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We introduce a fundamental propositional logical system based on modal logic for 
describing correctness, termination and equivalence of programs. We define a formal 
syntax and semantics for the propositional dynamic logic of regular programs and give 
several consequences of the definition. Principal conclusions are that deciding satisfiability 
of length n formulas requires time dn/lOgn for some d > 1, and that satisfiability can be 
decided in nondeterministic time c” for some c. We provide applications of the decision 
procedure to regular expressions, Ianov schemes, and classical systems of modal logic. 

1, INTRODUCTION 

Pratt [19] in conjunction with R. Moore has introduced a logical framework for 
programs based on modal logic. Their idea is to integrate programs into an assertion 
language by allowing programs to be modal operators. For instance, if a is a (possibly 
nondeterministic) program and p an assertion, then a new assertion, (a) p can be made. 
Informally, the meaning of “(a) p” is “a can terminate with p holding on termination.” 
In addition to modal operators, {a), for each program a, the usual Boolean operations 
and quantification are allowed. A dual modal operator [a] is defined by [a] p = -(a) -p. 
The meaning of “[a] p” is “whenever a terminates p holds on termination.” Following 
Hare& Meyer, and Pratt, we call such a system dynamic logic [8]. 

Dynamic logic provides a powerful language for describing programs, their correctness 
and termination. For example, the Hoare assertion “p{a}a” [lo] can be expressed as 
“‘~3 [a]+” The fact that a can terminate can be expressed by the assertion “(a) true.” 
The determinacy of a program a can be expressed by the formula “(a)~ I) [a] p,” 

where p expresses the condition of determinacy. 
One goal in developing a logic of programs is to provide a set of axioms and rules 

of inference for proving things about programs like “partial correctness,” “termination,” 
and “equivalence.” One would expect that the things proved by the axioms and rules 
were at least “true.” Hence, it is fundamental that there be a notion of “truth,” that is, 

* This research was supported in part by the National Science Foundation through Grant Nos. 
DCR74-12997-AOl, GJ-43264, and MCS77-02474. 

+ An earlier version of this paper was presented at the Ninth ACM Symposium on Theoryaof 
Computing, Boulder, Colorado, May 2-4, 1977, under the title, “Propositional Model Logiciof 
Programs.” 

194 
OO22-OOOO/79/020194-18$02.00/O 
Copyright Q 1979 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. 



DYNAMIC LOGIC 195 

a semantics for the logic of programs. In the case of dynamic logic, a semantics must be 
provided for both the programs and for the formulas that talk about programs. The 
program semantics is derived from the relational semantics of programs (cf. Hoare and 
Lauer [ll]) and the formula semantics is adopted from the relational semantics for 
modal logic introduced by Kripke [14]. 

Informally, each program a defines a relation p(u) between program states: (s, t) E p(a) 
if and only if a executed in state s can terminate in state t. The truth of an assertion 
is determined relative to a program state, so we say “p is true in state s.” The formula 
(ai p is true in state s if there is a state t such that (s, t) E p(a) and p is true in state 2. 
The formula p v 4 is true in state s if either p is true in state s or Q is true in state s. 

The system we introduce is an abstraction of the system introduced by Pratt. Pratt’s 
basic programs are assignments and tests while our basic programs are uninterpreted 
labels. Pratt’s formulas allow first order variables and quantification, while our formulas 
only allow propositional variables. Propositional dynamic logic of regular programs 
plays a role in the logic of programs analogous to the role the propositional calculus 
plays in the classical first-order logic. 

The goal of this paper is to provide a mathematical definition of the syntax and 
semantics of propositional dynamic logic and to prove some fundamental consequences 
of this definition. In Section 2 we give the formal definitions and some examples. In 
Section 3 we show that satisfiability in propositional dynamic logic of regular programs 
is decidable in nondeterministic time c” for some c. In Section 4 we show that deciding 
satisfiability requires deterministic time d n lo n for some d > 1. In Section 5 we give 1 s 
applications to regular expressions, Ianov schemes, and classical modal logic. 

2. THE FORMAL SYSTEM 

We now define the syntax of the propositional dynamic logic of regular programs, PDL 
for short. There are, two underlying sets of symbols: 65,) a set of atomic form&s which 
are propositional variables, and Z,, , a set of atomic programs which can be thought 
of as indivisible statements in a programming language. 

We inductively define the set of programs, 2, and the set of formulas, 0, by the 
following rules. 

Programs: 

(i) Atomic programs and 0 are programs; 

(ii) if a and b are programs and p is a formula, then (a; b), (a U b), a*, and p ? 
are programs. 

Formulas: 

(i) Atomic formulas, true and false, are formulas; 

(ii) if p and q are formulas and a is a program, then ( p v q), -p, and <a> p are 
formulas. 
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We normally reserve P, Q, R ,... for members of @,, ; A, B, C ,... for members of ,& . 
The letters p, q, r,... serve as metavariables for formulas and a, b, c,... serve as meta- 
variables for programs. We call our programs regular programs because of their similarity 
to regular expressions. Regular programs can be thought of as abstractions of non- 
deterministic structured programs under the correspondence: 

“0” means “abort” or “blocked,” 
“a; b” means “begin a; b end,” 
“a u b” means “nondeterministically do a or do b,” 
“u*” means “repeat a a nondeterministically chosen number of times,” 
‘p ?” means “test p and proceed only if true.” 

Note that p ? does not result in a state change if p is true, but the program is blocked 
if p is false. This meaning is similar to the semantics of Dijkstra’s guarded commands [5]. 

We define the Boolean connectives A, 3, = in the usual way from v and -. The 
dual operator [a] is an abbreviation for -(a)-. h is an abbreviation for 8*, the null 
program. We also define standard block structured programming constructs: 

“ifp then a else b” means “p ?; a u -p I; b” 
“while p do a” means “(p ?; a)*; -p ?” 

Although the formal syntax is fully parenthetical, we will commonly drop parentheses 
for readability. Thinking of (a) and [a] as unary operators on formulas, the precedence 
of operators from highest to lowest is (a), [a], -, A, v, 3, =, ?, *, ;, U. 

We now define the semantics of the propositional dynamic logic of regular programs. 
A structure (or model) d is a triple (IV&, 4, pd), where 

Informally, ?Vd is a set of program states. The function T# provides an interpretation 
for the atomic formulas: “w E 4(P)” means “P is true in the state w.” The function 
pd provides an interpretation for the atomic programs: “(11, o) E~JB(A)” means “there 
is an execution of A which begins in state u and ends in state v.” 

We extend pd to all programs and & to all formulas inductively (we drop the super- 
script when there is no ambiguity): 

p(u; b) = p(u) 0 p(b) (composition of relations), 
p(a u b) = p(u) u p(b) (union of relations), 
Pb*> = P@>* ( re fl exive and transitive closure of a relation), 
P(P ?) = {(w, w): w -5 4P)h 
77ftrue) = W, 
nfjizlse) = 4, 
4P v 4) = 4P) u 47), 
4-P) = w - 4P), 
up) = {w E W: 3w ((w, V) E p(a) and e, E n-(p))}. 
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By the definition of [a] we can compute 

~$[a]$) = {w E W: VV ((w, v) E p(a) implies et E r(p))). 

These extensions are natural so that “(u, V) E p(a)” means “the program a can take 
state u to state v” and “w E m(p)” means “p is true in state w.” 

Using more standard semantic notation, we write ~2, w + p just in case w E 4(p). 
We say p is valid if for all JZ! and w E W &, ~2, w + p. Further p is satisfiable if there is 
a structure & and a w E Wd such that ~2, w /== p. Clearly p is valid if and only if -p 
is not satisfiable. 

We give two examples of structures, the first fairly complex and the second simple. 

EXAMPLE 1. Let N = (0, 1, 2,...} and let V be a set of first-order variables. 

@P,={x=y,x=O,x=y+l,x=y~l,x=y+z:.~,y,zElq, 
Z;, = (X t random, x t y + 1, x +- y Z- 1: x, y E V}. 

Consider the following structure ~2 = (W, 7~) p): 

W = V + N (the set of assignments of the variables in N), 
77(x == y) == {s: s(x) = s(y)), 
77(x = 0) = (s: s(x) = O}, 
n(x = y -t 1) = {s: S(X) = s(y) + l}, 
~(~==y~1)={s:s(x)=s(y)~l}(0~1=Obydef), 
7r(x = y -k z) =-= (s: s(x) = s(y) + s(z)}, 
p(x +- random) = {(s, t): s(y) = t(y) for ally # x}, 
p(.z +- y + 1) = {(s, t): t(x) = s(y) + 1 and t(z) = s(z) for all z # x}, 
p(x t y 1. 1) = {(s, t): t(x) = s(y) 2 1 and t(z) = s(z) for all z + x). 

The meaning of the program “X c random” is “nondeterministically set x to any 
value.” Hence, the meaning of “(x t random)” is “3.x.” 

Let a =(rP (ww = 0 ?; (w c w A 1); (z +- x + l))*; (w = O?). Letp zdp (w = x A 
z == y) 3 [a](~ = x + y). We leave it to the reader to verify that for any s E W, 
cd, s b p. Informally, p states that a is a program that correctly computes addition. 

EXAMPLE 2. Consider the structure g: 

W = {heI, 
T -_ 54 
P(4 = {@I b)l, I@) = WY 4. 

Graphically: 

We have 99, b + [A*] ((A) true A (@[.A u B] f&e). 
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We next give some sample validities of PDL. 

EXAMPLE 3. 

(1) <a; b>P = @@)P, 

(2) (a u QP = GOP " WP, 

(3) <a*>p =P ” Gm~*>P, 

(4) (P%z=P A 9, 

(5) G>(P ” 4) = <4P ” mz, 
(6) (a*) -p = {while p do a) true. 

(This says that “while p do u” can terminate iff it is possible, by repeated executions 
of a, to reach a state in which -p holds.) 

(7) (a)~3 (if (u)p then a else b)p. 

3. UPPER BOUNDS ON THE COMPLEXITY OF PDL 

Propositional dynamic logic is the basic logical framework for program correctness. 
Validities in PDL represent universal or logical truths. They may be thought of as 
“contentless” assertions since they do not depend on the meanings of the basic assertions 
or the basic programs. 

In this section, we show that the complexity of the validity problem for PDL is in 
co-NTIME(cn) f or some c, where 71 is the size of the formula being tested. (That is, 
the complement of the validity problem for PDL is recognizable by a nondeterministic 
Turing machine in time <c”.) This compares to classical propositional logic whose 
validity problem is in co-NP. In Section 4, we show that the validity problem is not 
in DTIME(cn@s”) for some c > 1. 

Let size(p) denote the length of p regarded as a string over @s u Z,, u (( , ), U, ;, 

*, ?, N, v, 8, ( , ), true, false). Define &e(d) to be 1 W-@- j. If @s or Zs is infinite 
then the size of p is the length of a string in an infinite alphabet. In order to realize 
formulas in a finite alphabet we assume 0s C P . (0, l>* and Z,, C A . (0, I}*. When we 
speak of the length of a formulap we mean its length over the alphabet {P, A, 0, 1, ( , ), 
U, ;, *, ?, -, v, 19, ( , ), true,fuZse}. We denote the length of p by I(p), in fact, if x 
is any word in a finite alphabet we let Z(X) denote its length. 

For technical reasons, it is more convenient to treat the satisfiability problem for 
PDL, that is, given a formula p, to determine if p is satisfiable in some world w of some 
structure JJ. We will show: 

THEOREM 3.1. The sutisfubility problem for PDL is in NTIME(E) for some constant c, 
where n is the size of the formula. 

The result for validity then follows from the fact that p is valid iff 9 is not satisfiable. 
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COROLLARY. The validity problem for PDL is in co-NTIME(c”) for sow constant c, 
where n is the size of the formula. 

(Note that the theorem and its corollary also hold if n is interpreted as the length 
of the formula instead of the size since size(p) < I(p)). 

The proof of Theorem 3.1 depends on two key lemmas. (1) If p is satisfiable, then p 
is satisfiable in a model of exponential size. (2) The problem of testing whether a formula 
p is true at a state w in a structure d can be decided in time polynomial in the sizes 
of p and & (given suitable encodings). A nondeterministic algorithm for testing 
satisfiability is then simply: 

ALGORITHM S. To test p of size n for satisfiability: 

(1) Guess a structure & of size at most c”. 
(2) Guess a world w E IV”. 
(3) Test if p holds at w in d. If so, answer “yes.” 

The time for algorithm S is polynomial in cn and hence is bounded by (c’)” for some 
new constant cf. 

THEOREM 3.2 (Small Model Theorem). Let p be a satisjkble formula. Then there 
exists a structure A? and a world w E Wd such that ,QI, w i== p and size(&) ,< 2siZe(P). 

Proof. Assume & , w,, + p, , that is, p, is a formula which is satisfied at wO in de . 
The structure dO may be finite or infinite. There are two phases in the construction 
of a small structure satisfyingp, . In the first phase we generate from p, a set of formulas S. 
Some of the formulas of S may contain new atomic formulas which we call Q-variables. 
From do we define an expanded structure d which has the same states as de but has 
added meanings for the new Q-variables. In the second phase we use S to define an 
equivalence relation between the states of &. We then define a “quotient” model JC? 
whose states are the equivalence classes of the states of d. We show that d has small 
size and d, a,, + p, where a,, is the equivalence class of wO . 

Let F be a set of formulas and a0 be a structure, both over @,, and 15e . We simul- 
taneously define the closure of F, cl(F), and the closure 93 of GYO with respect to F inductively 
using the rules: 

1. F C cl(F), Wa = W%, G@(P) = r%(P) for all P E @s , p”(A) = p%(A) for all 
A~4,o, 

2. (4 P v q E cl(F) * P, q E cl(F), 
(b) --p E cl(F) 3 p c cl(F), 
(c) (A)p E cl(F) => p E cl(F) for all A E Z,, u {O}, 

(4 (q ?>P E cl(F) * P, Q E cl(F), 

(e) (a; b)p E cl(F) * (a)Qcb>“, (b)p E cl(F), and @(Q<b>“) = @((b>p), 

(f) !a u b)p c cl(F) * (a>Qp, @)Qp, P E cl(F) and fl(Q”) = fl(P), 
(g) (a*)p E cl(F) * p, (u)Q(~*>~ E cl(F) and #(Q(“*>“) = #((a*)~). 
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The new Q-variables are given meaning in $9 when they are introduced into the closure. 
The definition of n@(Q) depends only on @(Y) which has been already well defined 
previously. The new structure 9 is over @i and & , where A,, = CD; - CD,, is the set 
of Q-variables introduced in taking the closure of F. 

At this point it is helpful to explain the role of the Q-variables in the proof. First, 
their presence will allow us to argue that the cardinality of the closure of p, is linear 
in the size of p,, . Second, they aid in our induction proof of Claim 2 by providing a 
base for the induction. This simplifies an earlier version of the proof which had two 
separate inductions (and which did not handle “ ?“). 

Each rule (a)-(g) h as as premise a single formula in cl(F) so cl(F, u FJ = cl(F,) u 

cl(F,) for any sets FI and F, . It follows that cl(F) = (JBEF cl((p}). Hence 1 cl(F)1 < 
CPEF I Cl({PNl- 

To analyze 1 cl({p})j, let r(p) be th e number of occurences in p of symbols in 
iv,,- , ?, ;, U, *I u Sp, u 27s u (0, true,fuZse). Note that y does not count the new 
Q-variables. With this definition it happens that each rule (a)-(g) is of the form 

P E cl(F) * P, ,..a, P, E cl(F), (1) 

where r(p) = 1 f r(pJ + ... + I. Further, if a rule (1) is applicable to a formulap, 
it is the only such rule so that 

CWPN = lP> u 0 CGPd>, 
i=l 

and if no rule (1) is applicable, then cl({p}) = {p}. It can be easily verified by induction 
on r(p) that 

I CUP>) - A, I G Y(P). (2) 

Two other useful facts can be easily verified: 

<a>~ E cl(F) => P E cl(F), 

Q” E cl(F) 3 p E cl(F) and @(Q”) = +YP). 

(3) 

(4) 

Let S = cl({p,}) and let & be the closure of &a with respect to {pO}. Define the 
equivalence relation z on IV” by u z ZI iff Vp E S[d, u + p 0 ~2, w + p]. Define the 
quotient structure 22 as follows. 

ai = (w: w et w} for wEW&, 

w~={mwEW~}, 

73(P) = {az w E 7rqP)} for PE @A, 

@(A) = {(q B): (w, w) E- f+(A)) for AC&. 

CLAIM 1. The index of z is bounded by ZsteecPo’. 
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Proof. We have by (2) 1 S - d, 1 < I and clearly I < size(p,). By (4) if 
Qp E S then r#( QP) = T#( p) and p E S so that members of d, play no essential role 
in distinguishing the states of d. Thus, the inequivalent pairs of states are just those 
that can be distinguished by some member of S - d, . Hence the index of - is 
<:p~ew. 

CLAIM 2. For all p E S 

(i) ifp z (a)r then Vu, w E Wd [(u, 5~) E p&(a) 3 (ti; @) E pg(a)], 

(ii) Vu[d, u f=p -3 d, P /==p]. 

Proof. The proof is by induction on r(p). Since r(p) 3 0 for all p, the claim holds 
vacuously for all values of r(p) less than 0. 

Now assume p’ E S and Claim 2 holds for all p E S for which r(p) < y( p’). We 
proceed by cases on the structure of p’ to show that (i) and (ii) hold for p’. 

p’ E @h: (i) is true vacuously for p’. To verify (ii), if JZZ, u + p’ then by the definition 
of rra, J& u k p’, and if d, Q + p’ then there exists ur = u such that &, u’ != p’. 
Since p’ E S then -01, u + p’. 

The cases p v Q and -p are immediate from the definitions. 
(A)?: By (3), p E S, so by induction, (i) and (ii) hold for p. 
That (i) holds for (Ajp follows immediately from the definition of ~2. 
If &, u + (A)p then there exists v such that -01, 9 k p and (u, ZJ) E ~~(~4). By (i), 

(ii, a) E $(A). By the induction hypothesis JZ?, v /= p. Hence JZ?, u !== (/lip. 
Conversely, if z?, ii + (4)~ then there exists VE wa such that JYY, i; ‘k p and 

(6, a)epg(A). B y t e h d fi ‘t’ e nl ion of pa(A) there exists u’, V’ E Wd such that (u’, v’) E 
@(A), u’ = u, and U’ = V. Then 

d,v i=p by the induction hypothesis, 

JJ,v’ l=p because p E S and v =z v’, 

&, u’ + (4)~ because (u’, z)‘) E p=@-(A), 

sY, u t= (A)p because (Ajp E S and u = u’. 

Hence, (ii) holds for (4)~. 
<q 7)~: We first verify (i). If (u, w) E ~~(4 ‘7) then u = v and G’, u + 9. Kow, Q E S 

so that by the induction hypothesis d, ii /=== 4. Thus (ZZ, 6) E pa(q ?). 
It is straightforward to verify (ii). 
(a; b)p: To verify (i) assume (u, v) E @(a; 6). There is w such that (u, w) E @(a) 

and (ru, V) E pd(6). Now, both (a)Q<b)” and (b)p are in S and are “smaller” than 
{a; b)p so by the induction hypothesis (@, %) E pd(a) and (5, 8) E pd(b). Thus (II, 8) E 
pqa; 6). 

Assume -01, u + (a; b)p. Then there exists v such that &‘, a + p and (u, V) E @(a; b). 
By (i) and the induction hypothesis d, B + p and (ti, a) E @(a; b). Thus 2, z? k= (a; b)p. 
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Conversely, let ~2, ti k (a; b)p. Th ere exists g such that (ti, U) E ps(a) and d, @ /= 
<b)p. Also, (b)p, Q(“)P and (a)Q’“‘” E S. Then 

-02, ‘u I= (b)p by the induction hypothesis, 

d, v /= Q’“‘” since &(Q(b)p) = nd((b)p), 

2, D k Q’“‘” by the induction hypothesis, 

da, fi + (a>Qcb’p since (U; 6) G pz(a), 

d, u i= <a>Q (b)* by the induction hypothesis, 

d, u k (a)(b)p since n”‘(Q<“)“) = rd((b)p), 

d, u I= (a; b)p by semantic equivalence. 

(a u b)p: If (u, v) ~pd(a u b), then either (u, V) E p-@‘(a) or (u, V) E p&(b). Both 
(a)Qp and (b)Qp are in S, so by the induction hypothesis, either (il, a) E ps(a) or 
(g, 6) E ps(b). Hence, (G, @) E pz(a u b), proving (i). 

Assume -c4, u b (a u b)p. Then there exists v such that -02, v /=p and (u, v) E 
~-@‘(a u b). By (i) and th e induction hypothesis, 2, v +p and (u; 8) ~ps(a u b). Thus, 
d, ii /= (a u b)p. 

Conversely, let &, c + (a u b)p. There exists v such that (U; 5) E $(a U b) and 
2, @+ p. Either (G, a) E pg(a) or (~7, V) E ps(b). If (%, a) E p2(a), then 

d,v FP by the induction hypothesis, 

-c4, v k Q” since GT~(Q”) = 4(p), 

d-, 6 /== Q” by the induction hypothesis, 

d, ti + (a)Qp by assumption that (u; a) E p”(a), 

-02, u + (a)Qp by the induction hypothesis, 

L-c4, u k <a>P since ,rr=@‘(QP) = r@‘(p). 

Similarly, if (ti, 8) E pa(b), then &, u k (b)p. H en=, -Qz, u I= (a>p or ,QI, u I= @)p, 
so JZ?, u /= (a u b)p by semantic equivalence. 

(a*)p: If (u, v) ~,#(a*) then there exists uO, ur ,..., u, such that u = u,, , v = u, , 
and (ui , ui+r) E ,#(a), 0 < i < n. Since (a)Q(a*>p E S and is “smaller” than <a*)p 
then (ed , ui+r) E pa(a). Thus (iz, a) E pa(a*). 

Using what we have just shown it is easy to verify that -01, II + (a*>p implies 
d, u + (a*)p. To show that J& ii /= (a*>p implies &, u /= (a*>p we show by a 
subinduction on n that J& ii /= (an)p implies &, u + (a*)p. By definition, a0 = 
h = e*. 

If LZ?, f /= (aD)p then 2, ti /== p. By the main induction hypothesis JZ!, u /= p which 
implies &‘, u /= (a*)p. Now assume &, ii + (a+l)p implies &, u /= (a*)p. Let 
d, @ + (an)p. There is B such that d, 6 /= (a”-l)p and (a, B) ~$(a). 
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-92, v I= <a*>p by the subinduction on n, 

d, v t= p-J by the fact that #(Qca*>p) = @‘((a*)p), 
d, @ k QW)P by the main induction hypothesis, 

d, ii k (a)Q(O*)p since (il, 5) E ps(u), 

L-cc, u I= <a>Q ca*)p by main induction hypothesis, 

.@‘, u + (a)(a*)p by the fact that &(Q<“*)P) = &((a*)~), 

&Qe, f.4 I== (a*>P by semantic implication. 

This completes the proof of Claim 2. 
To finally verify Theorem 3.2 we note first that size(d) < 2sizeW by Claim 1 and 

since d, w0 + p, and p, E S then by Claim 2 2, tis /== p, . 1 

To complete the proof of Theorem 3.1, we show how to decide d, w + p in time 
polynomial in the sizes of d and p. Of course, &, w, and p must be encoded as strings 
to be presentable to a Turing machine. The only properties we need of such encodings, 
however, is that they can be decoded in time polynomial in the sizes of yoz’ and p. 

THEOREM 3.3. There exists a deterministic procedure which, given the code of a structure 
~4, a state w, and a formula p, determines in time polynomial in size(&) + size(p) whether 
or not &, w /=p. 

Proof. The idea is to use the inductive definitions of p& and 4 as procedures to 
compute p&(a) and n&(p) for programs a and formulas p. For instance, to compute 
#((a)~) first compute 4(p), then @(a), then form the set (w: 3u((w, U) E p@‘(u) and 
u E ad(p))}. As another example, to compute @(a*) simply compute the transitive 
closure of p&(a). Each of the equations in the inductive definitions of p& and T@ can be 
computed in polynomial time. 1 

Our upper bounds also extend to the propositional dynamic logic augmented with 
the program operator converse (or transpose). If a is a program then a- also is and means 
“run a in reverse.” Formally, ~(a-) = p(a)” = {(u, v): (v, u) E p(a)>. To extend the 
Small Model Theorem, we first push the converse operator to the atomic programs 
using the equivalences of programs: (a; b)- t) b-; a-, (a u b)- t+ a- u b-, (a*)- 
- (a-)*, and (p I)- t--) p ?. This does not increase the length of the formula by more 
than a constant factor. Now we apply the quotient model construction treating A- 
as just another atomic program symbol. It is easily verified that if the symbol A- is 
given the “correct” interpretation in the original structure &$ , i.e., pdo(A-) = (p&00(A))‘, 
then A- also has the correct interpretation in the quotient structure d. Thus, if p. 
is satisfied in Z& , then it is also satisfied in d. 

4. THE LOWER BOUND 

The goal of this section is to show that there is a c > 1 such that the satisfiability 
problem for PDL (equivalently the validity problem for PDL) is not a member of 
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DTIME(c”I’Os”), where 71 is the length of the formula. The method we use is similar 
to that of Chandra and Stockmeyer [3] where they show certain game strategy problems 
require “exponential time.” The fundamental observation is that a formula of PDL 
can efficiently describe the computation of an alternating Turing machine. Using the 
fact that 

ASPACE( = u DTIME(c”‘“‘), 
C>l 

(Chandra and Stockmeyer [3] and Kozen [12]) we obtain the result. 
For completeness we give a formal but simplified definition of an alternating Turing 

machine. A one-tape alternating Turing machine is a seven-tuple M = (Q, A, I’, b, 
6, q. , U), where 

Q is the set of states, 

A is the input alphabet, 

r is the tape alphabet, 

b E r - A is the blank symbol, 

6 C (Q x I’) x (Q x I’ x {L, R}) is the next move relation, 

UC Q is the set of universal states, 

Q - U is the set of existential states. 

A configuration is a member of r*Qr+ and represents a complete state of the Turing 
machine. A uniwrsal conjguration is a member of PUP while an existential con- 
jiguration is a member of r*(Q - U)I’+. 

Let OL = xquy be a configuration, where u E I’, x, y E r*, and q E Q. We define 
tape(a) = x~y, pas(a) = Z(X) + 1, and state(a) = q. (Z(x) is the length of x.) Let p = 
x’q’o’y’ be a configuration, where U’ E r, x’, y’ E r*, and q’ E Q. /I is a next configuration 
of 01 if for some 7 E r, either 

(1) (q, a, q’, 7, L) E 6, x’u’ = x, and y’ = v’, 
or 

(2) (q, U, q’, 7, R) E 6, x’ = XT, and u’y’ = y or (y = y’ = h and u’ = b). 

A computation sequence is a sequence of configurations 01~ ,..., 01~ for which oli+r is a 
next configuration of oli , 1 < i < k. 

A trace of M is a set C of pairs (OL, t), where OL is a configuration and t E N, such that 

(i) if ((Y, t) E C and (Y is a universal configuration, then for every next configuration p 
of LY, there is a t’ < t for which (p, t’) E C; 

and 
(ii) if (01, t) E C and 01 is an existential configuration, then there exists a next con- 

figuration B of OL and a t’ < t for which (/3, t’) E C. 

The set accepted by M is 

L(M) = {x E A*: there exists t E N and a trace C of M such that (q$, t) E C}. 
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A trace C uses space at most s if for every (CL, t) E C, ol uses at most s tape cells. An 
alternating machine M operates in space s(n) if for every x EL(M) of length n, there 
exists t E N and a trace C of M such that (qt,z, t) E C and C uses space at most s(n). 
Finally, ASPACE(s(n)) is the class of sets accepted by alternating Turing machines 
which operate in space s(n). 

LEMMA 4.1. Ifs(n) 2 n, K C A*, and KG ASPACE(s(n)) then there exists a mapping f 
of A* into formulas of PDL with the properties 

(i) x E K @f(x) is satisjkble, 

(ii) ;f n = Z(X) then size( f(X)) = O(s(fz)), 

(iii) if the function s is suitably “honest” (i.e., computable in time polynomial in s), 
then f is computable in time polynomial in s. 

Proof. Let M be an alternating Turing machine that accepts K and operates in 
space s(n). The following shows we may assume that M never repeats a configuration. 
There is an integer m > 2 such that m *cn) bounds the number of possible distinct 
configurations with no more than s(n) tape cells. We may add a track to the tape of M 
which maintains a count (in m-ary) of how many “moves” have been made so far. The 
new machine accepts the same language as the old machine and also operates in space s(n). 

By thus eliminating the possibility of looping, the formulas we construct need only 
“simulate” the first component of the trace. Formally, a simpli$ed trace is a finite set D 
of configurations such that 

(i) if 01 E- D and 01 is a universal configuration, then every next configuration /3 
of a is in D; 

and 

(ii) if cy E D and (Y is an existential configuration, then there is a next configuration p 
of 01 in D. 

A simplified trace D accepts x E Z* if the initial configuration q,x E D. 
For machines without looping, there is a natural correspondence between traces and 

simplified traces. A trace is mapped into a simpliied trace by simply dropping the second 
component of each pair. To go from a simplified trace to a trace, the maximum length 
computation sequence beginning from a configuration 01 in the simplified trace will 
serve as the second component for the pair beginning with OL in the trace. Since the 
machine never repeats a configuration, the maximum always exists. The following 
can be proved easily from these considerations. 

LEMMA 4.2. Let M be an alternating mu&&e which never repeats a con$gurution. Then 

L(M) = (x E A*: there exists a simplzjied truce of M accepting x}. 

To continue the proof of Lemma 4.1, let x be given with Z(X) = n and let m -= 
s(n) + 1. Assume M uses tape cells numbered 1, 2, 3,... . The atomic formulas are: 
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P. t.0 > where O<i<mandaE.F, 

Hi 9 where 0 < i < m, 

Q a, where qE Q. 

Informally ‘cPi,o” means “cell i contains ~7,” “ Hi” means “the head is visiting cell i,” 
and “Qa” means “the state is q.” 

There is one basic program which we denote by t-. A truth assignment to the basic 
formulas will correspond to a configuration of M. We define global formulas g, ,..., g, 
which state that only “configuration-like” truth assignments are possible and the relation 
I- behaves correctly. 

g,: There is exactly one state. 

,VQ (Qa * A - Qa*)* 
a’@-{a} 

g,: There is exactly one symbol per cell. 

g,: The unread cells are maintained. 

% .?, (-4 * Pi.0 3 b-1 Pd. 

g,: Assuming there is exactly one head position, the next head position is one away 
from the old one and 0, m are not head positions. 

775-l 

A ((Hi 3 r~Iw4-1 * -J&+1) v (--Hi-, * Hi,,))) 

A (NH,-, A “Hi+1 3 [I-] - Hi)) 

A -Ho A NH,,, 

g,: The universal states behave correctly. 

(Note: Empty conjunctions are defined to be true.) 
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g,: The existential states behave correctly. 

(Note: Empty disjunctions are defined to be false.) 
Define 

g = ARi. 
2=1 

Let x = u1 a** (T, . We define now an initial formula h which describes the initial 
configuration. 

h:QqoI\Hlr\-H,+ i; - Hi h i; hoi A po.~ m A A P<.b . 
i=2 i=l i=n+l 

Finally we define 

f(x) = h A [I-*lg. 

We see by inspection that f(x) satisfies conditions (ii) and (iii) of the lemma. To 
show that (i) holds, we describe how to construct a satisfying model for f(x) given a 
simplified trace containing the initial configuration q,,~, and conversely, we show how 
to construct a simplified trace given a model for f(x). We leave to the reader the details 
of showing that the constructed trace and model have the desired properties. 

Let D be a simplified trace of M accepting x and using space at most s(n). We define 
a structure ~4 = (IV, n, p): 

W = D; 

ST(P,,,) = (01: tape(a), = a}, 0 < i < m, o E r (tape(a)< is the ith symbol of tape(a) 
if 1 < i < Z(tape(ol)) and is “b” otherwise); 

rr(Hi) = {a: pas(a) = i}, 0 < i < m; 

~(8,) = (IX state(a) = q}, q E Q; 
p(t-) = {(oL, p): /3 is a next configuration of a}. 

We claim without proof that CQZ, qax + f(x), and hence f(x) is satisfiable. 
Conversely, let .zI = (W, +rr, p) be a structure and ws E W such that JZZ, w,, t= f(x). 

By Theorem 3.2, we can assume that ~4 is finite. We extract from &, w, a simplified 
trace. 
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First note that g holds in every state u accessible from ws . Since also h holds at w,, , 
g, , ga and g, imply that the propositional variables true at u describe in a natural way 
a unique configuration a(~). It is not true that (u, n) up implies that B(W) is a next 
configuration of a(u), although gs does tell us that OL(IO) is a possible next configuration 
of some machine (not necessarily of M). 

We may now construct our simplified trace. We first define inductively a set SC W 
of states. The desired simplified trace is then or(S). 

(1) WOES. 

(2) Suppose w E S and a(w) is a universal configuration. g, holds at w, so for 
each next configuration p of or(w), there is a state z+ so that (w, us) E p(+-) and OIL = fl. 
Put us in S for each such ,B. 

(3) Suppose w E S and a(w) is an existential configuration. gs holds at w, so there 
is a next configuration #I of or(w) and a state u so that (w, U) E p(k) and OL(U) = p. Put u 
in S. 

We claim without proof that or(S) is a simplified trace. That p,,.~ E o?(S) follows from 
the facts that ws E S and h holds at w, . a 

The proof of Lemma 4.1 allows us to conclude that the exponential upper bound 
of Theorem 3.2 cannot be improved except possibly for the choice of constant. 

COROLLARY 4.3. There is a constant d > 1 for which there exist arbitrarily long 
satisjiable formulas f of PDL, but every model for f has size > deize(f). 

Proof. Let M be a deterministic linear-space Turing machine which, for every 
input x of length n, counts up to 2” and then halts. Regarded as an alternating machine, 
M operates in space n and L(M) = Zl*, but every simplified trace of M accepting x 
has cardinality 22” since it contains each of the reachable configurations in the com- 
putation of M. Let f (x) be the formula of size at most cn constructed in the proof of 
Lemma 4.1, and let JZ? be any model for f(x). The proof shows how to construct a 
simplified trace D for M which accepts x, and 1 D 1 < size(&). Since ] D 1 > 20, we 
have that 

for d = 2r@. 1 

THEOREM 4.4. There is a constant c > 1 such that the satisjkbility (validity) problem 
for PDL is not a member of DTLME(c”IlOan), where n is the length of the formula. 

Proof. Let K be a set which is a member of DTIME(3”) - DTIME(2”). Hence 
KE ASPACE( Let f b e a function satisfying the conditions of Lemma 4.1. Since 
hn. n is suitably honest, then f is computable in time t(n) for some polynomial t. Also 
there is a constant d with the property that if n = l(x), then size( f(x)) < dn. The 
atomic formulas and programs can be coded as strings of length <log n so that I( f (x)) < 
dn . log n. There is c > 1 such that cdn.lognllog(dn’logn) + t(n) < 2”. 
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If the satisfiability problem for L were a member of DTIME(cn@@), then the in- 
equality above would guarantee that K E DTIME(T), which is an impossibility. 1 

We remark that the proof of our lower bound makes no use of the test operator “ ?,” 
so the bound applies equally well to the language L C PDL of test-free formulas. Berman 
and Paterson have shown L to be strictly weaker than PDL in the sense that there is a 
formula p of PDL such that p = 4 is not a valid formula (of PDL) for any 4 EL [2]. 

We can restrict still further. Inspection of f(x) in the proof of Lemma 4.1 shows 
that no use is made of union and concatenation either, and that only a single basic program 
symbol is needed for the lower bound to apply. 

We note also that there is still a “gap” between the upper and lower bounds because 
the upper bound is non-deterministic while the lower bound is deterministic. 

5. APPLICATIONS 

Equivalence of Regular Expressions 

As we noted earlier, programs of PDL can be thought of as regular expressions. 
It can be shown that a and b are equivalent regular expressions if and only if (a>P = 
(b)P is valid. Hence, the validity problem for PDL (and also L) contains the equivalence 
problem for regular expressions as a subproblem. Meyer and Stockmeyer have shown 
that the equivalence problem for regular expressions is polynomial space complete [17]. 

Nondeterministic Iunov Schemes 

A Iunm scheme is an uninterpreted program scheme with only one variable (cf. 
Greibach [6]). We say two schemes are strongly equivalent if they compute the same 
result or they both fail to halt for each initial value in each interpretation. 

Given a Ianov scheme, we can use automaton-theoretic techniques to construct 
a PDL program a, whose tests have the form P? or -P ?. The program a describes 
the set of paths W(a) from the start box to a halt box. If a and b are strongly equivalent, 
then it does not necessarily follow that W(a) = W(b). However, a and b are strongly 
equivalent if and only if (a)& z (b)Q is valid, where Q does not appear in a or b. 
Thus, we get another decision procedure for strong equivalence of Ianov schemes. 
Moreover, the above goes through unchanged even when the schemes are permitted 
to be nondeterministic. 

Classical Modal Systems 

The modal systems K, T, S4, S5 (cf. Ladner [16]) are recognizable subsystems of 
propositional dynamic logic. 

K allows only the modality A, 

T allows only the modality A u A, 

S4 allows only the modality A*, 

S5 allows only the modality (A u A-)*. 
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Kripke [14] has already given decision procedures for validity in each of these modal 
systems. Our decision procedure subsumes these four problems as special cases. 

6. CONCLUSION 

A language for describing properties of programs requires the blending of program 
statements with logical assertions. There have been several attempts to integrate assertions 
and programs into one language. Partial correctness assertions [lo] were one of the first. 
They were unified and generalized by Pratt [I91 using ideas of modal logic. Ideas 
reminiscent of modal logic also appear in the work of the Polish group investigating 
“Algorithmic Logic” (cf. Kreczmar [13] and Salwicki [21]), and in the recent work of 
Kriiger [Is] and Constable [4]. 

Such work has been motivated by a desire to define a language rich enough to describe 
interesting properties of realistic programs. We have attempted to abstract from that work, 
and notably from [19], the “pure” logical structure underlying these formal systems. 
We feel a thorough understanding of this structure is a prerequisite to obtaining a good 
grasp on the more complicated, albeit more applicable, systems, just as classical proposi- 
tional logic is fundamental to the understanding of first-order predicate calculus. 

We have shown that every satisfiable formula of propositional dynamic logic has a 
model of size at most exponential in the length of the formula. This leads to a non- 
deterministic decision procedure for satisfiability which runs in time cn on formulas 
of size 1z, namely, “guess” a model and check that it satisfies the formula. This algorithm 
is impractical, not only because it is nondeterministic, but also because it uses the worst- 
case time on all formulas. Pratt has developed a decision procedure which is fast on 
many natural formulas [20]. That such a procedure cannot be fast on all formulas follows 
from our lower bound of deterministic time dnllogn. 

Another interesting problem with obvious application to automatic program verifica- 
tion is to find a complete and natural proof system for propositional dynamic logic. 
Such a proof system was proposed by Segerberg [22] and proven to be complete by 
Parikh [18]. 

Several interesting extensions to propositional dynamic logic have begun to appear 
(cf. [7, 9, 11). 
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