
JOURNAL OF COMPUTW AND SYSTEM SCIENCFS 18, 1%%-211 (1979)

Propositional Dynamic Logic of Regular Programs*+

MICHAEL J. FISCHER AND RICHARD E. LADNER

Department of Computer Science, University of Washington, Seattle, Washington 98195

Received October 4, 1977; revised September 11, 1978

We introduce a fundamental propositional logical system based on modal logic for
describing correctness, termination and equivalence of programs. We define a formal
syntax and semantics for the propositional dynamic logic of regular programs and give
several consequences of the definition. Principal conclusions are that deciding satisfiability
of length n formulas requires time dn/lOgn for some d > 1, and that satisfiability can be
decided in nondeterministic time c” for some c. We provide applications of the decision
procedure to regular expressions, Ianov schemes, and classical systems of modal logic.

1, INTRODUCTION

Pratt [19] in conjunction with R. Moore has introduced a logical framework for
programs based on modal logic. Their idea is to integrate programs into an assertion
language by allowing programs to be modal operators. For instance, if a is a (possibly
nondeterministic) program and p an assertion, then a new assertion, (a) p can be made.
Informally, the meaning of “(a) p” is “a can terminate with p holding on termination.”
In addition to modal operators, {a), for each program a, the usual Boolean operations
and quantification are allowed. A dual modal operator [a] is defined by [a] p = -(a) -p.
The meaning of “[a] p” is “whenever a terminates p holds on termination.” Following
Hare& Meyer, and Pratt, we call such a system dynamic logic [8].

Dynamic logic provides a powerful language for describing programs, their correctness
and termination. For example, the Hoare assertion “p{a}a” [lo] can be expressed as
“‘~3 [a]+” The fact that a can terminate can be expressed by the assertion “(a) true.”
The determinacy of a program a can be expressed by the formula “(a)~ I) [a] p,”

where p expresses the condition of determinacy.
One goal in developing a logic of programs is to provide a set of axioms and rules

of inference for proving things about programs like “partial correctness,” “termination,”
and “equivalence.” One would expect that the things proved by the axioms and rules
were at least “true.” Hence, it is fundamental that there be a notion of “truth,” that is,

* This research was supported in part by the National Science Foundation through Grant Nos.
DCR74-12997-AOl, GJ-43264, and MCS77-02474.

+ An earlier version of this paper was presented at the Ninth ACM Symposium on Theoryaof
Computing, Boulder, Colorado, May 2-4, 1977, under the title, “Propositional Model Logiciof
Programs.”

194
OO22-OOOO/79/020194-18$02.00/O
Copyright Q 1979 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

DYNAMIC LOGIC 195

a semantics for the logic of programs. In the case of dynamic logic, a semantics must be
provided for both the programs and for the formulas that talk about programs. The
program semantics is derived from the relational semantics of programs (cf. Hoare and
Lauer [ll]) and the formula semantics is adopted from the relational semantics for
modal logic introduced by Kripke [14].

Informally, each program a defines a relation p(u) between program states: (s, t) E p(a)
if and only if a executed in state s can terminate in state t. The truth of an assertion
is determined relative to a program state, so we say “p is true in state s.” The formula
(ai p is true in state s if there is a state t such that (s, t) E p(a) and p is true in state 2.
The formula p v 4 is true in state s if either p is true in state s or Q is true in state s.

The system we introduce is an abstraction of the system introduced by Pratt. Pratt’s
basic programs are assignments and tests while our basic programs are uninterpreted
labels. Pratt’s formulas allow first order variables and quantification, while our formulas
only allow propositional variables. Propositional dynamic logic of regular programs
plays a role in the logic of programs analogous to the role the propositional calculus
plays in the classical first-order logic.

The goal of this paper is to provide a mathematical definition of the syntax and
semantics of propositional dynamic logic and to prove some fundamental consequences
of this definition. In Section 2 we give the formal definitions and some examples. In
Section 3 we show that satisfiability in propositional dynamic logic of regular programs
is decidable in nondeterministic time c” for some c. In Section 4 we show that deciding
satisfiability requires deterministic time d n lo n for some d > 1. In Section 5 we give 1 s
applications to regular expressions, Ianov schemes, and classical modal logic.

2. THE FORMAL SYSTEM

We now define the syntax of the propositional dynamic logic of regular programs, PDL
for short. There are, two underlying sets of symbols: 65,) a set of atomic form&s which
are propositional variables, and Z,, , a set of atomic programs which can be thought
of as indivisible statements in a programming language.

We inductively define the set of programs, 2, and the set of formulas, 0, by the
following rules.

Programs:

(i) Atomic programs and 0 are programs;

(ii) if a and b are programs and p is a formula, then (a; b), (a U b), a*, and p ?
are programs.

Formulas:

(i) Atomic formulas, true and false, are formulas;

(ii) if p and q are formulas and a is a program, then (p v q), -p, and <a> p are
formulas.

196 FISCHER AND LADNER

We normally reserve P, Q, R ,... for members of @,, ; A, B, C ,... for members of ,& .
The letters p, q, r,... serve as metavariables for formulas and a, b, c,... serve as meta-
variables for programs. We call our programs regular programs because of their similarity
to regular expressions. Regular programs can be thought of as abstractions of non-
deterministic structured programs under the correspondence:

“0” means “abort” or “blocked,”
“a; b” means “begin a; b end,”
“a u b” means “nondeterministically do a or do b,”
“u*” means “repeat a a nondeterministically chosen number of times,”
‘p ?” means “test p and proceed only if true.”

Note that p ? does not result in a state change if p is true, but the program is blocked
if p is false. This meaning is similar to the semantics of Dijkstra’s guarded commands [5].

We define the Boolean connectives A, 3, = in the usual way from v and -. The
dual operator [a] is an abbreviation for -(a)-. h is an abbreviation for 8*, the null
program. We also define standard block structured programming constructs:

“ifp then a else b” means “p ?; a u -p I; b”
“while p do a” means “(p ?; a)*; -p ?”

Although the formal syntax is fully parenthetical, we will commonly drop parentheses
for readability. Thinking of (a) and [a] as unary operators on formulas, the precedence
of operators from highest to lowest is (a), [a], -, A, v, 3, =, ?, *, ;, U.

We now define the semantics of the propositional dynamic logic of regular programs.
A structure (or model) d is a triple (IV&, 4, pd), where

Informally, ?Vd is a set of program states. The function T# provides an interpretation
for the atomic formulas: “w E 4(P)” means “P is true in the state w.” The function
pd provides an interpretation for the atomic programs: “(11, o) E~JB(A)” means “there
is an execution of A which begins in state u and ends in state v.”

We extend pd to all programs and & to all formulas inductively (we drop the super-
script when there is no ambiguity):

p(u; b) = p(u) 0 p(b) (composition of relations),
p(a u b) = p(u) u p(b) (union of relations),
Pb*> = P@>* (re fl exive and transitive closure of a relation),
P(P ?) = {(w, w): w -5 4P)h
77ftrue) = W,
nfjizlse) = 4,
4P v 4) = 4P) u 47),
4-P) = w - 4P),
up) = {w E W: 3w ((w, V) E p(a) and e, E n-(p))}.

DYNAMIC LOGIC 197

By the definition of [a] we can compute

~$[a]$) = {w E W: VV ((w, v) E p(a) implies et E r(p))).

These extensions are natural so that “(u, V) E p(a)” means “the program a can take
state u to state v” and “w E m(p)” means “p is true in state w.”

Using more standard semantic notation, we write ~2, w + p just in case w E 4(p).
We say p is valid if for all JZ! and w E W &, ~2, w + p. Further p is satisfiable if there is
a structure & and a w E Wd such that ~2, w /== p. Clearly p is valid if and only if -p
is not satisfiable.

We give two examples of structures, the first fairly complex and the second simple.

EXAMPLE 1. Let N = (0, 1, 2,...} and let V be a set of first-order variables.

@P,={x=y,x=O,x=y+l,x=y~l,x=y+z:.~,y,zElq,
Z;, = (X t random, x t y + 1, x +- y Z- 1: x, y E V}.

Consider the following structure ~2 = (W, 7~) p):

W = V + N (the set of assignments of the variables in N),
77(x == y) == {s: s(x) = s(y)),
77(x = 0) = (s: s(x) = O},
n(x = y -t 1) = {s: S(X) = s(y) + l},
~(~==y~1)={s:s(x)=s(y)~l}(0~1=Obydef),
7r(x = y -k z) =-= (s: s(x) = s(y) + s(z)},
p(x +- random) = {(s, t): s(y) = t(y) for ally # x},
p(.z +- y + 1) = {(s, t): t(x) = s(y) + 1 and t(z) = s(z) for all z # x},
p(x t y 1. 1) = {(s, t): t(x) = s(y) 2 1 and t(z) = s(z) for all z + x).

The meaning of the program “X c random” is “nondeterministically set x to any
value.” Hence, the meaning of “(x t random)” is “3.x.”

Let a =(rP (ww = 0 ?; (w c w A 1); (z +- x + l))*; (w = O?). Letp zdp (w = x A
z == y) 3 [a](~ = x + y). We leave it to the reader to verify that for any s E W,
cd, s b p. Informally, p states that a is a program that correctly computes addition.

EXAMPLE 2. Consider the structure g:

W = {heI,
T -_ 54
P(4 = {@I b)l, I@) = WY 4.

Graphically:

We have 99, b + [A*] ((A) true A (@[.A u B] f&e).

198 FISCHER AND LADNER

We next give some sample validities of PDL.

EXAMPLE 3.

(1) <a; b>P = @@)P,

(2) (a u QP = GOP " WP,

(3) <a*>p =P ” Gm~*>P,

(4) (P%z=P A 9,

(5) G>(P ” 4) = <4P ” mz,
(6) (a*) -p = {while p do a) true.

(This says that “while p do u” can terminate iff it is possible, by repeated executions
of a, to reach a state in which -p holds.)

(7) (a)~3 (if (u)p then a else b)p.

3. UPPER BOUNDS ON THE COMPLEXITY OF PDL

Propositional dynamic logic is the basic logical framework for program correctness.
Validities in PDL represent universal or logical truths. They may be thought of as
“contentless” assertions since they do not depend on the meanings of the basic assertions
or the basic programs.

In this section, we show that the complexity of the validity problem for PDL is in
co-NTIME(cn) f or some c, where 71 is the size of the formula being tested. (That is,
the complement of the validity problem for PDL is recognizable by a nondeterministic
Turing machine in time <c”.) This compares to classical propositional logic whose
validity problem is in co-NP. In Section 4, we show that the validity problem is not
in DTIME(cn@s”) for some c > 1.

Let size(p) denote the length of p regarded as a string over @s u Z,, u ((,), U, ;,

*, ?, N, v, 8, (,), true, false). Define &e(d) to be 1 W-@- j. If @s or Zs is infinite
then the size of p is the length of a string in an infinite alphabet. In order to realize
formulas in a finite alphabet we assume 0s C P . (0, l>* and Z,, C A . (0, I}*. When we
speak of the length of a formulap we mean its length over the alphabet {P, A, 0, 1, (,),
U, ;, *, ?, -, v, 19, (,), true,fuZse}. We denote the length of p by I(p), in fact, if x
is any word in a finite alphabet we let Z(X) denote its length.

For technical reasons, it is more convenient to treat the satisfiability problem for
PDL, that is, given a formula p, to determine if p is satisfiable in some world w of some
structure JJ. We will show:

THEOREM 3.1. The sutisfubility problem for PDL is in NTIME(E) for some constant c,
where n is the size of the formula.

The result for validity then follows from the fact that p is valid iff 9 is not satisfiable.

DYNAMIC LOGIC 199

COROLLARY. The validity problem for PDL is in co-NTIME(c”) for sow constant c,
where n is the size of the formula.

(Note that the theorem and its corollary also hold if n is interpreted as the length
of the formula instead of the size since size(p) < I(p)).

The proof of Theorem 3.1 depends on two key lemmas. (1) If p is satisfiable, then p
is satisfiable in a model of exponential size. (2) The problem of testing whether a formula
p is true at a state w in a structure d can be decided in time polynomial in the sizes
of p and & (given suitable encodings). A nondeterministic algorithm for testing
satisfiability is then simply:

ALGORITHM S. To test p of size n for satisfiability:

(1) Guess a structure & of size at most c”.
(2) Guess a world w E IV”.
(3) Test if p holds at w in d. If so, answer “yes.”

The time for algorithm S is polynomial in cn and hence is bounded by (c’)” for some
new constant cf.

THEOREM 3.2 (Small Model Theorem). Let p be a satisjkble formula. Then there
exists a structure A? and a world w E Wd such that ,QI, w i== p and size(&) ,< 2siZe(P).

Proof. Assume & , w,, + p, , that is, p, is a formula which is satisfied at wO in de .
The structure dO may be finite or infinite. There are two phases in the construction
of a small structure satisfyingp, . In the first phase we generate from p, a set of formulas S.
Some of the formulas of S may contain new atomic formulas which we call Q-variables.
From do we define an expanded structure d which has the same states as de but has
added meanings for the new Q-variables. In the second phase we use S to define an
equivalence relation between the states of &. We then define a “quotient” model JC?
whose states are the equivalence classes of the states of d. We show that d has small
size and d, a,, + p, where a,, is the equivalence class of wO .

Let F be a set of formulas and a0 be a structure, both over @,, and 15e . We simul-
taneously define the closure of F, cl(F), and the closure 93 of GYO with respect to F inductively
using the rules:

1. F C cl(F), Wa = W%, G@(P) = r%(P) for all P E @s , p”(A) = p%(A) for all
A~4,o,

2. (4 P v q E cl(F) * P, q E cl(F),
(b) --p E cl(F) 3 p c cl(F),
(c) (A)p E cl(F) => p E cl(F) for all A E Z,, u {O},

(4 (q ?>P E cl(F) * P, Q E cl(F),

(e) (a; b)p E cl(F) * (a)Qcb>“, (b)p E cl(F), and @(Q“) = @((b>p),

(f) !a u b)p c cl(F) * (a>Qp, @)Qp, P E cl(F) and fl(Q”) = fl(P),
(g) (a*)p E cl(F) * p, (u)Q(~*>~ E cl(F) and #(Q(“*>“) = #((a*)~).

200 FISCHER AND LADNER

The new Q-variables are given meaning in $9 when they are introduced into the closure.
The definition of n@(Q) depends only on @(Y) which has been already well defined
previously. The new structure 9 is over @i and & , where A,, = CD; - CD,, is the set
of Q-variables introduced in taking the closure of F.

At this point it is helpful to explain the role of the Q-variables in the proof. First,
their presence will allow us to argue that the cardinality of the closure of p, is linear
in the size of p,, . Second, they aid in our induction proof of Claim 2 by providing a
base for the induction. This simplifies an earlier version of the proof which had two
separate inductions (and which did not handle “ ?“).

Each rule (a)-(g) h as as premise a single formula in cl(F) so cl(F, u FJ = cl(F,) u

cl(F,) for any sets FI and F, . It follows that cl(F) = (JBEF cl((p}). Hence 1 cl(F)1 <
CPEF I Cl({PNl-

To analyze 1 cl({p})j, let r(p) be th e number of occurences in p of symbols in
iv,,- , ?, ;, U, *I u Sp, u 27s u (0, true,fuZse). Note that y does not count the new
Q-variables. With this definition it happens that each rule (a)-(g) is of the form

P E cl(F) * P, ,..a, P, E cl(F), (1)

where r(p) = 1 f r(pJ + ... + I. Further, if a rule (1) is applicable to a formulap,
it is the only such rule so that

CWPN = lP> u 0 CGPd>,
i=l

and if no rule (1) is applicable, then cl({p}) = {p}. It can be easily verified by induction
on r(p) that

I CUP>) - A, I G Y(P). (2)

Two other useful facts can be easily verified:

<a>~ E cl(F) => P E cl(F),

Q” E cl(F) 3 p E cl(F) and @(Q”) = +YP).

(3)

(4)

Let S = cl({p,}) and let & be the closure of &a with respect to {pO}. Define the
equivalence relation z on IV” by u z ZI iff Vp E S[d, u + p 0 ~2, w + p]. Define the
quotient structure 22 as follows.

ai = (w: w et w} for wEW&,

w~={mwEW~},

73(P) = {az w E 7rqP)} for PE @A,

@(A) = {(q B): (w, w) E- f+(A)) for AC&.

CLAIM 1. The index of z is bounded by ZsteecPo’.

DYNAMIC LOGIC 201

Proof. We have by (2) 1 S - d, 1 < I and clearly I < size(p,). By (4) if
Qp E S then r#(QP) = T#(p) and p E S so that members of d, play no essential role
in distinguishing the states of d. Thus, the inequivalent pairs of states are just those
that can be distinguished by some member of S - d, . Hence the index of - is
<:p~ew.

CLAIM 2. For all p E S

(i) ifp z (a)r then Vu, w E Wd [(u, 5~) E p&(a) 3 (ti; @) E pg(a)],

(ii) Vu[d, u f=p -3 d, P /==p].

Proof. The proof is by induction on r(p). Since r(p) 3 0 for all p, the claim holds
vacuously for all values of r(p) less than 0.

Now assume p’ E S and Claim 2 holds for all p E S for which r(p) < y(p’). We
proceed by cases on the structure of p’ to show that (i) and (ii) hold for p’.

p’ E @h: (i) is true vacuously for p’. To verify (ii), if JZZ, u + p’ then by the definition
of rra, J& u k p’, and if d, Q + p’ then there exists ur = u such that &, u’ != p’.
Since p’ E S then -01, u + p’.

The cases p v Q and -p are immediate from the definitions.
(A)?: By (3), p E S, so by induction, (i) and (ii) hold for p.
That (i) holds for (Ajp follows immediately from the definition of ~2.
If &, u + (A)p then there exists v such that -01, 9 k p and (u, ZJ) E ~~(~4). By (i),

(ii, a) E $(A). By the induction hypothesis JZ?, v /= p. Hence JZ?, u !== (/lip.
Conversely, if z?, ii + (4)~ then there exists VE wa such that JYY, i; ‘k p and

(6, a)epg(A). B y t e h d fi ‘t’ e nl ion of pa(A) there exists u’, V’ E Wd such that (u’, v’) E
@(A), u’ = u, and U’ = V. Then

d,v i=p by the induction hypothesis,

JJ,v’ l=p because p E S and v =z v’,

&, u’ + (4)~ because (u’, z)‘) E p=@-(A),

sY, u t= (A)p because (Ajp E S and u = u’.

Hence, (ii) holds for (4)~.
<q 7)~: We first verify (i). If (u, w) E ~~(4 ‘7) then u = v and G’, u + 9. Kow, Q E S

so that by the induction hypothesis d, ii /=== 4. Thus (ZZ, 6) E pa(q ?).
It is straightforward to verify (ii).
(a; b)p: To verify (i) assume (u, v) E @(a; 6). There is w such that (u, w) E @(a)

and (ru, V) E pd(6). Now, both (a)Q<b)” and (b)p are in S and are “smaller” than
{a; b)p so by the induction hypothesis (@, %) E pd(a) and (5, 8) E pd(b). Thus (II, 8) E
pqa; 6).

Assume -01, u + (a; b)p. Then there exists v such that &‘, a + p and (u, V) E @(a; b).
By (i) and the induction hypothesis d, B + p and (ti, a) E @(a; b). Thus 2, z? k= (a; b)p.

202 FISCHER AND LADNER

Conversely, let ~2, ti k (a; b)p. Th ere exists g such that (ti, U) E ps(a) and d, @ /=
<b)p. Also, (b)p, Q(“)P and (a)Q’“‘” E S. Then

-02, ‘u I= (b)p by the induction hypothesis,

d, v /= Q’“‘” since &(Q(b)p) = nd((b)p),

2, D k Q’“‘” by the induction hypothesis,

da, fi + (a>Qcb’p since (U; 6) G pz(a),

d, u i= <a>Q (b)* by the induction hypothesis,

d, u k (a)(b)p since n”‘(Q<“)“) = rd((b)p),

d, u I= (a; b)p by semantic equivalence.

(a u b)p: If (u, v) ~pd(a u b), then either (u, V) E p-@‘(a) or (u, V) E p&(b). Both
(a)Qp and (b)Qp are in S, so by the induction hypothesis, either (il, a) E ps(a) or
(g, 6) E ps(b). Hence, (G, @) E pz(a u b), proving (i).

Assume -c4, u b (a u b)p. Then there exists v such that -02, v /=p and (u, v) E
~-@‘(a u b). By (i) and th e induction hypothesis, 2, v +p and (u; 8) ~ps(a u b). Thus,
d, ii /= (a u b)p.

Conversely, let &, c + (a u b)p. There exists v such that (U; 5) E $(a U b) and
2, @+ p. Either (G, a) E pg(a) or (~7, V) E ps(b). If (%, a) E p2(a), then

d,v FP by the induction hypothesis,

-c4, v k Q” since GT~(Q”) = 4(p),

d-, 6 /== Q” by the induction hypothesis,

d, ti + (a)Qp by assumption that (u; a) E p”(a),

-02, u + (a)Qp by the induction hypothesis,

L-c4, u k <a>P since ,rr=@‘(QP) = r@‘(p).

Similarly, if (ti, 8) E pa(b), then &, u k (b)p. H en=, -Qz, u I= (a>p or ,QI, u I= @)p,
so JZ?, u /= (a u b)p by semantic equivalence.

(a*)p: If (u, v) ~,#(a*) then there exists uO, ur ,..., u, such that u = u,, , v = u, ,
and (ui , ui+r) E ,#(a), 0 < i < n. Since (a)Q(a*>p E S and is “smaller” than <a*)p
then (ed , ui+r) E pa(a). Thus (iz, a) E pa(a*).

Using what we have just shown it is easy to verify that -01, II + (a*>p implies
d, u + (a*)p. To show that J& ii /= (a*>p implies &, u /= (a*>p we show by a
subinduction on n that J& ii /= (an)p implies &, u + (a*)p. By definition, a0 =
h = e*.

If LZ?, f /= (aD)p then 2, ti /== p. By the main induction hypothesis JZ!, u /= p which
implies &‘, u /= (a*)p. Now assume &, ii + (a+l)p implies &, u /= (a*)p. Let
d, @ + (an)p. There is B such that d, 6 /= (a”-l)p and (a, B) ~$(a).

DYNAMIC LOGIC 203

-92, v I= <a*>p by the subinduction on n,

d, v t= p-J by the fact that #(Qca*>p) = @‘((a*)p),
d, @ k QW)P by the main induction hypothesis,

d, ii k (a)Q(O*)p since (il, 5) E ps(u),

L-cc, u I= <a>Q ca*)p by main induction hypothesis,

.@‘, u + (a)(a*)p by the fact that &(Q<“*)P) = &((a*)~),

&Qe, f.4 I== (a*>P by semantic implication.

This completes the proof of Claim 2.
To finally verify Theorem 3.2 we note first that size(d) < 2sizeW by Claim 1 and

since d, w0 + p, and p, E S then by Claim 2 2, tis /== p, . 1

To complete the proof of Theorem 3.1, we show how to decide d, w + p in time
polynomial in the sizes of d and p. Of course, &, w, and p must be encoded as strings
to be presentable to a Turing machine. The only properties we need of such encodings,
however, is that they can be decoded in time polynomial in the sizes of yoz’ and p.

THEOREM 3.3. There exists a deterministic procedure which, given the code of a structure
~4, a state w, and a formula p, determines in time polynomial in size(&) + size(p) whether
or not &, w /=p.

Proof. The idea is to use the inductive definitions of p& and 4 as procedures to
compute p&(a) and n&(p) for programs a and formulas p. For instance, to compute
#((a)~) first compute 4(p), then @(a), then form the set (w: 3u((w, U) E p@‘(u) and
u E ad(p))}. As another example, to compute @(a*) simply compute the transitive
closure of p&(a). Each of the equations in the inductive definitions of p& and T@ can be
computed in polynomial time. 1

Our upper bounds also extend to the propositional dynamic logic augmented with
the program operator converse (or transpose). If a is a program then a- also is and means
“run a in reverse.” Formally, ~(a-) = p(a)” = {(u, v): (v, u) E p(a)>. To extend the
Small Model Theorem, we first push the converse operator to the atomic programs
using the equivalences of programs: (a; b)- t) b-; a-, (a u b)- t+ a- u b-, (a*)-
- (a-)*, and (p I)- t--) p ?. This does not increase the length of the formula by more
than a constant factor. Now we apply the quotient model construction treating A-
as just another atomic program symbol. It is easily verified that if the symbol A- is
given the “correct” interpretation in the original structure &$, i.e., pdo(A-) = (p&00(A))‘,
then A- also has the correct interpretation in the quotient structure d. Thus, if p.
is satisfied in Z& , then it is also satisfied in d.

4. THE LOWER BOUND

The goal of this section is to show that there is a c > 1 such that the satisfiability
problem for PDL (equivalently the validity problem for PDL) is not a member of

204 FISCHER AND LADNER

DTIME(c”I’Os”), where 71 is the length of the formula. The method we use is similar
to that of Chandra and Stockmeyer [3] where they show certain game strategy problems
require “exponential time.” The fundamental observation is that a formula of PDL
can efficiently describe the computation of an alternating Turing machine. Using the
fact that

ASPACE(= u DTIME(c”‘“‘),
C>l

(Chandra and Stockmeyer [3] and Kozen [12]) we obtain the result.
For completeness we give a formal but simplified definition of an alternating Turing

machine. A one-tape alternating Turing machine is a seven-tuple M = (Q, A, I’, b,
6, q. , U), where

Q is the set of states,

A is the input alphabet,

r is the tape alphabet,

b E r - A is the blank symbol,

6 C (Q x I’) x (Q x I’ x {L, R}) is the next move relation,

UC Q is the set of universal states,

Q - U is the set of existential states.

A configuration is a member of r*Qr+ and represents a complete state of the Turing
machine. A uniwrsal conjguration is a member of PUP while an existential con-
jiguration is a member of r*(Q - U)I’+.

Let OL = xquy be a configuration, where u E I’, x, y E r*, and q E Q. We define
tape(a) = x~y, pas(a) = Z(X) + 1, and state(a) = q. (Z(x) is the length of x.) Let p =
x’q’o’y’ be a configuration, where U’ E r, x’, y’ E r*, and q’ E Q. /I is a next configuration
of 01 if for some 7 E r, either

(1) (q, a, q’, 7, L) E 6, x’u’ = x, and y’ = v’,
or

(2) (q, U, q’, 7, R) E 6, x’ = XT, and u’y’ = y or (y = y’ = h and u’ = b).

A computation sequence is a sequence of configurations 01~ ,..., 01~ for which oli+r is a
next configuration of oli , 1 < i < k.

A trace of M is a set C of pairs (OL, t), where OL is a configuration and t E N, such that

(i) if ((Y, t) E C and (Y is a universal configuration, then for every next configuration p
of LY, there is a t’ < t for which (p, t’) E C;

and
(ii) if (01, t) E C and 01 is an existential configuration, then there exists a next con-

figuration B of OL and a t’ < t for which (/3, t’) E C.

The set accepted by M is

L(M) = {x E A*: there exists t E N and a trace C of M such that (q$, t) E C}.

DYNAMIC LOGIC 205

A trace C uses space at most s if for every (CL, t) E C, ol uses at most s tape cells. An
alternating machine M operates in space s(n) if for every x EL(M) of length n, there
exists t E N and a trace C of M such that (qt,z, t) E C and C uses space at most s(n).
Finally, ASPACE(s(n)) is the class of sets accepted by alternating Turing machines
which operate in space s(n).

LEMMA 4.1. Ifs(n) 2 n, K C A*, and KG ASPACE(s(n)) then there exists a mapping f
of A* into formulas of PDL with the properties

(i) x E K @f(x) is satisjkble,

(ii) ;f n = Z(X) then size(f(X)) = O(s(fz)),

(iii) if the function s is suitably “honest” (i.e., computable in time polynomial in s),
then f is computable in time polynomial in s.

Proof. Let M be an alternating Turing machine that accepts K and operates in
space s(n). The following shows we may assume that M never repeats a configuration.
There is an integer m > 2 such that m *cn) bounds the number of possible distinct
configurations with no more than s(n) tape cells. We may add a track to the tape of M
which maintains a count (in m-ary) of how many “moves” have been made so far. The
new machine accepts the same language as the old machine and also operates in space s(n).

By thus eliminating the possibility of looping, the formulas we construct need only
“simulate” the first component of the trace. Formally, a simpli$ed trace is a finite set D
of configurations such that

(i) if 01 E- D and 01 is a universal configuration, then every next configuration /3
of a is in D;

and

(ii) if cy E D and (Y is an existential configuration, then there is a next configuration p
of 01 in D.

A simplified trace D accepts x E Z* if the initial configuration q,x E D.
For machines without looping, there is a natural correspondence between traces and

simplified traces. A trace is mapped into a simpliied trace by simply dropping the second
component of each pair. To go from a simplified trace to a trace, the maximum length
computation sequence beginning from a configuration 01 in the simplified trace will
serve as the second component for the pair beginning with OL in the trace. Since the
machine never repeats a configuration, the maximum always exists. The following
can be proved easily from these considerations.

LEMMA 4.2. Let M be an alternating mu&&e which never repeats a con$gurution. Then

L(M) = (x E A*: there exists a simplzjied truce of M accepting x}.

To continue the proof of Lemma 4.1, let x be given with Z(X) = n and let m -=
s(n) + 1. Assume M uses tape cells numbered 1, 2, 3,... . The atomic formulas are:

206 FISCHER AND LADNER

P. t.0 > where O<i<mandaE.F,

Hi 9 where 0 < i < m,

Q a, where qE Q.

Informally ‘cPi,o” means “cell i contains ~7,” “ Hi” means “the head is visiting cell i,”
and “Qa” means “the state is q.”

There is one basic program which we denote by t-. A truth assignment to the basic
formulas will correspond to a configuration of M. We define global formulas g, ,..., g,
which state that only “configuration-like” truth assignments are possible and the relation
I- behaves correctly.

g,: There is exactly one state.

,VQ (Qa * A - Qa*)*
a’@-{a}

g,: There is exactly one symbol per cell.

g,: The unread cells are maintained.

% .?, (-4 * Pi.0 3 b-1 Pd.

g,: Assuming there is exactly one head position, the next head position is one away
from the old one and 0, m are not head positions.

775-l

A ((Hi 3 r~Iw4-1 * -J&+1) v (--Hi-, * Hi,,)))

A (NH,-, A “Hi+1 3 [I-] - Hi))

A -Ho A NH,,,

g,: The universal states behave correctly.

(Note: Empty conjunctions are defined to be true.)

DYNAMIC LOGIC

g,: The existential states behave correctly.

(Note: Empty disjunctions are defined to be false.)
Define

g = ARi.
2=1

Let x = u1 a** (T, . We define now an initial formula h which describes the initial
configuration.

h:QqoI\Hlr\-H,+ i; - Hi h i; hoi A po.~ m A A P<.b .
i=2 i=l i=n+l

Finally we define

f(x) = h A [I-*lg.

We see by inspection that f(x) satisfies conditions (ii) and (iii) of the lemma. To
show that (i) holds, we describe how to construct a satisfying model for f(x) given a
simplified trace containing the initial configuration q,,~, and conversely, we show how
to construct a simplified trace given a model for f(x). We leave to the reader the details
of showing that the constructed trace and model have the desired properties.

Let D be a simplified trace of M accepting x and using space at most s(n). We define
a structure ~4 = (IV, n, p):

W = D;

ST(P,,,) = (01: tape(a), = a}, 0 < i < m, o E r (tape(a)< is the ith symbol of tape(a)
if 1 < i < Z(tape(ol)) and is “b” otherwise);

rr(Hi) = {a: pas(a) = i}, 0 < i < m;

~(8,) = (IX state(a) = q}, q E Q;
p(t-) = {(oL, p): /3 is a next configuration of a}.

We claim without proof that CQZ, qax + f(x), and hence f(x) is satisfiable.
Conversely, let .zI = (W, +rr, p) be a structure and ws E W such that JZZ, w,, t= f(x).

By Theorem 3.2, we can assume that ~4 is finite. We extract from &, w, a simplified
trace.

208 FISCHER AND LADNER

First note that g holds in every state u accessible from ws . Since also h holds at w,, ,
g, , ga and g, imply that the propositional variables true at u describe in a natural way
a unique configuration a(~). It is not true that (u, n) up implies that B(W) is a next
configuration of a(u), although gs does tell us that OL(IO) is a possible next configuration
of some machine (not necessarily of M).

We may now construct our simplified trace. We first define inductively a set SC W
of states. The desired simplified trace is then or(S).

(1) WOES.

(2) Suppose w E S and a(w) is a universal configuration. g, holds at w, so for
each next configuration p of or(w), there is a state z+ so that (w, us) E p(+-) and OIL = fl.
Put us in S for each such ,B.

(3) Suppose w E S and a(w) is an existential configuration. gs holds at w, so there
is a next configuration #I of or(w) and a state u so that (w, U) E p(k) and OL(U) = p. Put u
in S.

We claim without proof that or(S) is a simplified trace. That p,,.~ E o?(S) follows from
the facts that ws E S and h holds at w, . a

The proof of Lemma 4.1 allows us to conclude that the exponential upper bound
of Theorem 3.2 cannot be improved except possibly for the choice of constant.

COROLLARY 4.3. There is a constant d > 1 for which there exist arbitrarily long
satisjiable formulas f of PDL, but every model for f has size > deize(f).

Proof. Let M be a deterministic linear-space Turing machine which, for every
input x of length n, counts up to 2” and then halts. Regarded as an alternating machine,
M operates in space n and L(M) = Zl*, but every simplified trace of M accepting x
has cardinality 22” since it contains each of the reachable configurations in the com-
putation of M. Let f (x) be the formula of size at most cn constructed in the proof of
Lemma 4.1, and let JZ? be any model for f(x). The proof shows how to construct a
simplified trace D for M which accepts x, and 1 D 1 < size(&). Since] D 1 > 20, we
have that

for d = 2r@. 1

THEOREM 4.4. There is a constant c > 1 such that the satisjkbility (validity) problem
for PDL is not a member of DTLME(c”IlOan), where n is the length of the formula.

Proof. Let K be a set which is a member of DTIME(3”) - DTIME(2”). Hence
KE ASPACE(Let f b e a function satisfying the conditions of Lemma 4.1. Since
hn. n is suitably honest, then f is computable in time t(n) for some polynomial t. Also
there is a constant d with the property that if n = l(x), then size(f(x)) < dn. The
atomic formulas and programs can be coded as strings of length <log n so that I(f (x)) <
dn . log n. There is c > 1 such that cdn.lognllog(dn’logn) + t(n) < 2”.

DYNAMIC LOGIC 209

If the satisfiability problem for L were a member of DTIME(cn@@), then the in-
equality above would guarantee that K E DTIME(T), which is an impossibility. 1

We remark that the proof of our lower bound makes no use of the test operator “ ?,”
so the bound applies equally well to the language L C PDL of test-free formulas. Berman
and Paterson have shown L to be strictly weaker than PDL in the sense that there is a
formula p of PDL such that p = 4 is not a valid formula (of PDL) for any 4 EL [2].

We can restrict still further. Inspection of f(x) in the proof of Lemma 4.1 shows
that no use is made of union and concatenation either, and that only a single basic program
symbol is needed for the lower bound to apply.

We note also that there is still a “gap” between the upper and lower bounds because
the upper bound is non-deterministic while the lower bound is deterministic.

5. APPLICATIONS

Equivalence of Regular Expressions

As we noted earlier, programs of PDL can be thought of as regular expressions.
It can be shown that a and b are equivalent regular expressions if and only if (a>P =
(b)P is valid. Hence, the validity problem for PDL (and also L) contains the equivalence
problem for regular expressions as a subproblem. Meyer and Stockmeyer have shown
that the equivalence problem for regular expressions is polynomial space complete [17].

Nondeterministic Iunov Schemes

A Iunm scheme is an uninterpreted program scheme with only one variable (cf.
Greibach [6]). We say two schemes are strongly equivalent if they compute the same
result or they both fail to halt for each initial value in each interpretation.

Given a Ianov scheme, we can use automaton-theoretic techniques to construct
a PDL program a, whose tests have the form P? or -P ?. The program a describes
the set of paths W(a) from the start box to a halt box. If a and b are strongly equivalent,
then it does not necessarily follow that W(a) = W(b). However, a and b are strongly
equivalent if and only if (a)& z (b)Q is valid, where Q does not appear in a or b.
Thus, we get another decision procedure for strong equivalence of Ianov schemes.
Moreover, the above goes through unchanged even when the schemes are permitted
to be nondeterministic.

Classical Modal Systems

The modal systems K, T, S4, S5 (cf. Ladner [16]) are recognizable subsystems of
propositional dynamic logic.

K allows only the modality A,

T allows only the modality A u A,

S4 allows only the modality A*,

S5 allows only the modality (A u A-)*.

210 FISCHER AND LADNER

Kripke [14] has already given decision procedures for validity in each of these modal
systems. Our decision procedure subsumes these four problems as special cases.

6. CONCLUSION

A language for describing properties of programs requires the blending of program
statements with logical assertions. There have been several attempts to integrate assertions
and programs into one language. Partial correctness assertions [lo] were one of the first.
They were unified and generalized by Pratt [I91 using ideas of modal logic. Ideas
reminiscent of modal logic also appear in the work of the Polish group investigating
“Algorithmic Logic” (cf. Kreczmar [13] and Salwicki [21]), and in the recent work of
Kriiger [Is] and Constable [4].

Such work has been motivated by a desire to define a language rich enough to describe
interesting properties of realistic programs. We have attempted to abstract from that work,
and notably from [19], the “pure” logical structure underlying these formal systems.
We feel a thorough understanding of this structure is a prerequisite to obtaining a good
grasp on the more complicated, albeit more applicable, systems, just as classical proposi-
tional logic is fundamental to the understanding of first-order predicate calculus.

We have shown that every satisfiable formula of propositional dynamic logic has a
model of size at most exponential in the length of the formula. This leads to a non-
deterministic decision procedure for satisfiability which runs in time cn on formulas
of size 1z, namely, “guess” a model and check that it satisfies the formula. This algorithm
is impractical, not only because it is nondeterministic, but also because it uses the worst-
case time on all formulas. Pratt has developed a decision procedure which is fast on
many natural formulas [20]. That such a procedure cannot be fast on all formulas follows
from our lower bound of deterministic time dnllogn.

Another interesting problem with obvious application to automatic program verifica-
tion is to find a complete and natural proof system for propositional dynamic logic.
Such a proof system was proposed by Segerberg [22] and proven to be complete by
Parikh [18].

Several interesting extensions to propositional dynamic logic have begun to appear
(cf. [7, 9, 11).

ACKNOWLEDGMENTS

We thank S. K. Thomason and R. Woodrow for some helpful suggestions which simplified the
proof of Theorem 3.3.

bFERENCJ3S

1. K. ABRAHAMSON AND M. J. FISCHER, “Applications of Boolean Variables to Automata Theory
and Dynamic Logic,” Tech. Report 7848-02, University of Washington, 1978.

2. F. BERMAN AND M. S. PATERSON, “Test-Free Propositional Dynamic Logic is Weaker than
PDL,” Tech. Report TR 77-10-02, 1977.

DYNAMIC LOGIC 211

3. A. K. CHANDRA AND L. J. STOCKMEYER, Alternation, in “17th IEEE Symposium on Foundations
of Computer Science, 1976,” pp. 98-108.

4. R. L. CONSTABLE, On the theory of programming logics, in “Ninth ACM Symposium on
Theory of Computing, 1977,” pp. 269-285.

5. E. W. DIJKSTRA, Guarded commands, nondeterminacy and formal derivation of programs,
Comm. ACM 18 8 (1975), 453-457.

6. S. A. GREIBACH, “Theory of Program Structures: Schemes, Semantics, Verification,” Lecture
Notes in Computer Science No. 36, Springer-Verlag, New York/Berlin, 1975.

7. D. HAREL, “Logics of Programs: Axiomatics and Descriptive Power,” Ph. D. dissertation,
M.I.T., 1978. Available as Tech. Report MIT/LCS/TRZOO, M. I. T., 1978.

8. D. H.4REL, A. R. MEYER, AND V. R. PRATT, Computatibility and completeness in logics of
programs: preliminary report, in “Ninth ACM Symposium on Theory of Computing, 1977,”
pp. 261-268.

9. 1). HAREL AND V. R. PRATT, Nondeterminism in logics of programs, in “Fifth ACM Symposium
on Principles of Programming Languages, 1978.”

10. C. .A. R. HOARE, An axiomatic basis for computer programming, Comm. ACM 12 10 (1969),
576-580, 583.

11. C. A. R. H0.4RE AND P. LAUER, Consistent and complementary formal theories of the semantics
of programming languages, Acta Inform. 3 2 (1974), 135-153.

12. D. KOZEN, On parallelism in Turing machines, in “17th IEEE Symposium on Foundations of
Computer Science, 1976,” pp. 89-97.

13. X. KRECZMAR, Effectivity problems of algorithmic logic, in “Automata, Languages and
Programming, 2nd Colloquium, University of Saarbriicken, July 29-Aug. 2, 1974” (J. Loeckx,
Ed.), Lecture Notes in Computer Science No. 14, Springer-Verlag, Berlin/New York.

14. S. A. KRIPKE, Sementical analysis of modal logic I: Normal modal propositional calculi, Z.
Math. Logih Grundlagen Math. 9 (1963), 67-96.

15. F. KRSGER, Logical rules of natural reasoning about programs, in “Automata, Languages and
Programming” (S. Michaelson and R. Milner, Eds.), pp. 87-98, Edinburgh Univ. Press,
Edinburgh, 1976.

16. R. E. LADNER, The computational complexity of provability in systems of modal propositional
logic, SIAM J. Comput. 6 3 (1977), 467-480.

17. A. R. MEYER AND L. J. STOCKMEYER, Word problems requiring exponential time, in “Fifth
XChl Symposium on Theory of Computing, 1973,” pp. 1-9.

18. R. PARIKII, A completeness result for PDL, in “Symposium on Mathematical Foundations of
Computer Science, Zakopane, Warsaw, Sept. 1978.”

19. V. R. PR.~TT, Semantical considerations on Floyd-Hoare logic, in “17th IEEE Symposium on
Foundations of Computer Science, 1976,” pp. 109-121.

20. V. R. PRATT, A practical decision method for propositional dynamic logic, in “10th ACM
Sympoisum on Theory of Computing, 1978,” pp. 326-337.

21. A. SALWICKI, Formalized algorithmic languages, Bull. Acad. Polon. Sci. Sk?. Sci. Math.
Astronom. Phys. 18 (1970), 227-232.

22. K. SEGERBERG, A completeness theorem in the modal logic of programs, Notices Amer. Math.
Sot. 24 6 (1977), A-552.

Printed in Belgium

