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ABSTRACT: The propositional mu—calculus is a propositional
lagic of programs which incorporates a least fixpoint
operator and subsumes the Propositional Dynamic Logic of
Fischer and Ladner, the infinite looping construct of
Streett, and the Game Logic of Farikh. We give an elementary
time decision procedure, using a reduction to the emptiness
problem for automata on infinite trees. A small model
theorem is obtained as a corollary.

1. Introduction

First-order logic is inadequate for formalizing reasoning
about programs; concepts such as termination and totality
require logics strictly more powerful than first-order
{Kfoury and Park, 1973). The use of a least fixpoint
operator as a remedy for these deficiencies has been
investigated by Park (1970, 19746}, Hitchcock and Park (1973},
deBakker and deRoever {(1973), deRoever (1974}, Emerson and
Clarke (1980}, and others. The resulting formal systems are
often called mu—calculi and can express such important
properties of sequential and parallel programs as
termination, liveness, and freedom from deadlock and
starvation.

Propositional versions of the mu-calculus have been proposed
by Pratt (1981) and kKozen (1982). These logics use the least
fixpoint operator to increase the sxpressive power of
Propositional Dynamic Logic (PDL) of Fischer and Ladner
{(1977). EKozen’s formulation captures the infinite looping
construct of Streett (1982) and subsumes Parikh’'s Game Logic
{1783a, 1983b), whereas Pratt’'s logic is designed to express
the converse operator of PDL. The filtration—based decision
procedure and small model theorem obtained for PPL extend to
Pratt’'s mu—calculus, but the ability to express infinite
looping renders the filtration technigue inapplicable to
Kozen's version.

Kozen (1982) and Vardi and Wolper (1984) have obtained
exponential time decision procedures for fragments of Kozen's
mu~calculus. Both fragments can expresses all of PDL, but
are not strong enough to capture the infinite looping
construct of Streett (1982). EKozen and Farikh (1983) have
shown that the satisfiability problem for the full
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propositional su—calculus can be reduced to the second-order
theory of several successor functions (SnS). By results of
Rabin (194%) this supplies a decision procedure for ths
propositional mu-calculus, but one which runs in non-—
elementary times, i.e., time not bounded by any fixed number
of compositions of exponential functions. Meyver (1974} has
shown that this is the best that can be achieved using a
reduction to Srd.

-y

Ze  8Byntax and Semantics
The formulas of the propositional mu-—calculus are:

{1} Propositional letters £, @, R, . . .

{2} Propositional variables . . . , X, ¥, Z.

{3y Ap, where 4 is a member of a set of program letters
A, B, €y « - . and p is any +formula,

{4y =-p,

(3} p v g

(&) MUX.FUX), where f{X) is any formula syntactically
monotone in the propositional variable X, i.e., all
cecouwrrences af ¥ in F{X) fall under an even number
of negations.

& sentence is a formula containing no free propositional
variables, i.e., no variables unbound by a operator. Mu—
calculus sentences are satisfied in Eripke structwres, which
interpret propositional letters as subsets of states and
program letters as binary relations on states. The formula Ap
is true in a state when there is an A edge to a state
satisfying p. In the formula MX.F{X), ¥ denotes a monotone
operator on sets of states, and 4X.fF(X}) is interpreted as
the least fixpoint of this operator, i.e., the least set of
states X such that (X} = X.

Examples: The sentence 4X.P v AXY is true at a state x if

there is a chain (possibly empty) of A edges leading from x

to a state satisfying P. It is sguivalent to the sentence

{A%>F of Propositional Dynamic Logic (PPL). The sentence
X.P v AL Y.X v BY) is squivalent to the PDL sentence

L {ABR)%=F.

1t iz convenient to reduce the problem of satisfiability over
the general models described above to matisfiability over a
special class of models, the tree models.

Definition: & deterministic model is a Hripke structure in
which the relations corresponding to the programs are partial
functions; for each state x and program A there is at most
one A edge from x. A tree model is a deterministic model
whose universe of states is the set of words over an alphabet
of program letters. Fach program is interpreted as a binary
relation in the obvious way: there is an 4 edge from x to xA.

Proposition 1. There is a translation of mu-calculus



467

sentences such that a sentence is satisfiable if and only i+f
its translation is satisfied in a tree model.

Outline of Proof: Kozen and Parikh (1283) establish a
Lowenheim—~S8kolem theorem for the propositional mu-calculus;
it a sentence is satisfiable, then it has a countable model.
These countable models can be further restricted to

beg deterministici this is accomplished by translating Adp as
Al uX.p v BX), where B is a new program, a technigue due to
Farikh (1978). It is not difficult to expand and unwind the
resulting models into tree models.

In a tree model, any sentence can be put into a special
positive form, by using the following DeMorgan—-like laws to
move negations until they are only applied to propositional
letters.

(1Y -1vp =% p,

(23 —ilp v g - A-1p)} & (—q),

(3} 1 Ap ~> Al—-1p},

(4) -1(/tx.f(X)) —F YX. 1 F{—1X).

The formula vX.f{X) represents the greatest fixpoint of the
monoctone operator ¥.

Examples: The sentence #X.P v (AX & BX) is true when there
is a finite binary tree of A and B edges with a frontier of
states satisfying P. The sentence wX.P & (U Y.BX v A7) is
true when there is an infinite AB* chain of states satisfying
P.

In what follows we shall assume that all sentences are in
positive form and that all models are tree models.

3. Ordinal Ranks and Signatures

By the Tarski-kKnaster theorem, gX.r(X} can be defined by
transfinite induction, i.e.,/AX.f(X) = Uy f X (false), where

£%false) = false
A1 (false) = F(FX (ralse))
FMfalse) = Udcx f“(false),)\a limit ordinal.

A mu-sentence MX.f(X) has rank & at a state x if ¥ % (false)
is true at x. BSince a mu—-sentence can contain other mu—
sentences as subsentences, it is useful to associate a
sequence of ardinal ranks to a sentence. Bounded length
sequences of ordinals can be well-ordered lexicographically.

Definition. The smu-height of a sentence is the depth of
nesting of mu-subsentences of the sentence.

Example: The sentence KX.P v A{Y.X v BY) has mu-height 1,
since the subformula /tY.X v BY is not a sentence.



468

Given a sentence p of su-height » and a sequence of ordinals
5 =04 * v Pm , we let p:s denote the sentence obtained by
replacing sach mu-subsentence uX.F{X) of p by % {(false),
where I is the mu-height of uX.f{X). A sentence p has
signature & at a state x if p:s is true at x.

Examples: Consider aY.{uX.P v AlpuZ.X v BZ¥) v BY
pguivalent to the DL sentence <B*>< (ABx)*:P. This sentence
has mu—height 2, and if P is true at a state xBABABBBEEB, then
this sentence has signature 3-2 at x, 3-1 at »8B, 2-2 at xEBA,
2-1 at xBAB, 1-46 at xBABA, and so on down to 1-1 at
xBABABBEEE. Infinite ordinals can arise in signatures
through the interaction of mu-sentences and nu—sentences.
Consider PX. {WY. (F v ¥} & AX), eguivalent to the PRL
sentence [A#1{Bx>P, In a tree model in which the states
satisfying £ are precisely é“Sm, for » 20, the signature of
this sentence at the root will be w.

Lemna: The following rules hold of signatures:

{1} if p v g has signature s at x, then gither p or g
has signatwre 5 at x.

{2} if p % g has signature 5 at x, then both p and ¢
have signature s at x.

{3y if Ap has signature s at x, then p has signature s
at xA.

{4} it jxx.f{X) has signature 5 at x, then FlKX.FX))
has signature # at x, where ¢t lexicographically
arecedes S.

(5) if 9 X.F{X) has signature 5 at x, then F{PX.FX))
has signature s at x.

PFroof {(for case 4 onlyl: SuppOSE/AX.f(X) fias mu—height n.
The mu-subsentences of fi/AX.f(K}) can be divided into three

ilacses:

{1} The proper mu—-subsentences Dflux.f(X), with
mu—height < .

{(2) uX.¥iX) itself, with mu-height n.

{F} Mu—-sentences properly CQntaiﬂing/&X.f{X), with
mu—height > =».

If m¥.gi¥? is in the first class and can be replaced by

g™ tFfalse) within MX.¥F{X) at x, then it can be similarly
replaced within fi/lX.fiX?) at x. I+ mxX.f{X) has rank &
at x, then/LX-fiX} can be replaced by f‘a(falge), for

B <o, within FLURX.FLX)) at x. Hence if M X.F (X} has
signature = = oy -+ + dn at x, then f(}iX.f(X)) will have
signature £ = o4 + - %nug PnPnrq - Pm  at x, where B,<dy , sO
that + lexicographically precedes 5.

Example: Consider AX.{w¥.P v LY} v ACMI.LX v BZ1,
eguivalent to the PRL sentence C{AB®RY XL OR2P, in a model in
which P iz true at xABBBACCCC, this sentence has signature
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53 at x, indicating that P can be reached via two (4B%)’'s
and four C's. The derived sentence, equivalent to the PDL
sentence <Cx:P v {A{B*>{ (ARX)*{{*>P, has signature 5-2-4 at
x, indicating that, from xA, P can be reached via three B's,
one AB%*, and fouwr C's .

4., The Decision Procedure

Given a sentence p, we will construct a finite automaton on
infinite trees {(Rabin, 196%; Hossley and Rackoff, 1972) which
recognizes the tree models of p. This automaton will
evaluate a given sentence in a candidate tree structure by
recursive descent, i.e., by recursively evaluating

its conseguences. At a disjunction g v r contained within a
mu—sentence it is necessary to make a careful choice of which
disijunct to evaluate. Consider the formula uX.P v AX,
equivalent to the PDL sentence {A%>P, which is satisfied in a
tree structure when the formula £ is satisfied somewhere
along the path of A's. Consistently choosing the disjunct

AX of P v AX will cause tree structures in which p is false
along the path of A's to be mistakenly regarded as models of
/LX.P v AX.

A choice function for a model is a function which chooses,
for every disjunction, one of the disjuncts. Ordinal
signatures can be used to define a choice function which
selects the true disjunct with lexicographically least
signature.

Any choice function over a tree structure determines a
derivation relation between occurrences of sentences.

{1} A disjunction, ¢ v r, derives the disjunct chosen
by the choice function,

A conjunction, g & r, derives both conjuncts,

A program sentence, Ag, occurring at a state x,
derives g at Ax.

4 A mu-sentence, MX.f{X), derives FLUX.FXY).

{3} & nu-sentence, #X.F(X), derives FI{xX.f{X}).

e
-

)
33

o~y

Definition. A sentence p at x generates g at v if p at «
derives ¢ at y in such a way that ¢ is a subsentence of every
derivation step. In particular, note that g must be a
subsentence of p, so that a sentence can only generate its
subsentences.

Example: uX.P v A{UY.X v BY) at x can derive, but not
generate, AY.{((uX.(F v AQUY.X v BY)) v BY) at xA.

Definition. A mu-sentence AMX.f(X) is regenerated from state
x to state ¥ if an opccurrence at x generates an occurrence at
Y

Example: MY . ({uX. (P v AlfeY.X v BY)) v BY) can be
regenerated from x to xB, but from x to xA. @& derivation
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fraom x to x4 is possible, but requires ﬁLX,P v ﬁ(}g?.x v BY}
as a derivation step.

If we start with a tree model and construct 3 choice function
based on ordinal signatures, then by the Lemma of Section 3
the regeneration relations for mu-sentences will always
decrease signature and hence be well-founded. Conversely, if
a candidate tree structure can be supplied with a choice
function which make the regeneration relations well-—-founded,
it will in fact be a model.

In particular, if the regeneration relations are well-
founded, then esach occurrence of a mu-sentence is associated
with an ordinal, the well-ordering ordinal of the
regensration relation from that occwrrence. It is then
possible to calculate a signature 5 = oy » oy Ffor every
sentence ¢ at state x, via the definition:

o = l.u.b. {0z g at x generates mu—-sentence r at vy,
r has mu—depth i, and
r at y has regeneration ordinal of ).

We have therefore shown:

Proposition 2. 6 sentence p is satisfiable if and only if
there is a tree model with an attached choice function over
which the regeneration relations for mu-sentences are well-
founded.

It iz then a sxercise in automaton programming to show:

Proposition 3. Given a sentence p, we can effectively
construct an automaton which expects as input a tree
structure with attached choice functions and accepts
precisely when the choice function guarantees that the
structure is a model of p. The size of this automaton (and
the time required to construct it) can be kept elementary in
the length of the formula.

Proof: Given a candidate tree structure, the desired
automaton checks that the structure is both locally and
globally consistent. A structure is locally consistent when
no state contains both a propositional letter and its
negation, or contains a disjunction without one of its
disjuncts, etc. Global consistency consists of the well-
foundedness of the regeneration relation for mu-sentences
derived from p. It is straightfoward to construct an
automaton on infinite strings which, when run down a single
path of a tree structure, nondeterministically searches for
an infinite descending chain in the regeneration relations.
& complement construction then supplies an automaton which,
when run down every path of a tree structure, checks global
consistency.

Combining Propositions 1, 2, and 3, we have reduced the
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satisfiability problem for the propositional mu-—calculus to
the emptiness problem for finite automata on infinite trees.
Since this last problem is elementarily decidable,; the mu~—
calculus is also. The methods of Streett (1281) can be used
to show that the decision procedure runs in triple
exponential time. As a corollary, we obtain a small model
theorem. For if the set of tree models is automaton
recognizable, then there must be a finitely generable tree
modely i.e.y ong cobtained by unwinding a finite graph. This
graph will be a finite model.
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