
The Propos i t i ona l Mu-Calculus i s Elementary

Robert S. S t r e e t t
Computer Science Department
Boston U n i v e r s i t y
Boston, MA 02215
USA

E. A l l en Emerson
Computer Sciences Department
U n i v e r s i t y of Texas
Aus t i n , TX 78712
USA

ACKNOWLEDGEMENT: The work of the second author was supported
i n pa r t by NSF grant MCS-830287G.

ABSTRACT: The p ropos i t i ona l mu-calculus i s a p ropos i t i ona l
l o g i c of programs which incorporates a l eas t f i x p o i n t
operator and subsumes the Propos i t i ona l Dynamic Logic of
F ischer and Ladner, the i n f i n i t e looping cons t ruc t of
S t r e e t t , and the Game Logic of Par ikh. We g ive an elementary
time dec is ion procedure, using a reduc t ion to the emptiness
problem f o r automata on i n f i n i t e t rees. A small model
theorem i s obtained as a c o r o l l a r y .

1. I n t r o d u c t i o n

F i r s t - o r d e r l og i c i s inadequate f o r f o r m a l i z i n g reasoning
about programs; concepts such as te rm ina t ion and t o t a l i t y
r equ i r e l o g i c s s t r i c t l y more powerful than f i r s t - o r d e r
(Kfoury and Park, 1975). The use of a leas t f i x p o i n t
operator as a remedy f o r these d e f i c i e n c i e s has been
i nves t i ga ted by Park (1970, 1976), Hitchcock and Park (1973),
deBakker and deRoever (1973), deRoever (1974), Emerson and
Clarke (1980), and others. The r e s u l t i n g formal systems are
o f ten c a l l e d mu-ca lcu l i and can express such important
p rope r t i es of sequent ia l and p a r a l l e l programs as
t e rm ina t i on , l i veness , and freedom from deadlock and
s t a r v a t i o n .

P ropos i t i ona l vers ions of the mu-calculus have been proposed
by P ra t t (1981} and Kozen (1982). These l o g i c s use the l eas t
f i x p o i n t operator to increase the expressive power of
P ropos i t i ona l Dynamic Logic (PDL) of Fischer and Ladner
(1979). Kozen's fo rmu la t i on captures the i n f i n i t e looping
cons t ruc t of S t r e e t t (1982) and subsumes Pa r i kh ' s Game Logic
(1983a, 1983b), whereas P r a t t ' s l o g i c i s designed to express
the converse operator of PDL. The f i l t r a t i o n - b a s e d dec is ion
procedure and small model theorem obtained f o r BDL extend to
P r a t t ' s mu-calculus, but the a b i l i t y to express i n f i n i t e
looping renders the f i l t r a t i o n technique i n a p p l i c a b l e to
Kozen's vers ion .

Kozen (1982) and Vardi and Wolper (1984) have obtained
exponent ia l t ime dec is ion procedures f o r fragments of Kozen~s
mu-calculus. Both fragments can expresses a l l of BDL, but
are not strong enough to capture the i n f i n i t e looping
cons t ruc t of S t r e e t t (1982). Kozen and Parikh (1983) have
shown t ha t the s a t i s f i a b i l i t y problem f o r the f u l l

466

propositional mu-ca!culus can be reduced to the second-order
theory of several successor functions (SnS). By results of
Rabin (1969) this supplies a decision procedure for the
propositional mu-calculus, but one which runs in non-
elementary time, i.e., time not bounded by any fixed number
of compositions of exponential functions. Meyer (1974) has
shown that this is the best that can be achieved using a
reduction to SnS.

2. Syntax and Semantics

The formulas of the propositional mu-calculus are:

(I) Propositional letters P, Q, R,
(2) Propositional variables . . . , X, Y, Z.
(3) Ap, where A is a member of a set of program letters

A, B, C, and p is any formula,

(4) " - '~p,
(5) p v q,
(6) ~X.f(X), where f(X) is any formula syntactically

monotone in the propositional variable X, i.e., all
occurrences of X in f(X) fall under an even number
of negations.

A sentence is a formula containing no free propositional
variables, i.e~, no variables unbound by a operator. Mu-
calculus sentences are satisfied in Kripke structures, which
interpret propositional letters as subsets of states and
program letters as binary relations on states. The formula Ap
is true in a state when there is an A edge to a state
satisfying p. In the formula /~X.f(X), f denotes a monotone
operator on sets of states, and x~X.f(X) is interpreted as
the least fixpoint of this operator, i.e., the least set of

states X such that f(X) = X.

Examples: The sentence xU.X.P v AX is true at a state x if
there is a chain (possibly empty) of A edges leading from x
to a state satisfying P. It is equivalent to the sentence
<A*>P of Propositional Dynamic Logic (PDL). The sentence
/~X.P v A(Y~X v BY) is equivalent to the PDL sentence

<(AB*)*>P.

It is convenient to reduce the problem of satisfiability over
the general models described above to satisfiability over a
special class of models, the tree models.

Definition: A deterministic model is a Kripke structure in
which the relations corresponding to the programs are partial
functions; for each state x and program A there is at most
one A edge from x. A tree model is a deterministic model
whose universe of states is the set of words over an alphabet
of program letters. Each program is interpreted as a binary
relation in the obvious way: there is an A edge from x to xA.

Proposition !. There is a translation of mu-calculus

467

sentences such that a sentence is satisfiab}e if and only if
its translation is satisfied in a tree model.

O u t l i n e of Proof : Kozen and Parikh (1983) e s t a b l i s h a
Lowenheim-Skolem theorem f o r the p r o p o s i t i o n a l mu-calculus;
i f a sentence i s s a t i s f i a b l e ~ then i t has a countab le model.
These countab le models can be f u r t h e r r e s t r i c t e d to
be d e t e r m i n i s t i c ; t h i s i s accomplished by t r a n s l a t i n g Ap as
A(x~X.p v BX), where B is a new program,va technique due to
Parikh (1978). It is not difficult to e..pand and unwind the
resulting models into tree models.

In a tree model, any sentence can be put into a special
positive form, by using the following BeMorgan-like laws to
move negations until they are only applied to propositional
letters.

(1) I~ p -> p,
(2) --I (p v q) -> (-lp) & (-lq),
(3) -IAp -> A(-np),
(4) -1 (~ X.f(X)) -> I/X. df(-~X).

The formula~X.f(X) represents the greatest fixpoint of the
monotone operator f.

Examples: The sentence~X.P v (AX & BX) is true when there
is a finite binary tree of A and B edges with a frontier of
s t a t e s s a t i s f y i n g P. The sentence ~X.P & (x~Y.BX v AY) i s
t r u e when the re i s an i n f i n i t e AB* chain o$ s ta tes s a t i s f y i n g
P.

In what f o l l o w s we s h a l l assume tha t a l l sentences are in
p o s i t i v e form and t h a t a l l models are t r e e models.

3. Ordinal Ranks and Signatures

By the Tarsk i -Knas te r theorem, ~X.f(X) can be de f ined by
t r a n s f i n i t e induct ion~ i . e . , ~ X . f (X) = U~ f ~ (f a l s e) , where

fO(false) = false
f~+~ (false) = f(f ~ (false))
f~(false) = U~ f~(false), ~a limit ordinal.

A mu-sentence~X.f(X) has rank ~ at a state x if f ~(false)
is true at x. Since a mu-sentence can contain other mu-
sentences as subsentences~ it is useful to associate a
sequence of ordinal ranks to a sentence. Bounded length
sequences of ordinals can be well-ordered lexicographically.

D e f i n i t i o n . The mu-height of a sentence i s the depth of
nes t ing of mu-subsentences of the sentence.

Example: The sentencex~X.P v A(~Y.X v BY) has mu-height 1,
since the subformula /~Y.X v BY is not a sentence.

468

Given a sentence p of mu-height n and a sequence of ordinals
s = ~i ' " " ~ , we let p:s denote the sentence obtained by
replacing each mu-subsentence ~X.f(X) of p by f ~i (false),
where i is the mu-height of~X.f(X). A sentence p has
signature s at a state x if p:s is true at x.

Examples: Consider ~Y.(~X.P v A(/~Z.X v BZ)) v BY,
equivalent to the PDL sentence <B*><(AB*)*>P. This sentence
has mu-height 2, and if P is true at a state xBABABBBBB, then

this sentence has signature 3-2 at x, 3-1 at xB, 2-2 at xBA,
2-1 at xBAB, 1-6 at xBABA, and so on down to I-I at
xBABABBBBB. Infinite ordinals can arise in signatures

through the interaction of mu-sentences and nu-sentences.
Consider ~X.(~Y.(P v BY) & AX), equivalent t o the PDL
sentence [A*]<B*>P. In a tree model in which the states
satisfying P are precisely AmB ~, for n ~0, the signature of

this sentence at the root will be ~.

Lemma: The ~ollowing rules hold of signatures:

(I) if p v q has signature s at x, then either p or q

has signature s at x.
(2) if p & q has signature s at x, then both p and q

have signature s at x.
(3) if Ap has signature s at x, then p has signature s

at xA.
(4) if /6~X.f(X) has signature s at x, then f(/~X.f(X))

has signature t at x, where t lexicographically

precedes s.
(5) if ~X.f(X) has signature s at x, then f(-~X.f(X))

has signature s at x.

Proof (for case 4 only): Suppose~X.f(X) has mu-height n.
The mu-subsentences of f(~X.f(X)) can be divided into three

classes:

(I) The proper mu-subsentences of ~X.f(X), with

mu-height < n.
(2) /~X.f(X) itself, with mu-height n.
(3) Mu-sentences properly containing~X.f(X), with

mu-height > n.

If /~Y.g(Y) is in the first class and can be replaced by
g~ (false) within ~X.f(X) at x, then it can be similarly
replaced within f(/~X.f(X)) at x. If ~X.f(X) has rank
at x, then~X.f(X) can be replaced by f ~ (false), for

<~ , within f(/~iX.f(X)) at x. Hence if/~X.f(X) has
signature s = ~4 " ' " ~ at x, then f(/~X.f(X)) will have

signature t = ~.-.~.4~n~$-~-4' "" ~ at x, where ~n<~ , so

that t lexicographical!y precedes s.

Example: Consider ~X.(~Y.P v CY) v A(/~Z.X v BZ),
equivalent to the PDL sentence <(AB*)*><C*>P. In a model in
which P is true at xABBBACCCC, this sentence has signature

469

5-3 at x, indicating that P can be reached via two (AB*)'s

and four C's. The derived sentence, equivalent to the PDL
sentence <C*>P v <A><B*><(AB*)*><C*>P, has signature 5-2-4 at
x, indicating that, from xA, P can be reached via three B's,
one AB*, and four C's

4. The Decis ion Procedure

Given a sentence p, we w i l l c o n s t r u c t a f i n i t e automaton on
i n f i n i t e t r e e s (Rabin, 1969; Hossley and Rackof f , 1972) which
recogn izes the t r e e models of p. Th is automaton w i l l
e v a l u a t e a g iven sentence in a cand ida te t r e e s t r u d t u r e by
r e c u r s i v e descent , i . e . , by r e c u r s i v e l y e v a l u a t i n g
i t s consequences. At a d i s j u n c t i o n q v r con ta ined w i t h i n a
mu-sentence i t i s necessary t o make a c a r e f u l cho ice o f which
d i s j u n c t t o e v a l u a t e . Consider the formula~X.P v AX,
e q u i v a l e n t t o the PDL sentence <A*>P, which i s s a t i s f i e d in a
t r e e s t r u c t u r e when the fo rmu la P i s s a t i s f i e d somewhere
along the path of A ' s . C o n s i s t e n t l y choosing the d i s j u n c t
AX of P v AX w i l l cause t r e e s t r u c t u r e s in which p i s f a l s e
a long the path of A ' s t o be m i s t a k e n l y regarded as models o f
/~LX.P v AX.

A cho ice f u n c t i o n f o r a model i s a f u n c t i o n which chooses,
f o r every d i s j u n c t i o n , one of the d i s j u n c t s . Ord ina l
s i g n a t u r e s can be used t o d e f i n e a cho ice f u n c t i o n which
s e l e c t s the t r u e d i s j u n c t w i t h l e x i c o g r a p h i c a l l y l e a s t
s i g n a t u r e .

Any cho ice f u n c t i o n over a t r e e s t r u c t u r e de te rmines a
d e r i v a t i o n r e l a t i o n between occurrences of sentences.

(1) A d i s j u n c t i o n , q v r , d e r i v e s the d i s j u n c t chosen
by the cho ice f u n c t i o n ,

(2) A c o n j u n c t i o n , q & r , d e r i v e s both c o n j u n c t s ,
(3) A program sentence, Aq, o c c u r r i n g a t a s t a t e x ,

d e r i v e s q a t Ax.
(4) A m u - s e n t e n c e , ~ X . f (X) , d e r i v e s f (~ X . f (X)) .
(5) A nu-sentence, ~ X . f (X) , d e r i v e s f (~ X . f (X)) .

Definition. A sentence p at x generates q at y if p at x

derives q at y in such a way that q is a subsentence of every
derivation step. In particular, note that q must be a

subsentence of p, so that a sentence can only generate its
subsentences.

Example: ~X.P v A(~Y.X v BY) at x can derive, but not
generate, /~Y.((/~X.(P v A(~A.Y.X v BY)) v BY) at xA.

Definition. A mu-sentence v~cX.f(X) is regenerated from state
x to state y if an occurrence at x generates an occurrence at
y.

Example: ~Y.((/IX.(P v A(/~-Y.X v BY)) v BY) can be
regenerated from x to xB, but from x to xA. A derivation

470

from x to xA is possible~ but requires ~ X.P v A(/IY.X v BY)
as a derivation step.

If we start with a tree model and construct a choice function
based on ordinal signatures, then by the Lemma of Section 3
the regeneration relations for mu-sentences will always
decrease signature and hence be well-founded. Conversely, if
a candidate tree structure can be supplied with a choice
function which make the regeneration relations well-founded,
it will in fact be a model.

In particular, if the regeneration relations are well-
founded, then each occurrence of a mu-sentence is associated
with an ordinal, the well-ordering ordinal of the
regeneration relation from that occurrence. It is then
possible to calculate a signature s = ~I ' " ' ~ for every
sentence q at state x, via the definition:

~ = l~u.b.(~ : q at x generates mu-sentence r at y,
r has mu-depth i, and
r at y has regeneration ordinal ~).

We have therefore shown:

Proposition 2. A sentence p is satisfiable if and only if
there is a tree model with an attached choice function over
which the regeneration relations for mu-sentences are well-
founded.

It is then a exercise in automaton programming to show:

Proposition 3~ Given a sentence p~ we can effectively
construct an automaton which expects as input a tree
structure with attached choice functions and accepts
precisely when the choice function guarantees that the
structure is a model of p. The size of this automaton (and
the time required to construct it) can be kept elementary in

the length of the formula.

Proof: Given a candidate tree structure, the desired
automaton checks that the structure is both locally and
globally consistent. A structure is locally consistent when
no state contains both a propositional letter and its
negation, or contains a disjunction without one of its
disjuncts, etc. Global consistency consists of the well-
foundedness of the regeneration relation for mu-sentences
derived from p. It is straightfoward to construct an
automaton on infinite strings which, when run down a single
path of a tree structure, nondeterministically searches for
an infinite descending chain in the regeneration relations.
A complement construction then supplies an automaton which,
when run down every path of a tree structure, checks global
consistency.

Combining Propositions i, 2, and 3, we have reduced the

471

s a t i s f i a b i ! i t y problem fo r the propos i t iona l mu-calculus to
the emptiness problem fo r f i n i t e automata on i n f i n i t e t rees.
Since t h i s l a s t problem i s e lementa r i l y decidable, the mu-
ca lcu lus i s also. The methods of S t ree t t (1981) can be used
to show that the decision procedure runs in t r i p l e
exponential t ime. As a c o r o l l a r y , we obtain a small model
theorem. For if the set of tree models is automaton
recognizable, then there must be a finitely generable tree
model, i.e., one obtained by unwinding a finite graph. This
graph will be a finite model.

5. References

deBakker, J., and deRoever, W. P. (1973), A Calculus for
Recursive Program Schemes, in "First International Colloquium
on Automata, Languages, and Programming", 167-196.

deRoever, W. P. (1974), "Recursive Program Schemes: Semantics
and Proof Theory", Ph. D. thes is , Free U n i v e r s i t y , Amsterdam.

Emerson, E. A., and Clarke, E. C. (1980), Character iz ing
Correctness Proper t ies of Pa ra l l e l Programs Using F i×poin ts ,
in "Seventh In te rna t iona l Colloquium on Automata, Languages,
and PrOgramming", 169-181.

Fischer, M. J . , and Ladner, R. E. (1979), Proposi t ional
Dynamic Logic of Regular Programs, Journal of Computer System
Science 18, 194-211.

Hitchcock, P., and Park, D. M. R. (1973), Induction Rules and
Termination Proofs, in " F i r s t I n te rna t i ona l Colloquium on
Automata, Languages, and Programming", 225-251.

Hoss!ey, R., and Rackoff, C. W. (1972), The Emptiness Problem
fo r Automata on I n f i n i t e Trees, in "Thi r teenth IEEE Symposium
on Switching and Automata Theory", 121-124.

Kfoury, A. J . , and Park, D. M. R. (1975), On Termination of
Program Schemes, Information and Control 29, 243-251.

Kozen, D. (1982), Results on the Proposi t ional Mu-Calculus,
in "Ninth In te rna t i ona l Colloquium on Automata, Languages,
and Programming", 348-359.

Kozen, D., and Parikh, R. J. (1983), A Decision Procedure f o r
the Propos i t iona l Mu-Calculus, to appear in "Second Workshop
on Logics of Programs".

Meyer, A. R. (1974), Weak Monadic Second Order Theory of
Successor i s not Elementary Recursive, Boston Logic
Colloquium, Springer-Verlag Lecture Notes in Mathematics 453.

Parikh, R. J. (1979), A D e c i d a b i l i t y Result fo r a Second
Order Process Logic, in "Nineteenth IEEE Symposium on the
Foundations of Computing", 177-183.

472

Parikh~ R~ J. ~1983a)~ Cake Cutting, Dynamic LogiE~ 6ames~
and Fairness7 to appear in "Second Workshop on Logics of
Programs ~ .

Parikh, R. J. (1983b), Propositional Game Logic, to appear in
"Twenty-third ZEEE Symposium on the Foundations of Computer
Science".

Park, D. M. R. (1970) 7 Fixpoint Induction and Proof of
Program Semantics~ Machine Intelligence 5, Edinburgh
University Press.

Parks D. M. R. (1976), Finiteness is Mu-Ineffable,
Theoretical Computer Science 3, 173-181.

Pratt, V. R. (1982), A Decidable Mu-Ca!culus: Preliminary
Report, in "Twenty-second IEEE Symposium on the Foundations
of Computer Science", 421-427.

Rabin7 M. O. (1969}, Decidability of Second Order Theories
and Automata on Infinite Trees", Transactions of the American
Mathematical Society 1417 1-35.

Streett, R. S~ (1981), "Propositional Dynamic Logic of
Looping and Converse", MIT LCS Technical Report TR-263.

Streett, R. S. (1982), Propositional Dynamic Logic of Looping
and Converse is Elementarily Decidable7 Information and
Control 54, 121-141.

Vardi7 M., and Wolper7 P. (1984) 7 Automata Theore t i c
Techniques f o r Modal Logics of Programs, t o appear i n
"S i x t een th ACM Symposium on the Theory of Computing".

