formula ¢ of L has a tableau
proof if and only if it is A-valid.

Due to space limitation we do not present here the proof of Theorem [ but
it follows the well-known guideline of [I42517] and it can be found in [2].

Ezample 2. In Figure Bl we have reported the proof of the first conjunct of the
formula [j][plappointment A [p][jlappointment of Example I We denote with
“a” and “b” the two branches which are created by the (-rule at step 13., “c”
and “d” the two ones created by the (-rule at step 14b., “e” and “f” the two ones
created by the B-rule at step 17d. Moreover, to save space, we use “ap” instead
of appointment, “tm” instead of time, and “pl” istead of place. The explanation:
1., 2., 8., and 4.: formula (1), (2), (3), and (4); 5.: goal, formula (5); 6. and 7.:
from 5., by 7-rule; 8. and 9.: from 6., by m-rule; 10. and 11.: from 7. and 9., by
A; and p-rule; 12.: from 4. and 10., by v-rule; 13.: from 12. and 11., by v-rule;
14a. and 14b: from 13, by S-rule, branch “a” closes; 15¢. and 15d.: from 14b.; by
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B-rule; 16¢.: from 3. and 10., by v-rule; 17c.: from 16¢. and 11., by v-rule, branch
“c” closes; 16d.: from 10., by axiom Ag and w-rule; 17d.: from 2. and 16d., by
v-rule; 18e. and 18f from 17d., by (-rule; 19e.: from 18e. and 11., by v-rule,
branch “e” closes; 19f. and 20f.: from 18f., by m-rule; 21f.: from 10. and 10f., by
axiom Ag and p-rule; 22f.: from 1. and 21f., by v-rule, branch “f” closes.

1.4 : T[ptm
2. : Tlw(p)([pltm > [ltm)
3.0 : Tp][j]pl w(p)
4.0 : T[p|[j](pl A tm > ap) Lo T TN p TS e wa
5. i F{j][plap AR p
6. wy : Fplap / /// \\J
7.ipjw1 | // ’/,__——>. = - - ,7
8. wa : Fap [ p w3 RN
9. w1 pp wa v Ne W2
10. 2 pp w3 \ /
11. w3 p; w2 p
12. ws : T[j](pl A tm D ap) j o
13. wa : T(pl A tm D ap)
14a. wy : Tap 14b. wa : F(pl A tm)
X 15¢c. wa : Fpl 15d. ws : Ftm
16¢. ws : T[4]pl 16d. @ py(p) w3
17c. wo : Tpl 17d. ws : T([p]tm D [j]tm)
X 18e. ws : T[j]tm 18f. ws : Fpltm
19¢e. we : Ttm 19f. wy : Ftm
X 20f. w3 pp wa
21f. i pp wa
22f. wy : Ttm
X

Fig. 3. p-rule as rewriting rule: counter-model construction of Example [l

The p-rule can be regarded as a rewriting rule which creates new paths among
worlds according to the inclusion properties of the grammar logic. In fact, given
a tableau branch S, let wy and w,, two prefixes used on S, a path £(wg, w,) is a
collection {wg pr, w1, w1 pt, Wa, ..., Wy_1 P, Wy} of accessibility relation for-
mulae in S. We say that the path {(wg, w,) directly p-derives the path &' (wg, wy,)
if the path &'(wq, wyy,) is obtained from &(wp, w,,) by means of the application of
a p-rule to a subpath of £(wg, wy,). The relation p-derive is the reflexive, transi-
tive closure of the relation directly p-derive. For instance, let us consider Fig. Bl
Then, the path & (i,w2) = {i p; wi, w1 pp wa} directly p-derives the path
& (i, wa) = {i pp w3, w3 pj wa}, and p-derives the path &3(i, we) = {i pup ws,
w3 pj wal.

For a path &(wo,w,) = {wo pt, w1, ..., Wn—1 pt, Wy}, we denote by
&(wo, wy,) the word ty - - - t,. It is worth noting that for a grammar logic IZ‘ ba-
sed on a grammar G, if £(wg, w,) is a path occurring in a tableau branch, then,
&(wo,wy,) p-derives a path & (wo, w,) if and only if & (wo, wy) =& E(wo, wy,).
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4 Undecidability Results for Grammar Logics

The tableau method developed in the previous section allows to generalize the
correspondence between the membership problem for a given grammar and the
validity problem in the corresponding grammar logic established by Farinas del
Cerro and Penttonen in [11].

Theorem 2. Given a grammar G = (V,T, P,S), let T# be the grammar logic
based on G. Then, for any propositional variable p of L, =4 [S]p D [s1] .- [sm]p
if and only if S =¢ 81+ Sm, where the s;’s are in VUT.

Proof. (If) Let us suppose that =4 [S]p D [s1]...[sm]p, then, the tableau star-
ting from ¢ : F([S]p D [s1]...[sm]p) closes. Now, by applying the [-rule we
obtain: i : T[S]p, i : F[s1] ... [sm]p, and m times the m-rule: wy : F[s3] ... [sm]p,
i Ps; Wi, ..., Wy : Fp, and wy,—1 ps,, Wm. Since, by hypothesis, the above
tableau closes, the only way for this to happen is that after a finite number of
applications of the p-rule we have the prefixed signed formula w,, : Tp in the
branch. This happens if the path £(i,w,,) = {i ps, w1, --., Wm—1 ps,, Wm}
p-derives the path &'(i,w,) = {i ps wn}, that is, if there exits a derivation
& (i, wm) =5 E(i,wm). (Only if) Assume S =% 81 8. Since a systematic at-
tempt to prove i : F([S]p D [s1] ... [sm]p) generates a path £(i, w,,) = {i ps, w1,
ey W1 Ps,, W} and £(4, w,, ) p-derives the path &' (i, w,,) = {i ps wpn }, after
a finite number of steps the only branch of the tableau closes by w,, : Tp and
Wy, : Fp.

It is well known that the problem of establishing if a word belongs to the
language generated by an arbitrary type-0 grammar is undecidable [21]. Hence,
we have the following corollary.

Corollary 1. The validity problem for the class of grammar logics is undecida-
ble.

Indeed, this result has already been shown in [I1]. However, Farifias del
Cerro and Penttonen do not prove Theorem [ for the type-0 grammars but
for a more restricted class of the grammar logics, that they call Thue logics
because they are based on the Thue systems [6]. A Thue system is a type-
0 grammars whose productions are symmetric and, thus, the Thue logics are
grammar logics characterized by axiom schemas where the implication is replaced
by the biimplication. In [I1] the undecidability of grammar logics is proved by
showing that the Thue logics are undecidable. In fact, since the membership
problem for the Thue systems is undecidable, proving that a formula is a theorem
of a Thue logic is also undecidable fi

3 The Thue systems have also been used in [24] to define logics similar to those studied
in [I1], which, however, are not in the class on grammar logics since modalities enjoy
some further properties like seriality and determinism. In [24] undecidability results
are proved for this class of logics.
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In [11] some problems are left open. In particular, it is not established whether
more restricted classes of grammar logics, such as context sensitive, context-free,
regular modal logics are decidable. In the following, we show that also the class
of context sensitive and context-free modal logics are undecidable by reducing
the solvability of the problem L; N Ly # () (where L; and Lo are languages) to
the satisfiability of formulas of context sensitive and context-free modal logics.

Theorem 3. Let G; = (V1,T1, P1,51) and Go = (Va,Ta, P2, S3) be two gram-
mars such that ViNVy =0 and Ty = Ty # (. Then, there exists a grammar logic
T4 and a formula ¢ of L such that =4 ¢ if and only if L(G1) N L(Ga) # 0.

Proof. Let us define a grammar G = (V,T, P, S), where V = V; UV, U {S},
T=T1=T, P=PUPU{S—tS—St|tecT} and S ¢V, and S & V%.
Then, we assume as IZ“ the inclusion modal logic based on G and we consider
the formula or(q) = A,cr((t)g A [S](t)q) where ¢ € VAR. A tableau starting
from i : Ter(q) is formed by only one branch that goes on forever. It is easy
to see that for each word € T™* the tableau branch contains a path (i, w)
such that £(i,w) = z. Now, let us define ¢ = ¢7(q) D ([S1]p D (S2)p), where
p,q € VAR and p # ¢. (If) Suppose that =4 ¢ then, the tableau starting from
1.7 : F(er(q) D ([Si]p D (S2)p)) closes. Now, by applying twice the S-rule we
obtain: 2. i : Ter(q), 3. i : T[S1]p, and 4. i : F(S2)p. Since the above tableau
must close, the only way for this to happen is that after a finite number of steps
we must have a pair of prefixed signed formulae w : Tp and w : Fp, for some
prefix w and, therefore, a path £(i,w) that p-derives both the path & (i,w) =
{i ps, w} and the path &(i,w) = {i ps, w}. Thus, there is a derivation of
£(i,w) both from & (i,w) = S; and from &(i,w) = S (S1 =§ €(i,w) and
(82 = &(i,w)), ie. £(i,w) € L(G1) N L(Ga). (Only if) Assume that Sy =7, =
and Sy =, , for some x € T™. Since a systematic attempt to prove the formula
i : Tor(q) can generate a path £(i,w), for some prefix w, such that £(i,w) = ¥,
for any y € T*, after a finite number of steps we have a path £'(i,w’) such
that ¢(i,w’) = x. Thus, we have also the paths & (i,w’) = {i ps, w'} and
& (i, w') = {i ps, w'} by application of the p-rule for a finite number of times.
This is enough to close the only branch of the tableau by w’ : Tp and w’ : Fp.

It is well known that, given two arbitrary type-1 (type-2) grammars G and
Ga, it is undecidable if L(G1) N L(G2) # 0 [21]. Hence, we have the following
corollary.

Corollary 2. The validity problem for the class of context sensitive and context-

free modal logic is undecidable.

5 A Decidability Result for Grammar Logics

In the previous section we have shown that it is not possible to supply a general
decision procedure for the class of unrestricted, context sensitive and context-
free modal logics. In this section, instead, we give a decidability result for right
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reqular grammar logics, that is, those ones whose productions are of the form
A — o A’, where A, A’ are variables and o a string of terminals.

Definition 4. Let G = (V,T, P, S) be a right type-3 grammar and let A be a
variable. Then, a derivation of a sentential form o X from is said to be non-
recursive if and only if each variable of V appears in the derivation, apart from
o X, at most once.

Proposition 1. Let G = (V,T,P,S) be a right type-3 grammar, let Ay be a
variable and let Ay =¢ 01---0pApn =g 01 0nOny1Any1 be a derivation,
where either Apy1 €V or Apy1 €T and A; = 041441 € P, fori=0,...,n.
Then, there exists a non-recursive derivation Ay =& 0opy1Any1, for some o €
T

Proposition 2. Let G = (V,T, P, S) be a right type-3 grammar. Then, the num-
ber of different non-recursive derivation by means of G is bounded by derg =
V|- Z‘ZZ; n', where n is the mazimum number of production associated to a
same variable of V.

The proofs of the proposition above are simple and they can be found in [2].

Let G = (V,T, P, S) be a right type-3 grammar and If‘ the regular inclusion
modal logic based on G. Then, we define the Fischer-Ladner closure FL(yp) of
a formula ¢ of £ (that only uses existential modal operators, or, and negatio)
as follows:

— ifyp V¢’ € FL(p) then ¢ € FL(p) and ¢’ € FL(p);

— if wp € FL(p) then ¢ € FL(p);

— if (t)yp € FL(p) and t € T then ¢ € FL(yp);

if (A)Y € FL(yp), A € V, and there is a non-recursive derivation A =7
t1---t, X, where ty, ..., t, € T and either X € TUV, then (t1) ... (t,)(X)¢
€ FL(p).

By Proposition [2 and the fact that ¢ has finite length, the Fischer-Ladner
closure is finite for any formula of a right regular modal logic. Consider a
Kirpke A-interpretation M = (W, {R; | t € MOD},V) and a formula ¢ of L,
we define an equivalence relation = on state of W by: w = w’ if and only if
for all v € FL(p) we have M,w EA ¢ iff M,w' =4 % (we use the notation
w for this equivalence class). The quotient Kripke A-interpretation M* Lly) =
(WFE(e), {RfL(g)) | t € MOD}, VFL®)) (the filtration of M through FL(p)) is
defined as follows:

- WHFHS) = (5 | w e W;

4 Note that, every sentential form derived from A has the form o X, where o € T*
and either X € T'or X € V.

5 Since all other connectives can be defined in terms of these, this is not a restrictive
condition.
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— VFL@) (@, p) = V(w,p), for any p € VAR and w € WFL(¥),
— REL) 5 ((w, ') € WFLW) x WFL) | (w,w') € Ry}

Moreover, Rf L) g closed with respect to the inclusion axioms, that is,

for each inclusion axiom [tja D [s1]...[sm]a if (Wo,wr) € RflL(“o), ce

(Wn—1,Wm) € Rgf(“’) then the pair (wg, w,,) belongs to Rf“L(@)_

The following lemma states that when we insert any extra binary relation
between w and w’ in a accessibility relation RfL(“o) of MFL®) in order to
satisfy the relative set of inclusion properties, it is not the case that there was

any (t)1) € FL(p) which was true at w while v itself was false at w’ [22].

Lemma 1. For all ¢ = (t)y' € FL(yp), if (w,w') € RfL(‘P) and M,w' =4 ¢

then M,w =4 (t)y'.

Proof. Assume that ¢ = (t)y’ € FL(p) then ¢’ € FL(p) by definition of the
closure. Now, there are two cases which depend on whether (w,w’) € Rf Lle)
has been added to originary definition of filtration because an inclusion axiom
of the form [t]a D [s1] ... [sm]a € A or not.

Assume that it has not been added. Since by definition of Rf L(W, there exist
wy, wi € W such that (wy,w]) € Ry, w; = w, and w} = w'. Since M, w’ |4 ¢/,
M, w} Ea ¢ because ¢’ € FL(p) and w’ = w}. Hence, M, w; =4 (t)1’ because
(w1, w)) € Ry. Finally, M, w [=4 (t)9 since ()1’ € FL(p) and w = w'.

Assume that (w,w’) € RfL(w) but (w,w’) & R¢. The pair (w,w’) has been
added in Rf L(e) by the closure operation in order to satisfy an inclusion property

of an inclusion axiom of the form [tJoe D [s1]...[sm]a € A. Then, there exist wr,

.+, Wm—1 such that (wg,wy) € RflL(“o), oy (Wm—1,Wm) € Rf,f(“o), where wy
is w and w,, is w’. Now, in turn, for each (w;_1,w;) € RSFiL(‘p), fori=1,...,n,
either the pair (w;_1, w;), has been added by the closure operation or not. Going
on this way, we have (vg,77) € RgL(W, oo, (Tp—1,0p) € Rf;L(“o) such that the

corresponding pairs belong to R, and t =§ t1---tp, vo is wo (that, in turn, is

w), and vy, 1S Wy, (that, in turn, is w’). By construction, there exist v,_,,v{ € W

such that (v]_,,v)) € szL(“ﬂ) and v;_1 =v}_, and v; = v/, fori =1,...,h.

Assume that ¢ =¢ ¢1---t), is the derivation Ay =¢ 0141 =¢ ... =¢
010y =G 0100541, Where Ag is t and A, — 0,41 and A;—1 — 0;4;,
fori=1,...,n, are in P, and that c,,11 is dy---dy (= th—rs1---tn). We know
M, vy, Ea ¥ and we have to prove that M, vp_11 E4 (d1) ... {(d,)¥'. Assuming
that (d1)...(d,)¢" € FL(p) then, we have that M, v} =4 ¢’ since v, = v} and
' € FL(p). Since (v},_y,v)) € Ry, and M, v} =4 ¢ then, M, v} _, =4 (d-)Y/
and, since (d,)¥’ € FL(y) and v),_; = v)/_,, we have that M,v;_, =4 (d.)¥".
We can proceed so on until we have M, vy_, ., Fa {(d1)...{d-)¢" and M, v, 41
Fa (d1) ... (dr))" since vp_py1 =vj_,. ;. Now, since the inclusion axiom [A;]a
D [dy]...[dr]a belongs to A, M, vp_ry1 Ea (An)Y'. We can repeat the above
argumentation for all derivation steps from Ag obtaining M, w =4 (Ag)y'.

We have now to prove that (di)...(d,)¥’ € FL(p). By hypothesis (Ao)¢’ €
FL(p) (Ag is t) and Ay = 01 - 0p,0n+1- Then, by Proposition [I] there exists
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a non-recursive derivation Ay =7, 00,1, for some o € T*. By definition of
Fischer-Ladner closure, since (Ag)y)’ € FL(p), we have (t}) ... (¢ Y {(di)...{(d )¢’
€ FL(p), where o is t} ---t,, and 0,41 is dy ---d,, and, hence, (d1) ... {(d, )¢’
€ FL(p).

Lemma 2 (Filtration Lemma). For all ¢ € FL(p), M,w =4 v if and only
if MFE®), @, = a0 .

Proof. The proof is by induction on the structure of ¢. (Base step) For ¢ € VAR
the thesis holds trivially. (Induction step) The cases ¥ = ' V¢"” and ¢ = =)' are
immediate from the definitions. Assume that ¢ = (¢)y'. (If) If M,w =4 (t)y’
then there exists w’ such that M,w’ =4 ¢ and (w,w’) € R;. By definition,
we have (w,w’) € RfﬂL(“&) and, by induction hypothesis, ML) W’ =4 1.
Hence MTE@) 75 =4 (1), (Only if) If MTE@) 15 =4 ()9’ then, there exists
w’ € WFE®) such that MFL) w =4 ' and (w,w') € RfL(w). By inductive
hypothesis, we have that M, w’ =4 ¥’ and, by Lemmal[l] since (w, w’) € RtFL(W),
Mvw ':.A <t>1//~

Theorem 4 (Small Model Theorem). Let ¢ be a satisfiable formula of a
grammar logic IZ‘ based on a type-3 grammar G. Then, @ is satisfied in a Kripke
A-interpretation with no more that 21FL)| states.

Proof. If ¢ is satisfiable, then there is a Kripke A-interpretation M and a state
w in M such that M,w =4 ¢. Let FL(¢) be the Fischer-Ladner closure of .
By Lemma [B, M¥H(®) 5 =4 ¢. Moreover, since, by Proposition B |FL(p)]| is
bounded, the filtration through FL(y) is a finite Kripke interpretation having
at most 217! worlds, that being the maximum number of ways that worlds
can disagree on sentences in FL(yp).

Each right regular modal logics, by Theorem [, is determined by a class of
finite standard Kripke interpretations and, hence, it has the finite model property
[22]. Then, we have the following corollary.

Corollary 3. The validity problem for the class of right regular modal logics is
decidable.

6 Discussion and Related Work

In this paper we have established some undecidability results for multimodal
logics, reducing well-known unsolvable problems of formal languages to satisfia-
bility problems of multimodal systems by means of a tableau calculus based on
prefixed formulas. Moreover, the decidability of the class of multimodal logics
based on right regular grammars has been proved using the filtration method
introduced by Fischer and Ladner in [I2].
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In order to have a general framework able to cope with any kind of grammar
logics, we have chosen the simplest way of representing models: prefixes are
worlds, and relations between them are built step by step by the rules of the
calculus. In particular, axioms are used as rewrite rules which create new paths
among worlds.

This approach is closely related to the approaches based on prefixes used by
Fitting and other authors for classical modal systems (non-multimodal) [T425]
9]. There, prefixes are sequences of integers which represent a world as a path in
the model that goes from the initial world to it. Thus, instead of representing a
model as a graph, as in this paper, a model is represented as a set of paths, which
can be considered as a spanning tree of the graph. Although this representation
may be more efficient, it requires a specific v-rule for each logic. Properties of
accessibility relations are coded in these rules, and thus, depending on the logic,
the v-rules may express complex relations between prefixes, which instead in our
case are explicitly available from the representation. Massacci [25] has proposed
a “single step calculus”, where v-rules make use only of immediately accessible
prefixes. His approach works for many logics, but it still requires the definition
of specific v-rules.

Besides the disadvantage of requiring specific v-rules and the fact that they
do not work with multimodal systems, we think that though the approach based
on prefixes as sequences might be adapted for some subclasses of grammar logics
it is difficult to extend it to the whole class. In particular, it can be shown that,
for some grammar logic, a “generation lemma” like those used in [25[17], does not
hold, i.e. it is not true that, for any prefix occurring on a branch, all intermediate
prefixes occur too. Let us consider, for instance, the derivation of Example [T
We can image to use the prefix 1.1;.1, to represent the world wy. Now, by
applying axiom Aj, the same world can also be represented with the sequence
1.1,.1;, whose subprefix 1.1,, does not occur on the branch. On the other hand,
this subprefix is needed in order to conclude with success the proof. Moreover,
adding exsplicitly the subprefixes, as the one above, is not enough to solve the
problem, since all prefixes representing the same world have to be identified.
Similar consideration can be done for the proposals in [I8[32].

The proposals in [1832]5] address the problem of an efficient implementation
of the tableau calculi for a wide class of modal logics. They generalize the prefixes
by allowing occurrences of variables and they use unification to show that two
prefixes are names for the same world. While a straightforward implementation
of our calculus is unlikely to be efficient, the generality of the approach makes
it suitable to study the properties of different classes of logics.

Instead of developing specific proof techniques for modal logics, some aut-
hors have proposed the alternative approach of translating modal logics into
classical first order logic [29]. The translation methods are based on the idea of
making explicit reference to the worlds by adding to all predicates an argument
representing the world where the predicate holds, so that the modal operators
can be transformed into quantifiers of classical logic. In particular, the functio-
nal translation [30I] is based on the idea of representing paths in the possible



58 M. Baldoni, L. Giordano, and A. Martelli

worlds structure by means of compositions of functions which map worlds to
accessible worlds. An advantage of this approach is that it keeps the structure of
the original formula. However the approach is suitable mainly for serial logics,
for which optimization technique have been studied [28/[15], and it requires a
different equational unification algorithm for each logic. A way to avoid equa-
tional reasoning while retaining the advantages of the functional translation has
been developed by Nonnengart [27]. Gasquet in [15] deals with the same class of
multimodal logics we have presented, where, however, the seriality is assumed
for each modal operator.

Though in this paper we have focused on a propositional language, the ta-
bleau calculus we have proposed can be naturally extended to the first order case
by introducing the usual rules for quantifiers. Moreover, it can be extended to
deal with a wider class of logics. In particular, in [2] a tableau calculus is deve-
loped for the class of multimodal logics characterized by “a,b, ¢, d-incestuality”
axioms (defined by Catach in [7]) and, then, as a special case, also for the mul-
timodal logics characterized by serial, symmetric, and Fuclidean accessibility
relations.

Acknowledgments. The authors would like to thank the referees for the pre-
cious advice.
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