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ABSTRACT: The p ropos i t i ona l  mu-calculus i s  a p ropos i t i ona l  
l o g i c  of programs which incorporates a l eas t  f i x p o i n t  
operator and subsumes the Propos i t i ona l  Dynamic Logic of 
F ischer and Ladner, the i n f i n i t e  looping cons t ruc t  of 
S t r e e t t ,  and the Game Logic of Par ikh.  We g ive  an elementary 
time dec is ion procedure, using a reduc t ion  to  the emptiness 
problem f o r  automata on i n f i n i t e  t rees.  A small model 
theorem i s  obtained as a c o r o l l a r y .  

1. I n t r o d u c t i o n  

F i r s t - o r d e r  l og i c  i s  inadequate f o r  f o r m a l i z i n g  reasoning 
about programs; concepts such as te rm ina t ion  and t o t a l i t y  
r equ i r e  l o g i c s  s t r i c t l y  more powerful than f i r s t - o r d e r  
(Kfoury and Park, 1975). The use of a leas t  f i x p o i n t  
operator as a remedy f o r  these d e f i c i e n c i e s  has been 
i nves t i ga ted  by Park (1970, 1976), Hitchcock and Park (1973), 
deBakker and deRoever (1973), deRoever (1974), Emerson and 
Clarke (1980), and others.  The r e s u l t i n g  formal systems are 
o f ten  c a l l e d  mu-ca lcu l i  and can express such important 
p rope r t i es  of sequent ia l  and p a r a l l e l  programs as 
t e rm ina t i on ,  l i veness ,  and freedom from deadlock and 
s t a r v a t i o n .  

P ropos i t i ona l  vers ions of the mu-calculus have been proposed 
by P ra t t  (1981} and Kozen (1982). These l o g i c s  use the l eas t  
f i x p o i n t  operator to  increase the expressive power of 
P ropos i t i ona l  Dynamic Logic (PDL) of Fischer and Ladner 
(1979). Kozen's fo rmu la t i on  captures the i n f i n i t e  looping 
cons t ruc t  of S t r e e t t  (1982) and subsumes Pa r i kh ' s  Game Logic 
(1983a, 1983b), whereas P r a t t ' s  l o g i c  i s  designed to  express 
the converse operator of PDL. The f i l t r a t i o n - b a s e d  dec is ion 
procedure and small model theorem obtained f o r  BDL extend to  
P r a t t ' s  mu-calculus,  but the a b i l i t y  to  express i n f i n i t e  
looping renders the f i l t r a t i o n  technique i n a p p l i c a b l e  to  
Kozen's vers ion .  

Kozen (1982) and Vardi and Wolper (1984) have obtained 
exponent ia l  t ime dec is ion  procedures f o r  fragments of Kozen~s 
mu-calculus. Both fragments can expresses a l l  of BDL, but 
are not strong enough to  capture the i n f i n i t e  looping 
cons t ruc t  of S t r e e t t  (1982). Kozen and Parikh (1983) have 
shown t ha t  the s a t i s f i a b i l i t y  problem f o r  the f u l l  
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propositional mu-ca!culus can be reduced to the second-order 
theory of several successor functions (SnS). By results of 
Rabin (1969) this supplies a decision procedure for the 
propositional mu-calculus, but one which runs in non- 
elementary time, i.e., time not bounded by any fixed number 
of compositions of exponential functions. Meyer (1974) has 
shown that this is the best that can be achieved using a 
reduction to SnS. 

2. Syntax and Semantics 

The formulas of the propositional mu-calculus are: 

(I) Propositional letters P, Q, R, 
(2) Propositional variables . . . , X, Y, Z. 
(3) Ap, where A is a member of a set of program letters 

A, B, C, and p is any formula, 

(4) " - '~p,  
(5) p v q, 
(6) ~X.f(X), where f(X) is any formula syntactically 

monotone in the propositional variable X, i.e., all 
occurrences of X in f(X) fall under an even number 
of negations. 

A sentence is a formula containing no free propositional 
variables, i.e~, no variables unbound by a operator. Mu- 
calculus sentences are satisfied in Kripke structures, which 
interpret propositional letters as subsets of states and 
program letters as binary relations on states. The formula Ap 
is true in a state when there is an A edge to a state 
satisfying p. In the formula /~X.f(X), f denotes a monotone 
operator on sets of states, and x~X.f(X) is interpreted as 
the least fixpoint of this operator, i.e., the least set of 

states X such that f(X) = X. 

Examples: The sentence xU.X.P v AX is true at a state x if 
there is a chain (possibly empty) of A edges leading from x 
to a state satisfying P. It is equivalent to the sentence 
<A*>P of Propositional Dynamic Logic (PDL). The sentence 
/~X.P v A( Y~X v BY) is equivalent to the PDL sentence 

<(AB*)*>P. 

It is convenient to reduce the problem of satisfiability over 
the general models described above to satisfiability over a 
special class of models, the tree models. 

Definition: A deterministic model is a Kripke structure in 
which the relations corresponding to the programs are partial 
functions; for each state x and program A there is at most 
one A edge from x. A tree model is a deterministic model 
whose universe of states is the set of words over an alphabet 
of program letters. Each program is interpreted as a binary 
relation in the obvious way: there is an A edge from x to xA. 

Proposition !. There is a translation of mu-calculus 
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sentences such that a sentence is satisfiab}e if and only if 
its translation is satisfied in a tree model. 

O u t l i n e  of Proof :  Kozen and Parikh (1983) e s t a b l i s h  a 
Lowenheim-Skolem theorem f o r  the p r o p o s i t i o n a l  mu-calculus;  
i f  a sentence i s  s a t i s f i a b l e ~  then i t  has a countab le  model. 
These countab le  models can be f u r t h e r  r e s t r i c t e d  to  
be d e t e r m i n i s t i c ;  t h i s  i s  accomplished by t r a n s l a t i n g  Ap as 
A(x~X.p v BX), where B is a new program,va technique due to 
Parikh (1978). It is not difficult to e..pand and unwind the 
resulting models into tree models. 

In a tree model, any sentence can be put into a special 
positive form, by using the following BeMorgan-like laws to 
move negations until they are only applied to propositional 
letters. 

(1) I~ p -> p, 
(2) --I (p v q) -> (-lp) & (-lq), 
(3) -IAp -> A(-np), 
(4) -1 (~ X.f(X)) -> I/X. df(-~X). 

The formula~X.f(X) represents the greatest fixpoint of the 
monotone operator f. 

Examples: The sentence~X.P v (AX & BX) is true when there 
is a finite binary tree of A and B edges with a frontier of 
s t a t e s  s a t i s f y i n g  P. The sentence ~X.P & (x~Y.BX v AY) i s  
t r u e  when the re  i s  an i n f i n i t e  AB* chain o$ s ta tes  s a t i s f y i n g  
P. 

In what f o l l o w s  we s h a l l  assume tha t  a l l  sentences are in  
p o s i t i v e  form and t h a t  a l l  models are t r e e  models. 

3. Ordinal Ranks and Signatures 

By the Tarsk i -Knas te r  theorem, ~X.f(X) can be de f ined  by 
t r a n s f i n i t e  induct ion~ i . e . ,  ~ X . f ( X )  = U~ f ~ ( f a l s e ) ,  where 

fO(false) = false 
f~+~ (false) = f(f ~ (false)) 
f~(false) = U~ f~(false), ~a limit ordinal. 

A mu-sentence~X.f(X) has rank ~ at a state x if f ~(false) 
is true at x. Since a mu-sentence can contain other mu- 
sentences as subsentences~ it is useful to associate a 
sequence of ordinal ranks to a sentence. Bounded length 
sequences of ordinals can be well-ordered lexicographically. 

D e f i n i t i o n .  The mu-height of  a sentence i s  the depth of  
nes t ing  of mu-subsentences of the sentence. 

Example: The sentencex~X.P v A(~Y.X v BY) has mu-height 1, 
since the subformula /~Y.X v BY is not a sentence. 
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Given a sentence p of mu-height n and a sequence of ordinals 
s = ~i ' " " ~ , we let p:s denote the sentence obtained by 
replacing each mu-subsentence ~X.f(X) of p by f ~i (false), 
where i is the mu-height of~X.f(X). A sentence p has 
signature s at a state x if p:s is true at x. 

Examples: Consider ~Y.(~X.P v A(/~Z.X v BZ)) v BY, 
equivalent to the PDL sentence <B*><(AB*)*>P. This sentence 
has mu-height 2, and if P is true at a state xBABABBBBB, then 

this sentence has signature 3-2 at x, 3-1 at xB, 2-2 at xBA, 
2-1 at xBAB, 1-6 at xBABA, and so on down to I-I at 
xBABABBBBB. Infinite ordinals can arise in signatures 

through the interaction of mu-sentences and nu-sentences. 
Consider ~X.(~Y.(P v BY) & AX), equivalent t o  the PDL 
sentence [A*]<B*>P. In a tree model in which the states 
satisfying P are precisely AmB ~, for n ~0, the signature of 

this sentence at the root will be ~. 

Lemma: The ~ollowing rules hold of signatures: 

(I) if p v q has signature s at x, then either p or q 

has signature s at x. 
(2) if p & q has signature s at x, then both p and q 

have signature s at x. 
(3) if Ap has signature s at x, then p has signature s 

at xA. 
(4) if /6~X.f(X) has signature s at x, then f(/~X.f(X)) 

has signature t at x, where t lexicographically 

precedes s. 
(5) if ~X.f(X) has signature s at x, then f(-~X.f(X)) 

has signature s at x. 

Proof (for case 4 only): Suppose~X.f(X) has mu-height n. 
The mu-subsentences of f(~X.f(X)) can be divided into three 

classes: 

(I) The proper mu-subsentences of ~X.f(X), with 

mu-height < n. 
(2) /~X.f(X) itself, with mu-height n. 
(3) Mu-sentences properly containing~X.f(X), with 

mu-height > n. 

If /~Y.g(Y) is in the first class and can be replaced by 
g~ (false) within ~X.f(X) at x, then it can be similarly 
replaced within f(/~X.f(X)) at x. If ~X.f(X) has rank 
at x, then~X.f(X) can be replaced by f ~ (false), for 

<~ , within f(/~iX.f(X)) at x. Hence if/~X.f(X) has 
signature s = ~4 " ' " ~ at x, then f(/~X.f(X)) will have 

signature t = ~.-.~.4~n~$-~-4' "" ~ at x, where ~n<~ , so 

that t lexicographical!y precedes s. 

Example: Consider ~X.(~Y.P v CY) v A(/~Z.X v BZ), 
equivalent to the PDL sentence <(AB*)*><C*>P. In a model in 
which P is true at xABBBACCCC, this sentence has signature 
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5-3 at x, indicating that P can be reached via two (AB*)'s 

and four C's. The derived sentence, equivalent to the PDL 
sentence <C*>P v <A><B*><(AB*)*><C*>P, has signature 5-2-4 at 
x, indicating that, from xA, P can be reached via three B's, 
one AB*, and four C's 

4. The Decis ion  Procedure 

Given a sentence p, we w i l l  c o n s t r u c t  a f i n i t e  automaton on 
i n f i n i t e  t r e e s  (Rabin, 1969; Hossley and Rackof f ,  1972) which 
recogn izes  the  t r e e  models of  p. Th is  automaton w i l l  
e v a l u a t e  a g iven sentence in  a cand ida te  t r e e  s t r u d t u r e  by 
r e c u r s i v e  descent ,  i . e . ,  by r e c u r s i v e l y  e v a l u a t i n g  
i t s  consequences. At a d i s j u n c t i o n  q v r con ta ined  w i t h i n  a 
mu-sentence i t  i s  necessary t o  make a c a r e f u l  cho ice  o f  which 
d i s j u n c t  t o  e v a l u a t e .  Consider the  formula~X.P v AX, 
e q u i v a l e n t  t o  the  PDL sentence <A*>P, which i s  s a t i s f i e d  in  a 
t r e e  s t r u c t u r e  when the  fo rmu la  P i s  s a t i s f i e d  somewhere 
along the  path of  A ' s .  C o n s i s t e n t l y  choosing the  d i s j u n c t  
AX of  P v AX w i l l  cause t r e e  s t r u c t u r e s  in  which p i s  f a l s e  
a long the  path of  A ' s  t o  be m i s t a k e n l y  regarded as models o f  
/~LX.P v AX. 

A cho ice  f u n c t i o n  f o r  a model i s  a f u n c t i o n  which chooses, 
f o r  every  d i s j u n c t i o n ,  one of the  d i s j u n c t s .  Ord ina l  
s i g n a t u r e s  can be used t o  d e f i n e  a cho ice  f u n c t i o n  which 
s e l e c t s  the  t r u e  d i s j u n c t  w i t h  l e x i c o g r a p h i c a l l y  l e a s t  
s i g n a t u r e .  

Any cho ice  f u n c t i o n  over a t r e e  s t r u c t u r e  de te rmines  a 
d e r i v a t i o n  r e l a t i o n  between occurrences of sentences.  

(1) A d i s j u n c t i o n ,  q v r ,  d e r i v e s  the  d i s j u n c t  chosen 
by the  cho ice  f u n c t i o n ,  

(2) A c o n j u n c t i o n ,  q & r ,  d e r i v e s  both c o n j u n c t s ,  
(3) A program sentence,  Aq, o c c u r r i n g  a t  a s t a t e  x ,  

d e r i v e s  q a t  Ax. 
(4) A m u - s e n t e n c e , ~ X . f ( X ) ,  d e r i v e s  f ( ~ X . f ( X ) ) .  
(5) A nu-sentence,  ~ X . f ( X ) ,  d e r i v e s  f ( ~ X . f ( X ) ) .  

Definition. A sentence p at x generates q at y if p at x 

derives q at y in such a way that q is a subsentence of every 
derivation step. In particular, note that q must be a 

subsentence of p, so that a sentence can only generate its 
subsentences. 

Example: ~X.P v A(~Y.X v BY) at x can derive, but not 
generate, /~Y.((/~X.(P v A(~A.Y.X v BY)) v BY) at xA. 

Definition. A mu-sentence v~cX.f(X) is regenerated from state 
x to state y if an occurrence at x generates an occurrence at 
y. 

Example: ~Y.((/IX.(P v A(/~-Y.X v BY)) v BY) can be 
regenerated from x to xB, but from x to xA. A derivation 
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from x to xA is possible~ but requires ~ X.P v A(/IY.X v BY) 
as a derivation step. 

If we start with a tree model and construct a choice function 
based on ordinal signatures, then by the Lemma of Section 3 
the regeneration relations for mu-sentences will always 
decrease signature and hence be well-founded. Conversely, if 
a candidate tree structure can be supplied with a choice 
function which make the regeneration relations well-founded, 
it will in fact be a model. 

In particular, if the regeneration relations are well- 
founded, then each occurrence of a mu-sentence is associated 
with an ordinal, the well-ordering ordinal of the 
regeneration relation from that occurrence. It is then 
possible to calculate a signature s = ~I ' " ' ~ for every 
sentence q at state x, via the definition: 

~ = l~u.b.(~ : q at x generates mu-sentence r at y, 
r has mu-depth i, and 
r at y has regeneration ordinal ~ ). 

We have therefore shown: 

Proposition 2. A sentence p is satisfiable if and only if 
there is a tree model with an attached choice function over 
which the regeneration relations for mu-sentences are well- 
founded. 

It is then a exercise in automaton programming to show: 

Proposition 3~ Given a sentence p~ we can effectively 
construct an automaton which expects as input a tree 
structure with attached choice functions and accepts 
precisely when the choice function guarantees that the 
structure is a model of p. The size of this automaton (and 
the time required to construct it) can be kept elementary in 

the length of the formula. 

Proof: Given a candidate tree structure, the desired 
automaton checks that the structure is both locally and 
globally consistent. A structure is locally consistent when 
no state contains both a propositional letter and its 
negation, or contains a disjunction without one of its 
disjuncts, etc. Global consistency consists of the well- 
foundedness of the regeneration relation for mu-sentences 
derived from p. It is straightfoward to construct an 
automaton on infinite strings which, when run down a single 
path of a tree structure, nondeterministically searches for 
an infinite descending chain in the regeneration relations. 
A complement construction then supplies an automaton which, 
when run down every path of a tree structure, checks global 
consistency. 

Combining Propositions i, 2, and 3, we have reduced the 
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s a t i s f i a b i ! i t y  problem fo r  the propos i t iona l  mu-calculus to  
the emptiness problem fo r  f i n i t e  automata on i n f i n i t e  t rees.  
Since t h i s  l a s t  problem i s  e lementa r i l y  decidable, the mu- 
ca lcu lus i s  also. The methods of S t ree t t  (1981) can be used 
to show that  the decision procedure runs in t r i p l e  
exponential t ime. As a c o r o l l a r y ,  we obtain a small model 
theorem. For if the set of tree models is automaton 
recognizable, then there must be a finitely generable tree 
model, i.e., one obtained by unwinding a finite graph. This 
graph will be a finite model. 
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