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iAbstractIn this thesis we work on normal multimodal logics, that are general modal systems withan arbitrary set of normal modal operators, focusing on the class of inclusion modal logics.This class of logics, �rst introduced by Fari~nas del Cerro and Penttonen, includes somewell-known non-homogeneous multimodal systems characterized by interaction axioms ofthe form [t1][t2] : : : [tn]' � [s1][s2] : : : [sm]', that we call inclusion axioms.The thesis is organized in two part. In the �rst part the class of inclusion modallogics is deeply studied by introducing the the syntax, the possible-worlds semantics, andthe axiomatization. Afterwards, we de�ne a proof theory based on an analytic tableaucalculus. The main feature of the calculus is that it can deal in a uniform way with anymultimodal logics in the considered class. In order to achieve this goal, we use a pre�xedtableau calculus �a la Fitting, where, however, we explicitly represent accessibility relationsbetween worlds by means of a graph and we use the characterizing axioms of the logicas rewriting rules which create new path among worlds in the counter-model construction.Some (un)decidability results for this class of logic are given. Moreover, the tableau methodis extended in order to deal with a wide class of normal multimodal logics that includes theones characterized by serial, symmetric, and Euclidean accessibility relations.In the second part, we propose the logic programming language NemoLOG. This lan-guage extends the Horn clauses logic allowing free occurrences of universal modal operatorsin front of goals, in front of clauses, and in front of clause heads. The considered multimodalsystems are the ones of the class of inclusion modal logics. The aim of our proposal is notonly to extend logic languages in order to perform epistemic reasoning and reasoning aboutactions but especially to provide tools for software engineering (e.g. modularity and in-heritance among classes) retaining a declarative interpretation of the programs. A prooftheory is developed for NemoLOG and the soundness and completeness with respect to themodel theory are shown by a �xed point construction.
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PrefaceModal logics have been intensively studied in the recent years [Stirling, 1992; Fitting, 1993;Hughes and Cresswell, 1996]. The reason is that while classical �rst-order logic can ex-press relationships between terms representing members of a 
at domain, modal logics areable to structure knowledge, represent beliefs of agents and deal with problems involvingdistributed reasoning [Konolige, 1986; Genesereth and Nilsson, 1987; Halpern and Moses,1992] together with other attitudes in agent systems like, for instance, goals, intention andobligation. Furthermore, they are well suited for representing dynamic aspects and, in par-ticular, to formalize reasoning about actions and time [Wooldridge and Jennings, 1995]. Allthese characteristics are achieved by the use of some additional connectives, called modaloperators, which formalize in a more natural way reasoning about knowledge, beliefs, dy-namic changes, time, and actions. For this reason the development of automated deductionmethods has received a lot of attention (see, for instance, [Hughes and Cresswell, 1968;Fitting, 1983; Fitting, 1988; Enjalbert and Fari~nas del Cerro, 1989; Wallen, 1990; Catach,1991] and, more recently, [Ognjanovi�c, 1994; Massacci, 1994; Fari~nas del Cerro and Herzig,1995; Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Gor�e, 1997; Baldoni etal., 1998a]).On the other hand, logic programs, that use 
at sets of Horn clauses for representingknowledge, enjoy some good properties, such as the notion of the least Herbrand modeltogether with its �xpoint characterization and the possible use of goal directed proof pro-cedures. These features make logic a real programming language with a clear and completeoperational semantics with respect to its declarative semantics [Lloyd, 1984].Modal extensions of logic programming join tools for formalizing and reasoning abouttemporal and epistemic knowledge with declarative features of logic programming lan-guages. In particular, they support \context abstraction", which allows to describe dynamicand context-dependent properties of certain problems in a natural and problem-orientedway[Orgun and Ma, 1994; Fisher and Owens, 1993a; Fari~nas del Cerro and Penttonen, 1992].All these desirable features are shown by some well-known proposals, such as TEMPLOG[Abadi and Manna, 1989; Baudinet, 1989], Temporal Prolog [Gabbay, 1987], MOLOG[Fari~nas del Cerro, 1986; Balbiani et al., 1988], TIM [Balbiani et al., 1991], Modal Pro-log [Sakakibara, 1986] and also by the proposals in [Akama, 1986; Debart et al., 1992;Nonnengart, 1994; Giordano and Martelli, 1994; De Giacomo and Lenzerini, 1995; Baldoniet al., 1997a; Baldoni et al., 1997b]. xi



xii PrefaceIn this thesis we work on normal multimodal logics, that are general modal systems withan arbitrary set of normal modal operators, focusing on the class of inclusion modal logics.The multimodal systems which belong to this class, �rst introduced in [Fari~nas del Cerroand Penttonen, 1988], are characterized by a set of logical axioms of the form:[t1][t2] : : : [tn]' � [s1][s2] : : : [sm]' (n > 0; m � 0)that are called inclusion axioms. We deeply study this class of modal logics and, then, wepropose a multimodal extension of logic programming, that we have called NemoLOG (whichstands for New modal proLOG), based on this class of logics. Finally, some conclusions andopen problems are drawn at the end of the thesis.The thesis is organized in two part. In Part One, we, �rst, introduce the syntax, thepossible-worlds semantics, and the axiomatization of the class of inclusion modal logics.Afterwards, we de�ne a proof theory based on an analytic tableau calculus. The mainfeature of this calculus is that it is able to deal with the whole class of logics in a modularway with respect to the set of inclusion axioms that determines the logic. It is an extensionof the calculus presented in [Nerode, 1989] which, in turn, comes from the pre�xed tableauxin [Fitting, 1983].Pre�xed tableaux make explicit the reference to accessibility relations. In particular,in our tableau method, di�erently than [Fitting, 1983] (where the accessibility relationsare encoded in the structure of the name of the worlds), the accessibility relations arerepresented by means of an explicit and separate graph of named nodes, each of which isassociated with a set of formulae (pre�xed formulae) and choice allows any inclusion axiomto be interpreted as a \rewriting rule" into the path structure of the graph. This is atthe basis of the proofs of some (un)decidability results. Despite the fact that this kind ofrepresentation works only for those multimodal systems whose frame structure is �rst-orderaxiomatizable, we think that it is more suitable to deal with multimodal logics with arbitraryinteraction axiom than the one in [Fitting, 1993], as discussed in the Chapter VII. Moreover,our tableau method can easily be extended to deal with a wide class of normal multimodallogics that includes the class of inclusion modal logics and other ones characterized byserial, symmetric, and Euclidean accessibility relations, as shown in Chapter VI.In Part Two, we propose the logic programming language NemoLOG. This languageextends the Horn clauses logic allowing free occurrences of universal modal operators infront of goals, in front of clauses, and in front of clause heads. The considered multimodalsystems are the ones of the class of inclusion modal logics and they are speci�ed by meansof a set of particular clauses that we have called inclusion axiom clauses.The aim of our proposal is not only to extend logic languages in order to performepistemic reasoning and reasoning about actions but especially to provide tools for softwareengineering retaining a declarative interpretation of the programs. In particular, we willshow that inclusion modal logics are well suited, on one hand, to overcome the lack ofstructuring facilities aimed at enhancing themodularity of logic programs (a central problem



Preface xiiiin the last years [Bugliesi et al., 1994]), and, on the other, to interpret some features typicalof object-oriented paradigms in logic programming (such as hierarchical dependencies andinheritance among classes).A proof theory is developed for NemoLOG and the soundness and completeness withrespect to the model theory is shown by a �xed point construction. Though the constructionis pretty standard, we believe that its advantage is the modularity of the approach, in thesense that both the completeness and soundness proofs are modular with respect to theunderlying inclusion modal logics of the programs.Last but not least, we show that, in the case of programs and goals of NemoLOG, wecan restrict our attention to tableau proofs of a form that recalls the one of the uniformproof as presented in [Miller et al., 1991] and, moreover, we give a method for translatingprograms into standard Horn clauses, so that the translated programs can be executed byany Prolog interpreter or compiler.AcknowledgmentI would like to thank my advisors, prof. Alberto Martelli and dr. Laura Giordano, for thehelp and support shown in all these years, the whole Logic Programming and AutomatedReasoning group of the Department of Computer Science of University of Turin in whichI worked and, in particular, dr. Maria Luisa Sapino. I would like to thank the reviewers,prof. Mariangiola Dezani (University of Turin), prof. Paola Mello (University of Ferrara),and prof. Camilla Schwind (Laboratoire d'Informatique de Marseille), for their preciousadvice.I would like to thank also Cristina Baroglio, all my friends at the Department of Com-puter Science, especially Ferruccio Damiani and Davide Cavagnino, and all those personsthat with their love and their support made this thesis possible, in particular, my family.Turin, Italy M. B.February 1998
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Chapter IIntroductionAmong true propositions, sometimes it is useful to distinguish between those that areoccasionally true and those that are necessarily true; for instance, a proposition could betrue in a particular scenario while another must be true in any possible scenario. Modallogic extends classical logic allowing the occurrence of a new operator, usually denoted by2, in front of formulae. Di�erently than the others such as negation or implication, thisoperator is not intended to be truth-functional, i.e. its meaning does not depend only onthe truth-values of the subformulae. Indeed, the intended meaning of the formula 2' isto qualify the truth value of ': if ' is true then, 2' speci�es that ' is not only truebut necessarily true, i.e. ' is true independently from the scenario (or state, world, etc.)[Hughes and Cresswell, 1996].Multimodal logics generalize modal logics allowing more than one modal operator toappear in front of formulae. In particular, a modal operator is named by means of alabel, for instance [a], which identi�es it. Multimodal logics are particularly suitable toreason in a multiagent environment, to represent knowledge, beliefs and, then, also commoninterpretation of a formula like [a]' is \' is known by the agent a", \' is part of theknowledge of a", and \' is believed by the agent a" but also \' is true after executing theaction a" [Halpern and Moses, 1992].The meaning of necessity is di�erent depending on the properties that one ascribesit. For example, one can say that everything that is necessarily true is also true whileanother can think that everything that is necessary is necessarily necessary. Moreover, inthe multimodal case, modal operators do not represent only necessity but also knowledge,beliefs, actions, etc. It is easy to express the properties which characterize a modal operatorby means of a set of axioms. Let us consider, for instance, the modal operator [a]. Then,the axiom T (a) : [a]' � '(the knowledge axiom or re
exivity) can express the fact that everything that is necessarilytrue is also true but also that what is known by the agent a must be true, while the axiom4(a) : [a]' � [a][a]'3



4 I. Introduction(the positive introspection axiom or transitivity) can express the fact that everything thatis necessary is necessarily necessary, but also that if something is know by a then a knowsthat he knows it. Furthermore, by using more than one modal operator, we are also able toexpress what an agent knows (believes) about the knowledge (beliefs) of other agents. Forexample, the formula [a][b]� can be read as \the agent a knows (believes) that the agentb knows (believes) �". Moreover, we can de�ne modal systems characterized by means ofinteraction axioms, such as, for instance,I(a; b) : [a]' � [b]'that say that whatever the agent a knows (believes), the agent b knows (believes), thepersistence axiom P (a; always) : [a][always]'� [always][a]'that says that the agent a knows (believes) that ' holds always then a will always know ',and the mutual transitivity axiom4M(always; a) : [always]'� [a][always]'to express the fact, for instance, that if something always holds it always also holds afterexecuting the action a.As pointed out in [Catach, 1988], the main feature of multimodal systems is their abil-ity to express complex modalities, obtained by composing modal operators of di�erenttypes. Thus, such systems allow one to design agent situations where the agents can havedi�erent ways of reasoning and di�erent ways of interacting between them and, also, tosimultaneously study several modal aspects (e.g., knowledge and time or knowledge andbelief [Catach, 1991]).Let us consider the following example inspired by [Fari~nas del Cerro and Herzig, 1995].It shows a multimodal system with modalities representing actions and beliefs of agentsand it is based on the fable \the fox and the raven", in which the fox tries to capture theraven's cheese. In order to do so the fox charms the raven.Example I.0.1 (The fox and the raven) Let [fox] be a modal operator axiomatized by only theaxiom K and representing what the fox believes and let [praise] and [sing] be two action operatorsof typeK representing the action in which the fox praises the raven and the raven sings, respectively.Moreover, we have a operator [always] of type KT4:(A1) T (always) : [always]' � '(A2) 4(always) : [always]' � [always][always]'for which we assume the mutual transitivity axioms:(A3) 4M(always; praise) : [always]' � [praise][always]',(A4) 4M(always; sing) : [always]' � [sing][always]',in order to express the fact that if ' is always true then it is also always true after the actionsprise and sing. We have the following:



5(1) [fox][praise]charmed(raven)(2) [fox][always](charmed(raven)� hsingidropped(cheese))That is, (1) the fox believes that if the fox praises the raven, then the raven is charmed, and (2)the fox believes that in any moment if the raven is charmed then it is possible that the raven singsand so it drops the cheese. From (1) and (2), the formula:(3) [fox][praise]hsingidropped(cheese)can be proved; that is, the fox believes that after praising the raven may sing and so it drops thecheese.In this thesis we work on normal multimodal logics, that are general modal systems withan arbitrary set of normal modal operators all characterized by the axiomK(a) : [a](' �  ) � ([a]' � [a] )focusing on the class of inclusion modal logics. This class of logics includes some well-knownmodal systems such as Kn, Tn, K4n, and S4n. However, di�erently than other proposals,such as [Halpern and Moses, 1992], these systems can be non-homogeneous (i.e., everymodal operator is not restricted to the same system) and can contain some interactionaxioms (i.e., every modal operator is not necessarily independent from the others).In particular, inclusion modal logics are characterized by sets of logical axioms of theform: [t1][t2] : : : [tn]' � [s1][s2] : : : [sm]' (n > 0; m � 0)that we call inclusion axioms. The knowledge axiom, positive introspection axiom, theaxiom I(a; b), the mutual transitivity axiom and the persistence axiom are examples ofinclusion axiom schema. The syntax, the possible-world semantics, and the axiomatizationof inclusion modal logics will be introduced in Chapter II.Inclusion modal logics have interesting computational properties because they can beconsidered as rewriting rules. More precisely, inclusion modal logics have been introducedin [Fari~nas del Cerro and Penttonen, 1988] with the name of grammar logics to the aimof simulating the behaviour of grammars by means of modal logics. Intuitively, givena formal grammar, we associate an axiom of a modal logic to each rule. The idea isquite simple. For each production of the form t1 : : : tn ! s1 : : : sm a new inclusion axiom[t1] : : : [tn]' � [s1] : : : [sm]' is introduced. By this construction, verifying if a word isgenerated by a formal grammar is equivalent to proving a theorem in the logic. As aconsequence, the authors of [Fari~nas del Cerro and Penttonen, 1988] obtained a simpleproof of undecidability for propositional modal logics. However, they neither prove any(un)decidability results for restricted classes nor they consider any proof method to dealwith the whole class of logics (or its subclasses). More recently, in [Gasquet, 1994; Gasquet,1993], an optimized functional translation method for translating formulae of the inclusionmodal logics into formulae of the classical �rst order logic is proposed when, however, theseriality is assumed for each operator.



6 I. IntroductionIn this part of the thesis, we answer to the open problems left in [Fari~nas del Cerro andPenttonen, 1988]. We �rst develop an analytic tableau calculus for the class of inclusionmodal logics and, then, we use it as a tool to prove some undecidability results for somesubclasses of inclusion modal logics.Although an axiom system is a calculus, it is not an appropriate choice for automationbecause, in general, it is hard to �nd a proof for a given formula, especially in an automaticway. The reason is that axiom systems make use of the modus ponens rule so that to prove aformula ' we have to look for a prove of  and  � ' and, generally,  may be an arbitraryformula without any relation with '. Other calculi, such as resolution, sequent calculus,and tableau calculus better work towards this purpose. The fact is that these methods usethe \subformula principle": everything you need to prove or disprove a given formula iscontained in the formula itself.Among the above mentioned calculi, we have chosen to develop a tableau method inorder to supply a proof theory for the class of inclusion modal logics. A tableau calculus isa refutation method; given a formula, say ', the computation process is aimed at �ndingan interpretation which satis�es '. Consequently, to fail in �nding an interpretation whichsatis�es the negation of ' (:') corresponds to prove that ' is true in every interpretation,i.e. ' is valid.There are several reasons that have leaded to prefer developing a tableau calculus insteadof a resolution calculus (sequent calculus can be seen as a notational variant of tableaucalculus) to study inclusion modal logics. First of all, it does not require any normal forms,so the starting formula can use all connectives. Moreover, due to the strong relationship withthe semantics issue, tableau calculi are easier and more natural to develop especially for non-classical logics for which, generally, the semantics is known better than the computationalproperties [Fitting, 1983]. Last but not least, tableau methods enjoy another importantfeature with respect to resolution: they can supply a return answer. Besides the successor the failure, the tableau method returns some more information. In the case of success,it returns an e�ective interpretation that satis�es the given formula while, in the case offailure, it shows why it is not possible to satisfy that formula by means of an e�ectivecontradictory interpretation.The tableau calculus, presented in Chapter III, is an extension of the one proposed in[Nerode, 1989], which is closely related to the systems of pre�xed tableaux presented in[Fitting, 1983].Pre�xed tableaux, di�erently than other tableau methods, make explicit reference tothe possible-worlds of the underlying Kripke interpretation. However, as a di�erence with[Fitting, 1983], worlds are not represented by pre�xes (which describe paths in the modelfrom the initial world), instead, they are given an atomic name and the accessibility rela-tionships among them are explicitly represented in a graph. The method is based on theidea of using the characterizing axioms of the logics as \rewrite rules" which create newpaths among worlds in the counter-model construction.We think that the tableau calculus is interesting, �rst, because it is modular with respectto the inclusion modal systems considered, that is it works for the whole class of inclusionmodal logics. Then, it deals with non-homogeneous multimodal systems with arbitrary



7interaction axioms in an uniform way.The proposals in [Governatori, 1995; Cunningham and Pitt, 1996; Beckert and Gor�e,1997] address the problem of an e�cient implementation of the tableau calculi for a wideclass of modal logics. They generalize the pre�xes by allowing occurrences of variablesand they use uni�cation to show that two pre�xes are names for the same world. Whilea straightforward implementation of our calculus is unlikely to be e�cient, the generalityof the approach makes it suitable to study the properties of di�erent classes of logics. Inparticular, our tableau calculus is at the basis of the undecidability results for inclusionmodal logics presented in Chapter IV. Due to the fact that the accessibility relationshipsamong the worlds are represented in a graph and that we use the axioms of the logicsas rewrite rules to create new paths among worlds in the counter-model construction, ourtableau method allows to draw some correspondences between logic and formal languages.These allow to reduce in a easy way some undecidability results of the formal languages tosatis�ability problems in the logic.A decidability result for a particular subclass of the inclusion modal logics is also given.This result is obtained by means of the �ltration method, de�ning an extension of theFischer-Ladner closure [Fischer and Ladner, 1979].Finally, in Chapter V, the tableau method is extended in order to deal with the predic-ative case, while in Chapter VI, it is shown how our tableau calculus can be easily extendedin order to deal with the class of normal multimodal logics generated by the interactionaxiom schemas Ga;b;c;d : hai[b]' � [c]hdi'proposed in [Catach, 1988], where hai is the modal operator de�ned as :[a]:. This classincludes the class on inclusion modal logics and most of the well-known modal logics studiedin [Chellas, 1980; Hughes and Cresswell, 1996] and their multimodal version in [Halpernand Moses, 1992].



8 I. Introduction



Chapter IISyntax and SemanticsIn this chapter we introduce the class of inclusion modal logics. We use the world \inclusion"because the logics of this class are characterized by axiom systems whose axioms determ-ine a set of inclusion relations between the accessibility relations of their possible-worldssemantics.Many results reported in this chapter can be easily deduced from well-known worksin literature. Nevertheless, for completeness, we will present them, avoiding to report themost trivial steps.II.1 SyntaxLet us de�ne a language for a propositional multimodal logic. Although we consider anumber of di�erent logics in the following, the syntax for all of them is essentially the same.The alphabet contains:� a non-empty countable set VAR of propositional variables;� a non-empty countable set MOD, named the modal alphabet. VAR and MOD aredisjoint;� the classical connectives \ ^ " (and), \_" (or), \:" (not), \ � " (implies);� a modal operator constructor \[:]";� left and right parentheses \(", \)".The set FOR of formulae of a modal propositional language L is de�ned to be the leastset that satis�es the following conditions:� VAR � FOR;� if '; 2 FOR then (:'), (' ^  ), (' _  ), (' �  ) 2 FOR;� if ' 2 FOR and t 2 MOD then ([t]') 2 FOR.9



10 II. Syntax and SemanticsFor readability, we omit parentheses if they are unnecessary: we give \ ^ " and \_" thesame precedence; lower that \:" but higher than \ � ". Moreover, we use the standardabbreviation hti' for :[t]:'. [t] is called universal modal operator or universal modality,while hti is called existential modal operator or existential modality. By atomic formula wemean any propositional variables of VAR.We call IL the propositional multimodal logic based on the a language L.II.2 Possible-worlds semanticsGiven a language L, an ordered pair (W; fRt j t 2 MODg), consisting of a non-emptyset W of \possible worlds" and a set of binary relations Rt (one for each t 2 MOD) onW , is called frame. Note that frames with an in�nite number of possible worlds in W areallowed. We say that w0 is accessible from w by means of Rt if (w;w0) 2 Rt, Rt is theaccessibility relation of the modality [t]. We denote with FL the class of all frames basedon the language L.In order to de�ne the meaning of a formula, we have to introduce the notion of Kripkeinterpretation.De�nition II.2.1 (Kripke interpretation) Given a language L, a Kripke interpreta-tion M is an ordered triple hW; fRt j t 2 MODg; V i, where:� (W; fRt j t 2 MODg) is a frame of FL;� V is a valuation function, a mapping from W �VAR to the set fT;Fg.We say that M is based on the frame (W; fRt j t 2 MODg).We useML to denote the class of Kripke interpretations with L as underlying language.The meaning of a formula belonging to L is given by means of the satis�ability relationj=. In particular, let M = hW; fRt j t 2 MODg; V i be a Kripke interpretation, w a worldin W and ' a formula, then, we say that ' is satis�able in the Kripke interpretationM atw, denoted by M;w j= ', if the following conditions hold:� M;w j= ' and ' 2 VAR i� V (w;') = T;� M;w j= :' i� M;w 6j= ';� M;w j= ' ^  i� M;w j= ' and M;w j=  ;� M;w j= ' _  i� M;w j= ' or M;w j=  ;� M;w j= ' �  i� M;w 6j= ' or M;w j=  ;� M;w j= [t]' i� for all w0 2 W such that (w;w0) 2 Rt, M;w0 j= ';� M;w j= hti' i� there exists a w0 2 W such that (w;w0) 2 Rt and M;w0 j= '.



II.3. Axiomatization 11Given a Kripke interpretation M = hW; fRt j t 2 MODg; V i, we say that a formula 'is satis�able in M if M;w j= ' for some world w 2 W . We say that ' is valid in M if :'is not satis�able in M (or, equivalently, if M;w j= ', for all worlds in W ). Moreover, aformula ' is satis�able with respect to a class M of Kripke interpretations if ' is satis�ablein some Kripke interpretation in M, and it is valid with respect to M if it is valid in allKripke interpretations in M.II.3 AxiomatizationIt is possible to de�ne an axiom system whose axioms and rules of inference characterizesa propositional multimodal logic IL. In particular, this axiom system, that we call SL,consists of:� all axiom schemas for the propositional calculus;� for each t 2 MOD, the axiom schema:K(t) : [t](' �  ) � ([t]' � [t] )� the modus ponens rule of inference: from ` '1 and ` ' �  infer `  ;� for each t 2 MOD, the necessitation rule of inference: from ` ' infer ` [t]'.Each modal system that contains the schema K(t) for each its modal operator is callednormal. In this thesis we deal with only normal modal logics and its extensions.The axiomatization SL of the propositional modal logic IL is sound and complete withrespect to its possible-worlds semantics ML [Hughes and Cresswell, 1996; Halpern andMoses, 1992]. Every formula provable from SL (SL-provable) is valid with respect to ML(soundness) and every formula that is valid with respect to ML is provable from SL (com-pleteness). We say that a Kripke interpretation M is a model of IL if every SL-provableformula is valid in M , and F is a frame for IL if every Kripke interpretation based on it isa model of IL.Inclusion axiom schemasAn axiom system SL can be extended by adding one or more extra axiom schemas. In thefollowing, we are interested in a particular class of such extensions, that is those ones thatare obtained by adding only axiom schemas of the following form:[t1][t2] : : : [tn]' � [s1][s2] : : : [sm]' (n > 0;m � 0)where ti; sj 2 MOD. We call such an axiom schema inclusion axiom schema or inclusionaxiom for simplicity.1We write ` ' to mean that ' is a theorem of SL.



12 II. Syntax and SemanticsExample II.3.1 Some examples of inclusion axiom schemas are:� the knowledge axiom T (t) : [t]' � ',� the positive introspection axiom 4(t) : [t]' � [t][t]',� the inclusion axiom I(t; t0) : [t]' � [t0]',� the mutual transitivity axiom 4M(t; t0) : [t]' � [t0][t]',� the persistence axiom P (t; t0) : [t][t0]' � [t0][t]' [Fari~nas del Cerro and Herzig, 1995].Given a set A of inclusion axiom schemas, we show that if the accessibility relations inthe Kripke interpretations are restricted in a suitable way, the axiom system SL extendedwith A, denoted by SAL , is sound and complete with respect to possible-worlds semantics.We use IAL to denote the inclusion propositional modal logic determined by means of SAL .Example II.3.2 Some examples of inclusion modal logics are the well-known modal systems K,T , K4, S4 [Hughes and Cresswell, 1996], their multimodal versions Kn, Tn, K4n, S4n [Halpernand Moses, 1992], extensions of S4n with interaction axioms or with agent \any fool" [Geneserethand Nilsson, 1987; Enjalbert and Fari~nas del Cerro, 1989].Remark II.3.1 The class of propositional inclusion modal logics is included in the class ofmultimodal logics studied in [Catach, 1988]. There, the author generalizes to the multimodalcase the k; l;m; n-incestuality axiom schema Gk;l;m;n : 3k2l' � 2m3n (see [Chellas, 1980,Section 3.3 and 5.5] and [Hughes and Cresswell, 1984, Chapter 3]). He characterizes theclass of modal logics by considering systems axiomatized by any �nite number of axiomschemas of the form Ga;b;c;d : hai[b]' � [c]hdi, where hai, [b], [c], hdi can represent sequencesof modalities of that type. Thus, when we take into account only axiom schemas of theform G";b;c;" we have the class of inclusion modal logics (see Chapter VI for more details).Some examplesIn this section we give an idea of how to use inclusion modal logics to perform epistemicreasoning (Example II.3.3, II.3.4, and I.0.1) and to represent simple reasoning about actions(Example II.3.5).In the Examples II.3.3, II.3.4, and I.0.1 we use modal operator to denote knowledgeand belief of agents: a preposition [t]' is read as \agent t knows '" or \agent t believes'". Inclusion axiom schemas are used to model the meaning of the operator, for example,a modal operator of belief is characterized by only the axiom K, while a modal operatorof knowledge by KT4 (see [Genesereth and Nilsson, 1987, Chapter 9]). Inclusion axiomsare also used to model interaction between knowledge or beliefs of di�erent agents. Forinstance, the axiom I(t; t0) : [t]' � [t0]' can be interpreted as \everything which is known(believed) by agent t is also known (believed) by agent t0."



II.3. Axiomatization 13Example II.3.3 (Epistemic reasoning: The friends puzzle) Peter is a friend of John, so if Peterknows that John knows something then John knows that Peter knows the same thing. That is, weassume the persistence axiom:(A1) P (peter; john) : [peter][john]'� [john][peter]',where [peter] and [john] are modal operators of type S4 (KT4):(A2) T (peter) : [peter]' � ';(A3) 4(peter) : [peter]' � [peter][peter]';(A4) T (john) : [john]' � ';(A5) 4(john) : [john]' � [john][john]';and they are used to denote what is known by Peter and John, respectively. Peter is married, soif Peter's wife knows something, then Peter knows the same thing, that is the inclusion axiom:(A6) I(wife(peter); peter) : [wife(peter)]'� [peter]'holds, where [wife(peter)] is a modality of type S4 representing the knowledge of Peter's wife:(A7) T (wife(peter)) : [wife(peter)]' � ';(A8) 4(wife(peter)) : [wife(peter)]' � [wife(peter)][wife(peter)]'.Thus, we consider a modal language containing three modalities, [peter], [john], and [wife(peter)],and characterized by the set A = fAi j i = 1; : : :8g of inclusion axiom schemas.John and Peter have an appointment, let us consider the following situation:(1) [peter]time(2) [peter][john]place(3) [wife(peter)]([peter]time� [john]time)(4) [peter][john](place^ time � appointment)That is, (1) Peter knows the time of their appointment; (2) Peter also knows that John knows theplace of their appointment. Moreover, (3) Peter's wife knows that if Peter knows the time of theirappointment, then John knows that too (since John and Peter are friends); and �nally (4) Peterknows that if John knows the place and the time of their appointment, then John knows that hehas an appointment. From this situation we will be able to prove:(5) [john][peter]appointment ^ [peter][john]appointment,that is, each of the two friends knows that the other one knows that he has an appointment.In the following example a particular modality is introduced as a certain kind of commonknowledge operator. Indeed, this modality can be taken as a slightly weaker version of thecommon knowledge operator in [Halpern and Moses, 1992]. It is slightly weaker because theinduction axiom for the common knowledge does not hold [Genesereth and Nilsson, 1987](see also Remark VI.2.1). The common knowledge operator is achieved using a �ctitiousknower, sometimes called any fool. What any fool knows is what all other agents know,and all agents know that others know (and so on). In other words, instead of regardingcommon knowledge as an operator over beliefs of agents, it is regarded as a new agentwhich interacts with the others.



14 II. Syntax and SemanticsExample II.3.4 (Epistemic reasoning and common knowledge: The wise men puzzle) The prob-lem is as follows: \Once upon a time, a king wanted to �nd the wisest out of his three wisestmen. He arranged them in a circle and told them that he would put a white or a black spot ontheir foreheads and that one of the three spots would certainly be white. The three wise men couldsee and hear each other but, of course, they could not see their faces re
ected anywhere. Theking, then, asked to each of them to �nd out the colour of his own spot. After a while, the wisestcorrectly answered that his spot was white."Let us assume a, b, and c to denote the three wise men and by modalities [a], [b], and [c] theirbeliefs. Moreover, we use [fool] to denote which are known by all the others (the \any fool" agent).Thus, the set of inclusion axioms consists of:(A1) T (fool) : [fool]' � ';(A2) 4(fool) : [fool]' � [fool][fool]';(A3) I(fool; a) : [fool]' � [a]';(A4) I(fool; b) : [fool]' � [b]';(A5) I(fool; b) : [fool]' � [c]'.The modal operators [a], [b], [c], and [fool] give a way to distinguish among information of thesingle agents and information common to all of them. The formulation is the following, however,in order to avoid introducing many variant of the same formulae for the di�erent wise men, as ashorthand, we use the metavariables X , Y and Z, where X; Y; Z 2 fa; b; cg and X 6= Y , Y 6= Z,and X 6= Z:(1) [fool](:ws(X) ^ :ws(Y ) � ws(Z))(2) [fool](:ws(X)� [Y ]:ws(X))ws(X) meansX has a white spot on his forehead. All the formulae preceded by the modal operator[fool], correspond to information which is common to all wise men. The formula (1) says that atleast one of the wise men has a white spot, whereas formula (2) means that whenever one of themhas not a white spot, the others know this since the three wise men can see each other. From (1)and (2) we cannot prove [X ]ws(X) for any wise man.Now, the king asks if someone knows if the color of his spot is white, but nobody says anything,therefore X knows that Y does not know the color of his own spot:2:(3) [X ]:[Y ]ws(Y )From (1)-(3) we cannot yet prove [X ]ws(X) for any wise man. The king asks again if someoneknows if the color of his spot is white, but nobody still say anything, therefore X knows that Yknows that Z does not know the color of his own spot:(4) [X ][Y ]:[Z]ws(Z)2This fact allows to refuse to believe there is only one white spot, otherwise the wise man who has thatwhite spot could have answered (the king said there is at least one white spot).



II.3. Axiomatization 15Now, from (1)-(4) we can prove [X ]ws(X) for any wise man: each of them has enough informationfor answering that he knows that the color of his spot is white3, but only the wisest will announcethat his spot is white.In the following example, inspired from [Fari~nas del Cerro and Herzig, 1995], it is shownhow modalities can be used to represent actions. Here the previous common knowledgeoperator [fool] is used to represent something that holds in any moment, after any sequenceof actions. For this reason, now, we call it [always].Example II.3.5 (Reasoning about actions: A simple version of the shooting problem) Assumethat our language contains the modalities [load] and [shoot] which denote the actions of \loadinga gun" and \shooting against a turkey", respectively, and [always] denoting an arbitrary sequenceof actions, where [always]' means that ' always holds (i.e., after any sequence of actions). Theset A will contain the following axioms:(A1) T (always) : [always]' � ';(A2) 4(always) : [always]' � [always][always]';(A3) I(always; load) : [always]' � [load]';(A4) I(always; shoot) : [always]'� [shoot]';Notice that [always] is re
exive (axiom A1), transitive (axiom A2), and if ' is always true itis true after the action load or shoot (axioms A3 and A4, respectively), whereas the modalitiesrepresenting actions do not have any property beside K. Let us assume the situation:(1) [always][load]loaded(2) [always](loaded� [shoot]:alive)That is, (1) after any sequence of actions ended by load the gun is loaded, and (2) after anysequence of actions (possible empty) if the gun is loaded then after a shoot the turkey is not alive.Form (1) and (2) we can prove:(3) [load][shoot]:alivethat is, after the actions of load and shoot the turkey is not alive.Inclusion frames and Kripke A-interpretationDe�nition II.3.1 (Inclusion frame) Let F = (W; fRt j t 2 MODg) be a frame of FLand let A be a set of inclusion axiom schemas, F is an A-inclusion frame if and only iffor each axiom schema [t1][t2] : : : [tn]' � [s1][s2] : : : [sm]'3Actually, if they did not answer twice, this is the only possible con�guration. If there were a wise manwho has a \not-white" spot, say a, he could not have answered but b (or c) could have. They know that itis not possible to have two \not-white" spots and they can see one, then, they can deduce they have botha white spot. On the other hand, this is also the only fair con�guration if the king would like to know thewisest.



16 II. Syntax and Semanticsin A, the following inclusion property on the accessibility relation holds:Rt1 � Rt2 � : : : � Rtn � Rs1 � Rs2 � : : : � Rsm (II.1)where \�" means the relation composition Rt � Rt0 = f(w;w00) 2 W � W j 9w0 2W such that (w;w0) 2 Rt and (w0; w00) 2 Rt0g4. We call IPAL the set of inclusion prop-erties of the form (II.1) determined by A.We denote with FAL the subset of FL that consists of all A-inclusion frames. A KripkeA-interpretation is a Kripke interpretation based on an A-inclusion frame. The set of allKripke A-interpretations is denoted by MAL and it is a subset of ML. Moreover, we alsosay that a formula ' of L is A-satis�able in M (A-valid in M) if M 2 MAL and it issatis�able in M (valid in M). A formula is A-satis�able (A-valid) if it is satis�able (valid)with respect to the classMAL of Kripke A-interpretations and we use the notation j=A forit. For the classMAL of modal Kripke A-interpretations and the satis�ability relation j=Athe following important proposition holds.Proposition II.3.1 Given a language L, for all formulae '; 2 FOR, all Kripke A-interpretations M = hW; fRt j t 2 MODg; V i of MAL , and all worlds w 2 W the followingproperties hold:1. if ' is an instance of a propositional tautology, then M;w j=A ';2. if M;w j=A ' and M;w j=A ' �  , then M;w j=A  ;3. M;w j=A [t](' ^  ) � ([t]' ^ [t] );4. for all inclusion axiom schemas [t1][t2] : : : [tn]' � [s1][s2] : : : [sm]' in A, M;w j=A[t1][t2] : : : [tn]' � [s1][s2] : : : [sm]'.Proof. We report only the proof for the property (4), for the others you can see [Hal-pern and Moses, 1992, page 325]. Let us assume that M;w j=A [t1][t2] : : : [tn]' but M;w6 j=A [s1][s2] : : : [sm]'. Then, M;w j=A :[s1][s2] : : : [sm]' and, therefore, there exist w1; w2;: : : ; wm�1; w0 in W such that (w;w1) 2 Rs1 , (w1; w2) 2 Rs2, : : : , (wm�1; w0) 2 Rsm (i.e.,(w;w0) 2 Rs1 �Rs2 � : : :�Rsm) andM;w0 j=A :'. Now, sinceM 2 MAL by hypothesis and,therefore, the (II.1) holds, (w;w0) 2 Rt1 �Rt2 � : : : �Rtm , thus, there exist w01; w02; : : : ; w0n�1in W such that (w;w01) 2 Rt1, (w01; w02) 2 Rt2, : : : , (w0n�1; w0) 2 Rtn and M;w0 j=A :', butthis is contradictory with the initial hypothesis M;w j=A [t1][t2] : : : [tn]'. 2Remark II.3.2 It is worth noting that inclusion frames do not allow backward moves:neither symmetry nor euclideanness determine inclusion frames.4If m = 0 then we assume Rs1 � Rs2 � : : : � Rsm = I, where I is the identity relation on W .



II.3. Axiomatization 17Soundness and completenessThe following theorem states that the axiom system SAL characterizes the class MAL ofKripke A-interpretations. The proof uses a well-known technique that shows the closecorrespondence between an axiom system and a particular interpretation, named canonicalmodel [Hughes and Cresswell, 1996; Halpern and Moses, 1992]. It is very close to theone given in [Fari~nas del Cerro and Penttonen, 1988] for a subclass of the inclusion modallogics, called Thue logics.Theorem II.3.1 Let L be a modal language and let A be a set of inclusion axiom schemas,SAL is a sound and complete axiomatization with respect to MAL .Before proving the above theorem, we need to give some de�nitions and lemmas. Aformula ' is SAL -consistent if :' is not SAL -provable. A �nite set of formulae is SAL -consistent if the conjunction of all them is SAL -consistent, and an in�nite set of formulae isSAL -consistent if all of its �nite subsets are SAL -consistent. A set S of formulae is maximalSAL -consistent, if it is SAL -consistent and for any formula ', either ' 2 S or :' 2 S.Lemma II.3.1 Any SAL -consistent set of formulae can be extended to a maximal SAL -consistent set. Moreover, let S be a maximal SAL -consistent set of formulae, then it satis�esthe following properties:51. for no formula ' we have ' 2 S and :' 2 S;2. ' �  2 S if and only if :' 2 S or  2 S;3. if ' 2 S and ' �  2 S, then  2 S;4. if ' is SAL -provable, then ' 2 S.Proof. See, for a similar proof, [Hughes and Cresswell, 1996, Chapter 6] and [Halpern andMoses, 1992, page 327]. 2De�nition II.3.2 (Canonical model) The canonical model is the ordered tripleMAc = hW; fRt j t 2 MODg; V iwhere:� W = fw j w is a maximal consistent setg;� for each t 2 MOD, Rt = f(w;w0) 2 W �W j wt � w0g, wherewt = f' j [t]' 2 wg5We report the properties only for logical connective \:" and \ � ", the properties for the others canbe easily derived.



18 II. Syntax and Semantics� for each p 2 VAR and each w 2 W , we setV (w; p) = �T if p 2 wF otherwiseIt is quite easy to see, by the de�nition of accessibility relations given above, that forany t; s 2 MOD (w;w0) 2 Rt�Rs if and only if (wt)s � w0, where (wt)s = f' j [t][s]' 2 wg.Proposition II.3.2 The canonical model MAc given by De�nition II.3.2 is a Kripke A-interpretation.Proof. We have to prove that each inclusion property in IPAL is satis�ed by MAc . Letus suppose that Rt1 � : : : � Rtn � Rs1 � : : : � Rsm 2 IPAL , and (w;w0) 2 Rs1 � : : : � Rsm ,we have to show (w;w0) 2 Rt1 � : : : � Rtn , that is (� � � (wt1) � � �)tn � w0. Now, let usassume [t1] : : : [tn]' 2 w and let us show that ' 2 w0. Since [t1] : : : [tn]' � [s1] : : : [sm]' 2A, by Lemma II.3.1(4), M;w j=A [t1] : : : [tn]' � [s1] : : : [sm]'. Then, by Lemma II.3.1(2),[s1] : : : [sm]' 2 w. Therefore, since by hypothesis (� � � (ws1) � � �)sm � w0, we have ' 2 w0.2Proposition II.3.3 Let MAc be the canonical model given by De�nition II.3.2 then, forany formula ' and any world w, MAc ; w j=A ' if and only if ' 2 w.Proof. The proof is by induction of the structure of the formula ' and it is similar to the onesgiven for the modal systems presented in [Fari~nas del Cerro and Penttonen, 1988, page 132],[Halpern and Moses, 1992, page 327], and [Hughes and Cresswell, 1996, Chapter 6]). 2Now, we are in the position to give the proof of the Theorem II.3.1.Proof. (of Theorem II.3.1) Soundness. By Preposition II.3.1. Completeness. Assumethat ' is A-valid and ' is not SAL -provable. Then, ::' is not SAL -provable too and,hence, :' is SAL -consistent (see page 17). Now, by Lemma II.3.1, :' is contained in somemaximal consistent set, say w. Thus, by Proposition II.3.3, MAc ; w j=A :'. But this is acontradiction because we assumed by hypothesis that ' is A-valid. 2Remark II.3.3 It is worth noting that it is not the case that every model for SAL satis�esIPAL , even though every Kripke A-interpretation is a model of SAL (Theorem II.3.1).Example II.3.6 Let us suppose a modal language with MOD = ft; sg, VAR = fpg and let A bethe set of inclusion axioms f[t]' � [s]'g. Now, letM be the Kripke interpretation hW; fRt;Rsg; V i,where W = fw1; w2; w3g, Rt = f(w1; w2)g, Rs = f(w1; w3)g, and V (w2; p) = V (w3; p) = T.Clearly, since M does not satis�es IPAL = fRt � Rsg,M is not a Kripke A-interpretation, thoughit is possible to show that M is a model of IAL .66Before we show that each formula ' 2 FOR, we have M;w2 j=A ' i� M;w3 j=A ' by induc-tion on the structure of '. Then, it easy to see that for all formula ' and all world w 2 W ,M;w j=A [t]' � [s]' ([Hughes and Cresswell, 1996, Chapter 10]).



II.3. Axiomatization 19Nevertheless, if we look at the level of frame rather than at the level of Kripke in-terpretation, we can state that IAL is characterized by the class of all frame that satisfyIPAL .Theorem II.3.2 F is a frame for IAL if and only if F 2 FAL .Proof. (Only if) By Theorem II.3.1. (If) Let F = (hW; fRt j t 2 MODg) be a frame of IALand F 62 FAL . Then, for some pair of worlds in W , say w and w0, (w;w0) 2 Rs1 � : : : � Rsmbut (w;w0) 62 Rt1 � : : :�Rtn, such that [t1] : : : [tn]' � [s1] : : : [sm]' 2 A. Let M be a KripkeA-interpretation based on F in which the valuation function V is de�ned on p 2 VARso that V (w0; p) = T and, for all w00 2 W such that w00 6= w0, V (w00; p) = F. Now,since (w;w0) 62 Rt1 � : : : � Rtn , it is easy to see that M;w j= [t1] : : : [tn]p. Moreover,M;w j= :[s1] : : : [sm]p, hence, M;w 6j= [t1] : : : [tn]' � [s1] : : : [sm]'. This is a contradictionby Proposition II.3.1. 2
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Chapter IIIProof TheoryIn this chapter we develop an analytic tableau calculus for the class of propositional inclusionmodal logics. This calculus will be modular with respect to the set of inclusion axioms A.The method is based on the idea of using the characterizing axioms of the logic as \rewriterules" which create new paths among worlds in the counter-model construction.The calculus is an extension of the one proposed in [Nerode, 1989], which is closelyrelated to the systems of pre�xed tableaux presented in [Fitting, 1983]. As a di�erencewith [Fitting, 1983], worlds are not represented by pre�xes (which describe paths in themodel from the initial world), but they are given an atomic name and the accessibilityrelationships among them are explicitly represented in a graph.III.1 Preliminary notionsBefore introducing our tableau calculus, we need to de�ne some notions. First of all, wede�ne a signed formula Z of a language L as a formula pre�xed by one of the two symbolsT and F (signs). For instance, if ' is a formula of L then, T' and F' are signed formulaeof L.De�nition III.1.1 Let L be a propositional modal language and let WC be a countablenon-empty set of constant world symbols (or pre�xes), a pre�xed signed formula, w : Z,is a pre�x w 2 WC followed by a signed formula Z.We assume WC contains always at least the pre�x i, that is interpreted as the initialworld.De�nition III.1.2 Let L be a propositional modal language, an accessibility relation for-mula w �t w0, where t 2 MOD, is a binary relation between constant world symbols of WC .We say that an accessibility relation formula w �t w0 is true in a tableau branch if itbelongs to that branch. A tableau is a labeled tree where each node consists of a pre�xed21



22 III. Proof Theorysigned formula or of an accessibility relation formula. Intuitively, each tableau branchcorresponds to the construction of a Kripke interpretation that satis�es the formulae thatbelong to it. Intuitively, pre�xes are used to name worlds; a formula w : T' (w : F')on a branch of a tableau means that the formula ' is true (false) at the world w, in theKripke interpretation represented by that branch. Moreover, an accessible relation formulaw �t w0 true in a tableau branch means that in the Kripke interpretation represented bythat branch w0 is accessible form w by means of the accessibility relation of [t].Remark III.1.1 Using pre�xed formulae is very common in modal theorem proving (see[Gor�e, 1995] for an historical introduction on the topic). We would like to mention the well-known pre�xed tableau systems in [Fitting, 1983] and the TABLEAUX system in [Catach,1991]. In [Fitting, 1983], di�erently than our approach and the ones in [Nerode, 1989;Catach, 1991], a pre�x is a sequence of integers which represents a world as a path fromthe initial world to it. As a result, instead of representing explicitly worlds and accessib-ility relations of a Kripke interpretation as a graph, by means of the accessibility relationformulae, [Fitting, 1983] represents them as a set of paths, which can be considered asa spanning tree of the graph. Similar ideas are also used by other authors, such as theproposals in [Massacci, 1994; Governatori, 1995; Cunningham and Pitt, 1996; De Giacomoand Massacci, 1996].Conjunctive formulae� �1 �2T(' ^  ) T' T F(' _  ) F' F F(' �  ) T' F F(:') T' T' Disjunctive formulae� �1 �2F(' ^  ) F' F T(' _  ) T' T T(' �  ) F' T T(:') F' F'Necessary formulae�t �t0T([t]') T'F(hti') F' Possible formulae�t �t0F([t]') F'T(hti') T'Figure III.1: Uniform notation for propositional signed modal formulae.In order to simplify the presentation of the calculus and the proofs we use the well-known uniform notation for signed formulae. The uniform notation has been introducedby Smullyan in [Smullyan, 1968] and developed and extensively used for the modal logic byFitting in [Fitting, 1973; Fitting, 1983]. It classi�es non-atomic signed formulae accordingto their sign and main connective. Figure III.1 reports the complete classi�cation forpropositional modal formulae of the Chapter II. In the following, we will often use �, �,�t, and �t as formulae of the corresponding type.



III.2. A tableau calculus 23III.2 A tableau calculusA tableau is an attempt to build an interpretation in which a given formula is satis�able.Starting from a formula ', the interpretation is progressively constructed applying a set ofextension rules, which re
ect the semantics of the considered logic. At any stage, a branchof a tableau is a partial description of an interpretation. Usually, the tableau methods areused as a refutation method. Proving that a formula ' is a theorem of a certain logic meansto show that the attempt to satisfy :' leads to contradictory interpretations.In our case, the tableau method tries to build Kripke interpretations, one for eachbranch: the worlds are formed by the pre�xes that appear on the branch, the accessibilityrelations for the modalities are given by means of the accessibility relation formulae, andthe valuation function is given by means of the pre�xed signed atomic formulae.Now, we can present the set of extension rules. But, before doing this, we need tointroduce some terminology. In particular, we say that a pre�x w is used on a tableaubranch if it occurs on the branch in some accessibility relation formula, otherwise we saythat pre�x w is new.De�nition III.2.1 (Extension rules) Let L be a modal language and let A be a set ofinclusion axioms, the extension rules (tableau rules) for IAL are given in Figure III.2.w : �w : �1w : �2 �-rule w : �w : �1 j w : �2 �-rulew : �t w �t w0w0 : �t0 �-rule w : �tw0 : �t0w �t w0 �-rulewhere w0 is new on the branchw �s1 w1 � � � wm�1 �sm w0w �t1 w01...w0n�1 �tn w0 �-rulewhere w01; : : : ; w0n�1 are new on the branchand [t1] : : : [tn]' � [s1] : : : [sm]' 2 AFigure III.2: Tableau rules for propositional inclusion modal logics.The interpretation of the di�erent kinds of extension rules is rather easy taking intoaccount the possible-worlds semantics (see Section II.2). The rules for the formula of type� and � are the usual ones of classical calculus (a part from the pre�xes).A formula of type �t is true at world w if �t0 is true in all world w0 accessible from wby means of t. Therefore, if w : �t occurs on an open branch, we can add w0 : �t0 at the end



24 III. Proof Theoryof that branch for any w0 which is accessible from w by means of the accessible relationassociated with the modal operator [t] (i.e., w �t w0 is true in that branch).A formula of type �t is true at the world w by means of t if there exists a world w0accessible from w in which �t0 is true. Therefore, if w : �t occurs on an open branch, wecan add w0 : �t0 to the end of that branch, provided w0 is new and w �t w0 is true in it.The intuition behind the �-rule is quite simple. Let us suppose, for instance, that[t1] : : : [tn]' � [s1] : : : [sm]' 2 A is an axiom of our modal logic IAL . If w = w0 �s1 w1, : : : ,wm�1 �sm wm = w0 are true in a tableau branch then, wi is accessible from wi�1 by means ofsi in the Kripke interpretation represented by that branch. Since [t1] : : : [tn]' � [s1] : : : [sm]' 2A then, the corresponding inclusion property (II.1) must hold. Thus, there must exist a setof worlds w = w00, w01, : : : , w0n�1, w0n = w0 such that w0i is accessible from w0i�1 by means ofti. Thus, we can add the formulae w �t1 w01, : : : , w0n�1 �tn w0 to that branch provided thatw01, : : : , w0n�1 are new. Note that, in the case of m = 0 we can add the formulae w �t1 w01,: : : , w0n�1 �tn w.Remark III.2.1 It is worth noting that the �-rule works for the whole class of inclusionmodal logics as well as the proofs in the next section. This is the advantages of our approach.On the other hand, the proposed tableau calculus can also be thought as being modular withrespect to di�erent modal logics than inclusion modal logics. Indeed, it can be extended inorder to deal a wider class of modal logics as we show in Chapter VI.We say that a tableau branch is closed if it contains w : T' and w : F' for some formula'. A tableau is closed if every branch in it is closed. Now, we are in the position to de�nethe meaning of proof.De�nition III.2.2 Let L be a modal language and let A a set of inclusion axioms. Then,given a formula ', we say that a closed tableau for i : F', using the tableau rules ofFigure III.2, is a proof of ' (we also say that ' is T AL -provable).Example III.2.1 (The fox and the raven) We give here the proof of formula (3) from (1) and (2)in Example I.0.1. We use the symbol \�" to say that a tableau branch is closed.1. i : T[fox][praise]charmed(raven)2. i : T[fox][always](charmed(raven)� hsingidropped(cheese))3. i : F[fox][praise]hsingidropped(cheese)4. w1 : F[praise]hsingidropped(cheese)5. i �fox w16. w2 : Fhsingidropped(cheese)7. w1 �praise w28. w1 : T[praise]charmed(raven)9. w2 : Tcharmed(raven)10. w1 : T[always](charmed(raven)� hsingidropped(cheese))11. w1 �always w112. w1 �always w213. w2 : T(charmed(raven)� hsingidropped(cheese))



III.2. A tableau calculus 2514a. w2 : Fcharmed(raven)�14b. w2 : Thsingidropped(cheese)15b. w3 : Tdropped(cheese)16b. w2 �sing w317b. w3 : Fdropped(cheese)�We denote with \a" and \b" the two branches which are created by the application of �-rule tostep 13. Explanation: 1. and 2.: formula (1) and (2) from Example I.0.1; 3.: goal, formula (3)from Example I.0.1; 4. and 5.: from 3., by application of �-rule; 6. and 7.: from 4., by �-rule; 8.:from 1. and 5., by �-rule; 9.: from 8. and 7., by �-rule; 10.: from 2. and 5., by �-rule; 11.: by(A1) and �-rule; 12.: from 7. and 11., by axiom (A3) and �-rule; 13.: from 10. and 12., by �-rule;14a. and 14b.: from 13., by �-rule, branch \a" closes; 15b. and 16b.: from 14., by �-rule; 17b.:from 6 and 16b., by �-rule, branch \b" closes.
i w1 w2w3 w4wife(peter)peterjohn johnpeter�-rulepeter�-rule �-rulepeter�-rule�-rule�-ruleFigure III.3: �-rule as rewriting rule: counter-model construction of Example III.2.2.Example III.2.2 (The friends puzzle) We prove the �rst conjunct of the formula (5) in Ex-ample II.3.3 (the proof for the second conjunct is similar) from the set of formulae (1)-(4).1. i : T[peter]time2. i : T[wife(peter)]([peter]time� [john]time)3. i : T[peter][john]place4. i : T[peter][john](place ^ time � apointment)5. i : F[john][peter]appointment6. w1 : F[peter]appointment7. i �john w18. w2 : Fappointment9. w1 �peter w210. i �peter w311. w3 �john w2



26 III. Proof Theory12. w3 : T[john](place ^ time � appointment)13. w2 : T(place ^ time � appointment)14a. w2 : Tappointment�14b. w2 : F(place ^ time)15ba. w2 : Fplace16ba. w3 : T[john]place17ba. w2 : Tplace�15bb. w2 : Ftime16bb. i �wife(peter) w317bb. w3 : T([peter]time � [john]time)18bba. w3 : T[john]time19bba. w2 : Ttime�18bbb. w3 : F[peter]time19bbb. w4 : Ftime20bbb. w3 �peter w421bbb. i �peter w422bbb. w4 : Ttime�We denote with \a" and \b" the two branches which are created by the application of �-rule tostep 13., \ba" and \bb" the two ones that are created by the �-rule to step 14b., \bba" and \bbb"the two one created by the �-rule to step 17d. Explanation: 1., 2., 3., and 4.: formula (1), (2),(3), and (4) from Example II.3.3; 5.: goal, formula (5) from Example II.3.3; 6. and 7.: from 5., byapplication of �-rule; 8. and 9.: from 6., by �-rule; 10. and 11.: from 7. and 9., by axiom (A1) and�-rule; 12.: from 4. and 10., by �-rule; 13.: from 12. and 11., by �-rule; 14a. and 14b: from 13,by �-rule, branch \a" closes; 15ba. and 15bb.: from 14b., by �-rule; 16ba.: from 3. and 10, by�-rule; 17ba.: from 16ba. and 11, by �-rule, branch \ba" closes; 16bb.: from 10., by axiom (A6)and �-rule; 17bb.: from 2 and 16bb., by �-rule; 18bba. and 18bba: from 17bb., by �-rule; 19bba.:from 18bba. and 11., by �-rule, branch \bba" closes; 19bbb. and 20bbb.: from 18bbb., by �-rule;21bbb.: from 10. and 10bbb., by axiom (A3) and �-rule; 22bbb.: from 1. and 21bbb., by �-rule,branch \bbb" closes.Remark III.2.2 Note that, the �-rule can be regarded as a rewriting rule which createsnew paths among worlds according to the inclusion properties of the modal logic. Forinstance, in Example III.2.2, in steps 10. and 11. a new path, represented by i �peter w3and w3 �john w2, is created rewriting the path i �john w1, w1 �peter w2 (steps 7. and 9.),according to the inclusion property Rpeter � Rjohn � Rjohn � Rpeter. Moreover, the pathi �wife(peter) w3 comes from i �peter w3 as well as the path i �peter w4 comes from i �peter w3,w3 �peter w4 (see Figure III.3).Example III.2.3 (The bungling chemist) Assume that a chemical compound \c" is made pouringthe elements \a" and, then, \b" into the same beaker. The two elements \a" and \b" are not acid.



III.2. A tableau calculus 27make(c) w1i w2pour(a) pour(b)Figure III.4: �-rule as rewriting rule: counter-model construction of Example III.2.3.We use the modal operator [pour(a)] and [pour(b)] to represent the action of pouring the element\a" and \b", respectively, and the modal operator [make(c)] to denote the action of making theelement \c". Thus, we have the following axiom schemas:(A1) [pour(a)][pour(b)]'� [make(c)]';(A2) [pour(b)][pour(a)]'� [make(c)]'.The compound \c" is not acid, unless the two di�erent elements are not measured out carefully.Since the two elements alone are not acid, after pouring one into an empty beaker:(1) [pour(a)]:acidit remains not acid. Note that, however, from (1) we cannot prove the formula hpour(a)i:acidbecause the modal operator [pour(a)] were not serial. Now, we add the observation that it ispossible that after making the compound \c" it results acid:(2) hmake(c)iacidand so the formula hpour(a)i:acid is provable. Since also the formula hpour(a)ihpour(b)iacidfrom (1) and (2), we can deduce that, when the compound \c" is acid, a wrong measure of element\b" with respect to the amount of element \a" already in the beaker happened. The proof is thefollowing (see also Figure III.4):1. i : T[pour(a)]:acid2. i : Thmake(c)iacid3. i : F(hpour(a)i:acid ^ hpour(a)ihpour(b)iacid)4. w1 : Tacid5. i �make(c) w16. i �pour(a) w27. w2 �pour(b) w18a. i : Fhpour(a)i:acid9a. w2 : F:acid10a. w2 : T:acid�8b. i : Fhpour(a)ihpour(b)iacid9b. w2 : Fhpour(b)iacid10b. w1 : Facid�



28 III. Proof TheoryWe denote with \a" and \b" the two branches which are created by the application of �-rule tostep 3. Explanation: 1. and 2.: formula (1) and (2); 3.: goal; 4. and 5.: from 2., by applicationof �-rule; 6. and 7.: from 5., by axiom (A1) and �-rule; 8a. and 8b.: from 3.., by �-rule; 9a.:from 8a. and 6., by �-rule; 10a.: from 1. and 6., by �-rule, branch \a" closes; 9b.: from 8b. and 6.,by �-rule; 10b.: from 9b. and 7., by �-rule, branch \b" closes. 15b. and 16b.: from 14., by �-rule;III.3 Soundness and completenessIn this section we discuss the soundness and completeness of the tableau calculus presentedin the previous section. The proof follows the guideline of [Fitting, 1983, Chapter 8],and [Gor�e, 1995, Section 6].SoundnessIn order to prove the soundness we �rst prove that the tableau rules preserve the satis�abilitybut, to do this, we have to give more formally its meaning.Let L be a modal language and letA be a set of inclusion axioms. Given a set of pre�xedsigned formulae and accessibility relation formulae S of L and a Kripke A-interpretationM = hW; fRt j t 2 MODg; V i, we say v 2 W is Rt-idealizable if there is some v0 2 Wsuch that (v; v0) 2 Rt. Now, we name A-mapping a mapping I from the subset of constantworld symbols WC that occur in some accessibility relation formula of S to W such thatif w �t w0 2 S and I(w) is Rt-idealizable then (I(w); I(w0)) 2 Rt. We say S is A-satis�able under the A-mapping I in the Kripke A-interpretation M if, for each w : T',M; I(w) j=A ' and, for each w : F', M; I(w) 6j=A '. More generally, we call a set S ofpre�xed signed formulae and accessibility relation formulaeA-satis�able if S isA-satis�ableunder some A-mapping.Therefore, a branch of a tableau is A-satis�able if the set of pre�xed signed formulaeon it is A-satis�able, and a tableau is A-satis�able if some its branch is A-satis�able.Proposition III.3.1 Let T be an A-satis�able pre�xed tableau and let T 0 be the tableauwhich is obtained from T by means of one of the extension rules given in Figure III.2.Then, T 0 is also A-satis�able.Proof. The proof is made by giving an A-mapping between pre�xes which appear in atableau and possible worlds of an appropriate Kripke A-interpretation, whose accessibilityrelation respects the structure imposed by the accessibility relation formulae of the tableau.In particular, since a tableau is A-satis�able if one of its branches is, we can focus onapplication of the extension rules to that branch. The cases when the applied extensionrule is either the �-rule or the �-rule are simple.Let us assume that the branch S is A-satis�able under the A-mapping I in the KripkeA-interpretationM = hW; fRt j t 2 MODg; V i and the applied extension rule is the �-ruleto obtain S0. Let us suppose w : �t 2 S and S 0 = S [ fw0 : �t0g, where w0 is used on S.



III.3. Soundness and completeness 29Thus, M; I(w) j=A �t and I is already de�ned for w0 and (I(w); I(w0)) 2 Rt. It followsthat M; I(w0) j=A �t0 by de�nition of satis�ability relation.The applied extension rule is the �-rule to obtain S 0. Let us suppose w : �t 2 S andS0 = S [ fw : �t0; w �t w0g, where w0 2 WC is new on S and, therefore, I is not de�nedon w0. Now, M; I(w) j=A �t, hence, by de�nition of satis�ability relation, there exists av 2 W such that (I(w); v) 2 Rt and M;v j=A �t0. This means that I(w) is Rt-idealizableand, hence, it is enough to extend the de�nition of I by setting I(w0) = v.The applied extension rule is the �-rule to obtain S 0. Let us assume w �s1 w1, : : : ,wm�1 �sm w0 2 S and S 0 = S[fw �t1 w01; : : : ; w0n�1 �tn w0g, where [t1] : : : [tn]' � [s1] : : : [sm]'is inA and w01, : : : , w0n are new on S. Then, I is already de�ned for w, w1, : : : , wm�1, w0 and(I(w); I(w1)) 2 Rs1, : : : , (I(wm�1); I(w0)) 2 Rsm . Since M is a Kripke A-interpretation,there exist v1, : : : , vn�1 in W such that (I(w); v1) 2 Rt1, : : : , (vn�1; I(w0)) 2 Rtn. Thismeans that I(w) is Rt1-idealizable, therefore, we can extend the de�nition of I by settingI(w01) = v1. Now, I(w01) is Rt2-idealizable then, we can extend the de�nition of I by settingI(w02) = v2 and so on until I(w0n�1) = vn�1. This concludes the proof. 2The soundness is stated by the following.Theorem III.3.1 (Soundness) Let L be a modal language and let A be a set of inclusionaxiom schemas, if a formula ' of L is T AL -provable then, it is A-valid.Proof. By contradiction, let us assume that ' is T AL -provable and M;w 6 j=A ', for someKripke A-interpretation M = hW; fRt j t 2 MODg; V i. The tableau which starts withthe formula i : F' is A-satis�able by means of M by introducing an A-mapping I andsetting I(i) = w. By Proposition III.3.1, each possible tableau obtained from i : F' isA-satis�able, but this is a contradiction because ' is T AL -provable. 2CompletenessBefore showing the completeness result we describe a systematic tableau procedure thatproduces a tableau proof if one exists and, otherwise, it produces all information necessaryto construct a counter-model. Note that, strong completeness is not considered in thefollowing.Following [Fitting, 1983, Chapter 8], in order to deal with the pre�xed signed formulaeof the form w : �t and, in particular, to make sure w0 : �t0 has been introduced for eachconstant world symbol w0 such that w �t w0 belongs to the considered branch, whenever weapply �-rule to a pre�xed signed formula of type �t, we add a fresh occurrence of it at theend of that branch. Therefore, the systematic proof procedure may consider each formulaonly once. To remember this it labels that formula as �nished. Moreover, in the systematicprocedure, \updating a branch with a formula" means adding the formula to end of thebranch if it does not already appear on it, but doing nothing if the formula already appearson that one.



30 III. Proof TheoryDe�nition III.3.1 (Systematic tableau procedure) Let L be a model language andlet A be a set of inclusion axioms. Then, a systematic attempt to produce a proof of aformula ' of L in the modal logic IAL is constructed by the systematic procedure shown inFigure III.5.It is easy to see that the systematic procedure presented is fair: it considers each formulawhich may appear on the tableau (see [Gor�e, 1995, Section 6] for a similar argumentation).Hence, when we start with a formula i : F' either it terminates and every branch on it isclosed proving ' or it must provide an open branch which contains \enough information" toconstruct a counter-model to ', that is, a Kripke interpretation in which :' is satis�able.Note that it is possible to show the K�onig Lemma is applicable to tableau trees generatedby means of our systematic procedure, hence if the attempt to �nd a proof for ' fails then,an open branch must be exhibit (either �nite or in�nite).The meaning of \enough information" is speci�ed by the following de�nition.De�nition III.3.2 Let L, A, and S be a modal language, a set of inclusion axiom schemas,and a set of pre�xed signed and accessibility relation formulae in L, respectively. Then, wesay that S is A-downward satured if:1. for no atomic formula ' and no pre�x w, we have w : T' 2 S and w : F' 2 S;2. if w : � 2 S, then w : �1 2 S and w : �2 2 S;3. if w : � 2 S, then w : �1 2 S or w : �2 2 S;4. if w : �t 2 S, then w0 : �t0 2 S for all w0 such that w �t w0 2 S;5. if w : �t 2 S, then w0 : �t0 2 S for some w0 such that w �t w0 2 S;6. if w �s1 w1; : : : ; wm�1 �sm w0 2 S and [t1] : : : [tn]' � [s1] : : : [sm]' 2 A, thenw �t1 w01; : : :, w0n�1 �tn w0 2 S, for some w01; : : : ; w0n�1.Proposition III.3.2 Let ' be a formula of L be a formula in the modal logic language IALfor which the systematic procedure of Figure III.5 produces an open branch S then, S is aA-downward satured set.Proof. It is easy to verify that the systematic tableau procedure of Figure III.5 is closedwith respect to every extension rule of the calculus. As a result we have the thesis. 2Intuitively, this proposition together with the systematic procedure play the same roleof the maximal-consistent-set construction used in [Fitting, 1973]. Now, we are ready toconstruct our counter-model.De�nition III.3.3 (Canonical model) Given a modal language L, let S be a set of pre-�xed signed formulae and accessibility relation formulae in L that is A-downward satured.The canonical model MAc is the ordered triple hW; fRt j t 2 MODg; V i, where:



III.3. Soundness and completeness 31beginput i : F' at the origin;while the tableau is open andsome formula is not �nished do beginz := the closest to the root and leftmost not �nished formula;for each open branch S which passes through z docase z ofw : �:update S with w : �1 and w : �2;update S with w : �2w : �:split the end of S;update the left fork with w : �1;update the right fork with w : �2w : �t:for each w �t w0 2 S doupdate S with w0 : �t0;add w : �t to the end of Sw : �t:choose w0 new on the branch S;update S with w0 : �t0;update S with w �si w0w �si w0:for each [t1] : : : [tn]' � [s1] : : : [si] : : : [sm]' 2 A dofor each setfw0 �s1 w1; : : : ; w �si w0; : : : ; wm�1 �sm wmg � Ssuch that wj�1 �sj wj precedes w�siw0 along S,where 1 � j � m, (i 6= j), do beginchoose fw01; : : : ; w0n�1g new on the branch S;update S with w0 �t1 w01; : : : ; w0n�1 Rtn wmendend;label z �nishedendend.Figure III.5: A systematic tableau procedure for propositional inclusion modal logics.



32 III. Proof Theory� W = fw j w is used on Sg;� for each t 2 MOD, Rt = f(w;w0) 2 W �W j w �t w0 2 Sg;� for each p 2 VAR and each w 2 W , we setV (w; p) = �T if w : Tp 2 SF otherwiseProposition III.3.3 The canonical model MAc given by De�nition III.3.3 is a KripkeA-interpretation.Proof. We have to prove that each inclusion properties in IPAL is satis�ed by MAc . Let ussuppose that Rt1 � : : :�Rtn � Rs1 � : : :�Rsm 2 IPAL , and (w;w0) 2 Rs1 � : : :�Rsm , we haveto show (w;w0) 2 Rt1 � : : : � Rtn. If (w;w0) 2 Rs1 � : : : � Rsm then, by De�nition III.3.3,there exist w1, : : : , wm�1 in WC such that w �s1 w1, : : : , wm�1 �sm w0 belong to S. Now,since by hypothesis S is A-downward satured, by point (6) of De�nition III.3.2, w �t1 w01,: : : , w0n�1 �tn w0 2 S, for some w01, : : : , w0n�1 used in S, from which our thesis. 2The following lemma states that the canonical model which is build from an open branchobtained from the systematic attempt to prove a formula ' is a counter-model of ', that isit satis�es :' (model existence theorem).Lemma III.3.1 Given a modal language L, if S is a set of pre�xed signed formulae andaccessibility relation formulae of L that is A-downward satured then S is A-satis�able.Proof. Suppose S is A-downward satured. For every formula ' and every pre�x w, wehave that if w : T' 2 S then MAc ; w j=A ' and if w : F' 2 S then MAc ; w 6 j=A '. Thatis, the identity mapping I(w) = w is an A-mapping for S in the Kripke A-interpretationMAc . The proof is by induction on the structure of ' but, for simplicity, we use the uniformnotation of Smullyan already introduced. The case of formulae of type � and � are trivial.Let us suppose w : �t 2 S. Then, since S is A-downward satured, w0 : �t0 2 S for all w0 suchthat w �t w0 2 S. By inductive hypothesis, we have that MAc ; w0 j=A �t0, for each world w0such that (w;w0) 2 Rt and, hence,MAc ; w j=A �t by de�nition of satis�able relation. Now,let us assume, now, w : �t 2 S. Then, since S is A-downward satured, w0 : �t0 2 S forsome w0 such that w �t w0 2 S. By inductive hypothesis, we have that MAc ; w0 j=A �t0, forsome world w0 such that (w;w0) 2 Rt and, hence,MAc ; w j=A �t by de�nition of satis�ablerelation. 2Now, we are in the position to prove the completeness of the presented tableau calculus.Theorem III.3.2 (Completeness) Let L be a modal language and let A be a set ofinclusion axiom schemas, if a formula ' of L is A-valid then, ' is T AL -provable.Proof. We prove the contrapositive, by making use of the previous results. Let us assumethat ' is not T AL -provable. Then, the tableau for ' must contain some open branch S.By Proposition III.3.2, S is A-downward satured and, therefore, we can build a KripkeA-interpretation in which :' is satis�ed by Lemma III.3.1. Thus, ' is not A-valid. 2



Chapter IVDecidabilityIn the previous chapter we have de�ned a tableau method for the class of inclusion modallogics. The completeness result was obtained by means of a systematic tableau procedurethat always �nds a counter-model for a given formula if there exists one. As a result, thecompleteness establishes the semi-decidability of the inclusion modal logics. On the otherhand, we wonder if this class of logics is also decidable, that is if it is possible to de�ne adecision procedure which works for the whole class of propositional inclusion modal logics.This procedure should halt both if a counter-model exists and if a counter-model does notexist. Unfortunately, a such algorithm does not exist [Fari~nas del Cerro and Penttonen,1988]. Nevertheless, if more restricted classes of inclusion modal logics are considered, adecidability result can be established.In this chapter, we show some undecidability and decidability results about inclusionmodal logics. In particular, in order to show our undecidability results, we use the Fari~nasdel Cerro and Penttonen's technique for associating an inclusion modal logic to a formalgrammar, while we use the Fischer and Ladner's �ltration method in order to show ourdecidability result. It is interesting to note that our results about (un)decidability are inthe line of the ones established in [Fischer and Ladner, 1979; Harel et al., 1983; Hareland Paterson, 1984] for the Propositional Dynamic Logic [Harel, 1984; Kozen and Tiuryn,1990].IV.1 Grammars, languages and modal logicsIn the line of [Fari~nas del Cerro and Penttonen, 1988], in this section we give a method forassociating with an inclusion modal logic to a formal grammar. This allows to prove someresults about undecidability and decidability of inclusion modal logics.A grammar is a quadruple G = (V; T; P; S), where V and T are disjoint �nite sets ofvariables and terminals, respectively. P is a �nite set of productions, each production is ofthe form � ! �, where the form of � and � depends on the type of grammar as reportedin Figure IV.1. Finally, S 2 V is a special variable called the start symbol [Hopcroft andUllman, 1979]. 33



34 IV. DecidabilityClass of language Form of productiontype-0 � 2 (V [ T )�V (V [ T )�� 2 (V [ T )�type-1 � 2 (V [ T )�V (V [ T )�� 2 (V [ T )+j�j � j�jtype-2 � 2 V� 2 (V [ T )�type-3 � 2 V� = �A or � = �� 2 T �, A 2 VFigure IV.1: Production grammar form for di�erent classes of languages. We denote by\L�" the Kleene closure of the language L (i.e. it denotes zero or more concatenation ofL) and by \+" the positive closure of L (i.e. it denotes one or more concatenation of L)[Hopcroft and Ullman, 1979].We say that the production � ! � is applied to the string 
�� to directly derive ���in grammar G, written 
�� )G 
��. The relation derives, )�G, is the re
exive, transitiveclosure of )G. The language generated by a grammar G, denoted by L(G) is the set ofwords fw 2 T � j S )�Gg.Given a tableau branch S, let w0 and wn two pre�xes used on S, a path �(w0; wn) is acollection fw0 �t1 w1, w1 �t2 w2, : : : , wn�1 �tn wng of accessibility relation formulae in S.We say that the path �(w0; wn) directly �-derives the path �0(w0; wn) if the path �0(w0; wm) isobtained from �(w0; wn) by means of the application of the �-rule to a sub-path of �(w0; wn).The relation �-derive is the re
exive, transitive closure of the relation directly �-derive.Example IV.1.1 Let us consider the structure of Figure III.3. Then, for instance, the path�1(i; w2) = fi �john w1, w1 �peter w2g directly �-derives the path �2(i; w2) = fi �peter w3,w3 �john w2g, the path �3(i; w4) = fi �peter w3, w3 �peter w4g directly �-derives the path�4(i; w4) = fi �wife(peter) w3, w3 �peter w4g, and the path �1(i; w2) �-derives the path �5(i; w2) =i �wife(peter) w3, w3 �john w2.Due to the similarity between inclusion modal axioms and the production rules in agrammar, we can associate to a given grammar a corresponding inclusion modal logic.More precisely, following [Fari~nas del Cerro and Penttonen, 1988], given a formal grammarG = (V; T; P; S), we de�ne an inclusion modal logic IAL based on G as follows:� the set MOD is (V [ T );� the set A of inclusion axioms contains a schema [t1] : : : [tn]' � [s1] : : : [sm]' for eachproduction t1 � � � tn ! s1 � � � sm 2 P .



IV.1. Grammars, languages and modal logics 35We call unrestricted, context sensitive, context-free, and right-regular modal logic an inclu-sion modal logic based on a type-0, type-1, type-2, and type-3 grammar, respectively.Example IV.1.2 Consider, for instance, the grammar G, where:� V = fAg;� T = fbg;� P = fA! "; A! A A;A! b Ag;� S = A.Then, the inclusion modal logic IAL based on G contains the inclusion axioms:� [A]' � ',� [A]' � [A][A]', and� [A]' � [b][A]'(i.e., IAL is axiomatized by KT4(A) + 4M(A; b)).Remark IV.1.1 Note that, the class of unrestricted inclusion modal logics is equivalentto the class of inclusion modal logics.If �(w0; wn) is the path fw0 �t1 w1, : : : , wn�1 �tn wng, we denote by �(w0; wn) thesequence of labels t1 � � � tn (called word). It is easy to verify the following proposition.Proposition IV.1.1 If �(w0; wn) is a path in a tableau branch starting from a formulaof an inclusion modal logic IAL based on a grammar G then, �(w0; wn) �-derives a path�0(w0; wn) if and only if �0(w0; wn))�G �(w0; wn).An interesting case (that will be used later on) is the following. Consider the type-3grammar G = (fSg; T; P; S), where the set P contains the productions S ! t and S ! S tfor each t 2 T , then L(G) = T �. Let IAL be the inclusion modal logic based on G and letus consider the formula 'T (q) = t̂2T(htiq ^ [S]htiq)where q 2 VAR. Then, a tableau starting from i : T'T (q) is formed by only one branchthat goes on forever. The interesting is that for each word x 2 T � the tableau branchcontains a path �(i; w) such that �(i; w) = x (see Figure IV.2).



36 IV. Decidabilityit1 ti tn: : : : : :t1 ti tn t1 t1ti titn tn: : : : : : : : : : : : : : : : : :... ... ...Figure IV.2: The Kripke structure generated by proving 'T (q).IV.2 Undecidability results for inclusion modal logicsThe tableau method developed in the previous chapter allows to generalize the Fari~nasdel Cerro and Penttonen's observations about the correspondence between the membershipproblem and the validity problem of inclusion logics as stated by the following theorem.Theorem IV.2.1 Given a grammar G = (V; T; P; S), let IAL be the inclusion modal logicbased on G. Then, for any propositional variable p of L, j=A [S]p � [s1] : : : [sm]p if andonly if S )�G s1 � � � sm, where the si's are in V [ T .Proof. (If part) Let us suppose that j=A [S]p � [s1] : : : [sm]p, then, the tableau startingfrom:1. i : F([S]p � [s1] : : : [sm]p)closes by Theorem III.3.2. Now, by applying the �-rule we obtain:2. i : T[S]p3. i : F[s1] : : : [sm]pand applying m times the �-rule:4. w1 : F[s2] : : : [sm]p5. i �s1 w1: : : : : :2m+ 3. wm : Fp2m+ 4. wm�1 �sm wmSince, by hypothesis, the above tableau closes, the only way for this to happen is that aftera �nite number of applications of the �-rule we have the pre�xed signed formula wm : Tp inthe branch. This happens if the path �(i; wm) = fi �s1 w1, : : : , wm�1 �sm wmg �-derives thepath �0(i; wm) = fi �S wmg, that is, if there exits a derivation �0(i; wm) = S )�G �(i; wm) =s1 � � � sm by Proposition IV.1.1. (Only if part) Assume that there exists a derivation



IV.2. Undecidability results for inclusion modal logics 37S )�G s1 � � � sm. Since a systematic attempt to prove the formula i : F([S]p � [s1] : : : [sm]p)generates a path �(i; wm) = fi �s1 w1, : : : , wm�1 �sm wmg and �(i; wm) �-derives the path�0(i; wm) = fi �S wmg, after a �nite number of steps, the only branch of the tableau closesby wm : Tp and wm : Fp. 2Thus, taking into account that it is undecidable to establish if a word belongs to thelanguage generated by an arbitrary type-0 grammar [Hopcroft and Ullman, 1979], we havethe following corollary.Corollary IV.2.1 The validity problem for the class of inclusion modal logics is undecid-able.Indeed, this result has already been shown in [Fari~nas del Cerro and Penttonen, 1988].However, Fari~nas del Cerro and Penttonen were not able to prove Theorem IV.2.1 forthe modal logics based on type-0 grammars. This is why they focused on a subclassof the inclusion modal logics, that they call Thue logics, proving the undecidability ofinclusion modal logics by showing that the Thue logics are undecidable. A Thue logic is aninclusion modal logic based on a Thue system [Book, 1987], that is a type-0 grammar whoseproductions are symmetric. Thus, the Thue logics are inclusion modal logics characterizedby axiom schemas where the implication is replaced by the biimplication. Since the wordproblem for the Thue systems is proved undecidable (see [Book, 1987]), proving that aformula is a theorem of a Thue logic will be undecidable.1In [Fari~nas del Cerro and Penttonen, 1988] some problems are left open. We wonder ifmore restricted classes of logics (e.g. modal logics based on context sensitive, context-free,regular grammars) are decidable. In the following, we show that also the class of contextsensitive and context-free inclusion modal logics are undecidable by reducing the solvabilityof the problem L1 \ L2 6= ; (where L1 and L2 are languages generated by either type-1or type-2 grammars) to the satis�ability of formulas of context sensitive and context-freeinclusion modal logics.Theorem IV.2.2 Let G1 = (V1; T1; P1; S1) and G2 = (V2; T2; P2; S2) be two grammarssuch that V1 \V2 = ; and T1 = T2 6= ;. Then, there exists an inclusion modal logic IAL anda formula ' of L such that j=A ' if and only if L(G1) \ L(G2) 6= ;.Proof. Let us de�ne the grammar G = (V; T; P; S), where:� V = V1 [ V2 [ fSg;� T = T1 = T2;� P = P1 [ P2 [ fS ! t; S ! S t j t 2 Tg;1The Thue systems have also been used in [Krancht, 1995] to de�ne logics similar to those studied in[Fari~nas del Cerro and Penttonen, 1988], which, however, are not in the class of inclusion modal logicsbecause modal operators enjoy some further properties like seriality and determinism. In [Krancht, 1995]undecidability results are proved for this class of logics.



38 IV. Decidability� S 62 V1 and S 62 V2.Then, we assume as IAL the inclusion modal logic based on G and' = 'T (q) � ([S1]p � hS2ip)where p; q 2 VAR and p 6= q. (If part) Suppose that j=A ' then, the tableau starting from:1. i : F('T (q) � ([S1]p � hS2ip))must close. Now, by applying twice the �-rule we obtain:2. i : T'T (q)3. i : T[S1]p4. i : FhS2ipSince, by hypothesis, the above tableau closes, the only way for this to happen is that after a�nite number of steps we must have a pre�xed signed formula w : Tp and a pre�xed signedformula w : Fp for some pre�x w and, therefore, a path �(i; w) that �-derives both the path�1(i; w) = fi �S1 wg and the path �2(i; w) = fi �S2 wg. Thus, there is both a derivation�1(i; w) = S1 )�G �(i; w) and a derivation �1(i; w) = S2 )�G �(i; w) by Proposition IV.1.1,i.e, �(i; w) 2 L(G1) and �(i; w) 2 L(G2) (S1 )�G �(i; w) and (S2 )�G �(i; w)), i.e. �(i; w) 2L(G1) \ L(G2). (Only if part) Assume that L(G1) \ L(G2) 6= ; then, there exists a wordx 2 T � such that x 2 L(G1), that is S1 )�G1 x, and x 2 L(G2), that is S2 )�G2 x. Since asystematic attempt to prove the formula i : T'T (q) can generate a path �(i; w), for somepre�x w, such that �(i; w) = y, for any y 2 T �, after a �nite number of steps we have apath �0(i; w0) such that �0(i; w0) = x. Thus, we have also a path �01(i; w0) = fi �S1 w0g anda path �02(i; w0) = fi �S2 w0g by application of a �nite number of the �-rule. This is enoughto close the only branch of the tableau by w0 : Tp and w0 : Fp. 2Thus, taking into account that if G1 and G2 are two arbitrary type-1 (type-2) grammarsthen it is undecidable if L(G1) \ L(G2) 6= ; [Hopcroft and Ullman, 1979], we have thefollowing corollary.Corollary IV.2.2 The validity problem for the class of context-free inclusion modal logicis undecidable.Remark IV.2.1 Since the problem if L1 \ L2 6= ; is undecidable also for the class ofdeterministic type-2 grammars, the validity problem for the inclusion modal logics basedon this kind of grammars is undecidable.



IV.3. A decidability result for inclusion modal logics 39IV.3 A decidability result for inclusion modal logicsIn the previous section we have shown that it is not possible to supply a general decisionprocedure for the class of inclusion modal logics based on unrestricted, context sensitiveand context-free grammars. In this section, instead, we give a decidability result for theinclusion modal logics based on right type-3 formal grammars, that is, those ones basedon grammars whose productions are of the form A! � or A! � A0, where A and A0 arevariables and � a string of terminals. In order to do this, we modify the �ltration methodfor dynamic logic extending the de�nition of Fisher-Ladner closure [Fischer and Ladner,1979].Remark IV.3.1 Let G = (V; T; P; S) be a right type-3 grammar and let A be a variable.Then, every sentential form derived from A has the form �X, where � 2 T � and eitherX 2 T or X 2 V .De�nition IV.3.1 Let G = (V; T; P; S) be a right type-3 grammar and let A be a variable.Then, a derivation of a sentential form �X from A is said to be non-recursive if and onlyif each variable of V appears in the derivation, apart from �X, at most once.Some useful properties about non-recursive derivations of right type-3 grammars arethe following.Proposition IV.3.1 Let G = (V; T; P; S) be a right type-3 grammar, let A0 be a variableand let A0 )�G �1 � � � �nAn )G �1 � � � �n�n+1An+1 be a derivation, where either An+1 2 Vor An+1 2 T and Ai ! �i+1Ai+1 2 P , for i = 0; : : : ; n. Then, there exists a non-recursivederivation A0 )�G �1 : : : �i�n+1An+1, 0 � i � n.Proof. If the derivation A0 )�G �1 � � ��nAn )G �1 � � � �n�n+1An+1 is not non-recursivethen, there are Ai and Aj, with 0 � i < j � n, such that Ai = Aj. That is, A0 )�G�1 � � ��iAi )�G �1 � � � �i � � ��jAj )�G �1 � � ��n�n+1An+1. Thus, there exists a derivationAj )�G �j+1 � � ��n+1An+1 and, therefore, a derivation A0 )�G �1 � � ��iAj )�G �1 � � � �i�j+1� � ��n+1An+1. Now, if this derivation is non-recursive we have our thesis otherwise werepeat the above transformation on the new derivation just obtained. Now, the number ofvariables that appear on the original derivation is �nite and it decreases at any stage ofthe transformation, moreover, the cardinality of the set of variables is also �nite. Thus, theprocess always terminates leading to a non-recursive derivation. 2Proposition IV.3.2 Let G = (V; T; P; S) be a right type-3 grammar. Then, the numberof non-recursive derivations that start with a variable of G is bounded.Proof. The maximum length (number of directly derivation steps) of a non-recursive deriv-ation is equal to the cardinality jV j of the set of variables V . Then, let n be the maximumnumber of productions associated to a variable of V , a bound of the number of di�erentnon-recursive derivations starting from a �xed variables is PjV ji=1 ni. Therefore, the num-ber of di�erent non-recursive derivations that start with a variable of G is bounded byderG = jV j �PjV ji=1 ni. 2



40 IV. DecidabilityLet G = (V; T; P; S) be a right type-3 grammar and IAL the regular inclusion modallogic based on G. Then, we de�ne the Fischer-Ladner closure FL(') of a formula ' of L(that uses only existential modal operators, or, and negation2) as follows:� if  _  0 2 FL(') then  2 FL(') and  0 2 FL(');� if : 2 FL(') then  2 FL(');� if hti 2 FL(') and t 2 T then  2 FL(');� if hAi 2 FL('), A 2 V , and there is a non-recursive derivation A )�G t1 � � � tnX,where t1, : : : , tn 2 T and either X 2 T or X 2 V , then ht1i : : : htnihXi 2 FL(').It is worth noting that the Fischer-Ladner closure is �nite for any formula of a rightregular inclusion modal logic because the number of non-recursive derivations is �nite if thelength of the formula ' is �nite. In particular, let j'j be the length (number of symbols) of' then, jFL(')j � j'j �m � jV j � derG, where m is the maximum length of a production ofthe grammar.3Let IAL be the inclusion modal logic based on a type-3 grammar G = (V; T; P; S) andconsider a Kripke A-interpretation M = hW; fRt j t 2 MODg; V i and a formula ' of L.Then, we de�ne an equivalence relation � on state of W byw � w0 i� 8 2 FL(');M;w j=A  ,M;w0 j=A  we use the notation w for this equivalence class. The quotient Kripke A-interpretationMFL(') = hW FL('); fRFL(')t j t 2 MODg; V FL(')i(the �ltration of M through FL(')) is de�ned as follows:� W FL(') = fw j w 2 Wg;� V FL(')(w; p) = V (w; p), for any p 2 VAR and w 2 W FL(');� RFL(')t � f(w;w0) 2 W FL(') �W FL(') j (w;w0) 2 Rtg.Moreover, RFL(')t is closed with respect to the inclusion axioms, that is, for eachinclusion axiom schema [t]� � [s1] : : : [sm]� if (w0; w1) 2 RFL(')s1 , : : : , (wm�1; wm) 2RFL(')sm then the pair (w0; wm) belongs to the accessibility relation RFL(')t .The following lemma states that when we insert any extra binary relation between wand w0 in a accessibility relation RFL(')t of MFL('), in order to satisfy the relative set ofinclusion properties IPAL , it is not the case that there was any hti 2 FL(') which wastrue at w while  itself was false at w0 (see [Hughes and Cresswell, 1984, page 137]).2Since all other connectives can be de�ned in terms of these, this is not a restrictive condition.3In fact, each subformulae of ' could be introduced in FL('). Every subformulae with associated everypossible sequence of modalities that comes from a non-recursive derivation whose length is at the maximumm times jV j.



IV.3. A decidability result for inclusion modal logics 41Lemma IV.3.1 For all  = hti 0 2 FL('), if (w;w0) 2 RFL(')t and M;w0 j=A  0 thenM;w j=A hti 0.Proof. Assume that  = hti 0 2 FL(') then,  0 2 FL(') by de�nition of Fischer-Ladnerclosure. Now, there are two cases, which depend on whether (w;w0) 2 RFL(')t has beenadded to initial de�nition of �ltration because an inclusion axiom schema of the form[t]� � [s1] : : : [sm]� 2 A or not.Assume that (w;w0) 2 RFL(')t has not been added. Then, by de�nition of RFL(')t , thereexist w1, w01 2 W such that (w1; w01) 2 Rt, w1 � w, and w01 � w0. Since M;w0 j=A  0,M;w01 j=A  0 because  0 2 FL(') and w0 � w01. Hence,M;w1 j=A hti 0 because (w1; w01) 2Rt. Finally, M;w j=A hti 0, because hti 0 2 FL(') and w � w0.Assume that (w;w0) 2 RFL(')t but (w;w0) 62 Rt. The pair (w;w0) has been added inRFL(')t by the closure operation in order to satisfy an inclusion property of an inclusionaxiom of the form [t]� � [s1] : : : [sm]� 2 A. Then, there exist w1, : : : , wm�1 such that(w0; w1) 2 RFL(')s1 , : : : , (wm�1; wm) 2 RFL(')sm , where w0 is w and wm is w0. Now, in turn,for each pair (wi�1; wi) 2 RFL(')si , for i = 1; : : : ; n, either (wi�1; wi) has been added by theclosure operation or not. Going on this way, we have (v0; v1) 2 RFL(')t1 , : : : , (vh�1; vh) 2RFL(')th such that the corresponding pairs belong Rt and t )�G t1 � � � th, v0 is w0 (that, inturn, is w), and vh is wm (that, in turn, is w0). By construction, there exist v0i�1; v00i 2 Wsuch that (v0i�1; v00i ) 2 RFL(')ti and vi�1 � v0i�1 and vi � v00i , for i = 1; : : : ; h.Assume that t )�G t1 � � � th is the derivation A0 )G �1A1 )G : : : )G �1 � � � �nAn )G�1 � � ��n�n+1, where A0 is t and An ! �n+1 and Ai�1 ! �iAi, for i = 1; : : : ; n, are inP , and that �n+1 is d1 � � � dr (= th�r+1 � � � th). We know that M;vh j=A  0 and we haveto prove that M;vh�r+1 j=A hd1i : : : hdri 0. Assuming that hd1i : : : hdri 0 2 FL(') then,we have that M;v00h j=A  0 since vh � v00h and  0 2 FL('). Since (v0h�1; v00h) 2 Rth andM;v00h j=A  0 then, M;v0h�1 j=A hdri 0 and, since hdri 0 2 FL(') and v0h�1 � v00h�1, wehave that M;v00h�1 j=A hdri 0. We can proceed so on until M;v00h�r+1 j=A hd1i : : : hdri 0and M;vh�r+1 j=A hd1i : : : hdri 0 since vh�r+1 � v00h�r+1. Now, since the inclusion axiom[An]� � [d1] : : : [dr]� belongs to A, M;vh�r+1 j=A hAni 0. We can repeat the above argu-mentation for all derivation steps from A0 obtaining at the end our thesisM;w j=A hA0i 0,that is, M;w j=A hti 0.We have now to prove that hd1i : : : hdri 0 2 FL('). By hypothesis hA0i 0 2 FL(') (A0is t) and A0 )�G �1 � � � �n�n+1. Then, by Proposition IV.3.1, there exists a non-recursivederivation A0 )�G ��n+1, for some � 2 T �. By de�nition of Fischer-Ladner closure, sincehA0i 0 2 FL('), we have ht01i : : : ht0n0ihd1i : : : hdri 0 2 FL('), where � is t01 � � � t0n0 and �n+1is d1 � � � dr, and, hence, hd1i : : : hdri 0. 2Lemma IV.3.2 (Filtration Lemma) For all  2 FL('),M;w j=A  if and only if MFL('); w j=A  :Proof. The proof is by induction on the structure of  . (Base step) For  2 VAR thethesis holds trivially. (Induction step) The cases  =  0 _  00 and  = : 0 are immediate



42 IV. Decidabilityfrom the de�nitions. Assume that  = hti 0. (If part) If M;w j=A hti 0 then there existsw0 such that M;w0 j=A  0 and (w;w0) 2 Rt. By de�nition, we have (w;w0) 2 RFL(')t and,by induction hypothesis, MFL('); w0 j=A  0. Hence MFL('); w j=A hti 0. (Only if part)If MFL('); w j=A hti 0 then, there exists w0 2 W FL(') such that MFL('); w0 j=A  0 and(w;w0) 2 RFL(')t . By inductive hypothesis, we have thatM;w0 j=A  0 and, by Lemma IV.3.1since (w;w0) 2 RFL(')t , M;w j=A hti 0. 2Theorem IV.3.1 (Small Model Theorem) Let ' be a satis�able formula of an inclu-sion modal logic IAL based on a type-3 grammar G. Then, ' is satis�ed in a KripkeA-interpretation with no more that 2jFL(')j states.Proof. If ' is satis�able, then there is a Kripke A-interpretation M and a state w in Msuch that M;w j=A '. Let FL(') be the Fischer-Ladner closure of '. By Lemma IV.3.2,MFL('); w j=A '. Moreover, since jFL(')j is bounded by Proposition IV.3.2, then the �l-tration through FL(') is a Kripke interpretation having at most 2jFL(')j worlds (equivalenceclasses of worlds in the initial model), that being the maximum number of ways that worldscan disagree on sentences in FL('). 2Remark IV.3.2 A modal logic is decidable if it has the �nite model property (i.e., if andonly if each non-theorem of the modal logic is false in some �nite Kripke interpretationof the logic) and it is axiomatizable by a �nite number of axiom schemas. In fact, inthis case there is both a positive and negative test for theorem-hood in the logic. Thepositive test is given by generating all the proofs of theorems in some de�nite order (thisis possible because the axiomatization is �nite, in our case also by the completeness of thetableau calculus), while for the negative test we can give a complete enumeration of the�nite Kripke interpretations (models) since each Kripke interpretation is �nite. Then, if aformula is a non-theorem of the logic it is false in some �nite Kripke interpretation and to�nd this one we can examine each Kripke interpretation of the logic (a �nite task since theKripke interpretation is �nite and the logic is �nitely axiomatized) checking if the selectedKripke interpretation falsify the formula (a �nite task since the model is �nite) [Hughesand Cresswell, 1984; Chellas, 1980].As a corollary, since each inclusion modal logic based on a right regular grammar isaxiomatizable by a �nite number of axiom schemas and, by Theorem IV.3.1, it is determinedby a class of �nite standard Kripke interpretations and, hence, it has the �nite modelproperty (see [Hughes and Cresswell, 1984, Chapter 8] and [Chellas, 1980, Chapter 5]), wehave the following corollary.Corollary IV.3.1 The validity problem for the class of right-regular inclusion modal logicsis decidable.As a �nal remark, it is worth noting that the systematic procedure given in the previouschapter is not a decision procedure: it goes on forever also when it deals with a decidablelogic.



IV.3. A decidability result for inclusion modal logics 43b b bw1i w2 w3a a aa aa : : :Figure IV.3: Non-terminating Kripke A-interpretation construction of Example IV.3.1.Example IV.3.1 Let us consider the modal logic whose set A of inclusion axioms consists of:(A1) [a]' � [b][a]'(A2) [a]' � [b]'Despite the fact IAL is decidable (it belongs to the class of right regular inclusion modal logics),the systematic attempt to prove the formula hbip � hai[b]p runs forever (see also Figure IV.3):1. i : F(hbip � hai[b]p)2. i : Thbip3. i : Fhai[b]p4. w1 : Tp5. i �b w16. i �a w17. w1 : F[b]p8. w2 : Fp9. w1 �b w210. w1 �a w210. i �a w211. w2 : F[b]p12. w3 : Fp13. w2 �b w314. w2 �a w315. w1 �a w316. i �a w317. w3 : F[b]p: : : : : :There is no hope to close the branch continuing the computation: an in�nite sequence of worlds isintroduced.



44 IV. Decidability



Chapter VFirst-OrderIn this chapter we extend the propositional modal languages in order to deal with the pre-dicative case. First of all, we introduce the syntax and, then, the possible-worlds semantics.With regard to model theory, we associate with each possible world a domain of individu-als and we have chosen to impose a monotonicity condition on them with respect to theaccessibility relations. Afterwards, we update the tableau calculus presented in Chapter IIIin order to deal with quanti�ers.V.1 SyntaxThe alphabet of a �rst-order multimodal language LFO contains:� a countable set VAR of individual variables (variable for short);� for each n � 0, a countable set FUNCn of n-place function symbols;� for each n � 0, a nonempty countable set PREDn of n-place predicate symbols;� the classical connectives \ ^ " (and), \_" (or), \:" (not), \ � " (implies);� the universal quanti�er \8" and existential quanti�er \9";� a modal operator constructor \[:]";� left and right parentheses \(", \)", and a comma \;".The set TERM of terms is de�ned to be the least set that satis�es the following condi-tions:� VAR � TERM;� if t1, : : : , tn 2 TERM and f 2 FUNCn then f(t1; : : : ; tn) 2 TERM.45



46 V. First-OrderA 0-place function symbol is a constant symbol; the term c() is written as c. We will assumethat LFO contains at least one constant symbol. A term is a ground if it does not containany variable.The set FOR of formulae of a modal language LFO is de�ned to be the least set thatsatis�es the following conditions:� if t1; : : : ; tn 2 TERM and p 2 PREDn then p(t1; : : : ; tn) 2 FOR;� if '; 2 FOR then (:'), (' ^  ), (' _  ), (' �  ) 2 FOR;� if x 2 VAR and ' 2 FOR then ((8x)'), ((9x)') 2 FOR;� if ' 2 FOR and t 2 TERM then ([t]') 2 FOR.A formula of the form p(t1; : : : ; tn) is called atomic formula.We omit the parentheses if they are unnecessary: we use the already de�ned precedencebut where the quanti�ers have the highest.The meaning of free and bound occurrence of variables are the usual ones. A statementis a formula in which all occurrences of all variables are bound. The substitution of a termt for a free variable x in the formula ', denoted by '[t=x], is de�ned as usual: all freeoccurrences of x in ' are substituted by t with the proviso that free variables in t are notbound after the substitution. Observe that the term t replaces also the free variables xbelonging to the terms of the modalities.1V.2 Possible-worlds semanticsIn a �rst-order Kripke interpretation each world is associated with a domain of quanti�ca-tion. We will not assume that domains are constant. The only restriction we put on themis that the domain of a world w is contained in the domain of all worlds reachable fromw, i.e. domains are increasing (or monotone).2 In each Kripke interpretation we will �x anon-empty set D of possible objects. The domain of each world will be a subset of D.De�nition V.2.1 (First-order Kripke interpretation) Given a modal language LFO,a �rst-order Kripke interpretation M is an ordered tuple hW;R;D;J ; V i, where:� W is a non-empty set of worlds;� D is a non-empty set of objects;� J is a function from W to non-empty subsets of D (it associates a domain with eachworld), satisfying the following condition: for all w;w0 2 W , if (w;w0) 2 R3 thenJ (w) � J (w0);1For instance, ((8x)[t(y)]p(x; y))[a=y] is the formula ((8x)[t(a)]p(x; a)).2In particular, the Barcan formula BF (t) : ((8x)[t]') � [t](8x)' does not hold.3That is, if there exists a parameter d 2 D such that (w;w0) 2 Rd.



V.2. Possible-worlds semantics 47� V is an assignment function, such that:{ for each variable x 2 VAR of LFO, V (x) 2 D;{ for each function symbol f 2 FUNCn of LFO, V (f) 2 Dn ! D and, for eachworld w 2 W , the domain J (w) is closed with respect to the interpretation off ;4{ for each predicate symbol p 2 PREDn of LFO and each world w 2 W , V (p;w) �Dn; i.e., V (p;w) is a set of n-tuples hd1; : : : ; dni, where each di is an elementin D;� R is the accessibility relation. It is parameterized with respect to domain elements,i.e. for each domain element d 2 D the accessibility relation Rd is a binary relationon W .Interpretation for terms in the domain is de�ned as usual from the interpretation of vari-ables and function symbols. We say that M is based on the frame (W;R).We use FLFO and MLFO to denote the class of frame and the class of Kripke interpret-ations with LFO as underlying language.Let M be a Kripke interpretation, let w 2 W be a world, and let V be an assignmentfunction. Then, we say that a formula ' of LFO is satis�ed by V in the Kripke interpretationM at w, denoted by M;w j=V ', if the following conditions hold:� M;w j=V p(t1; : : : ; tn) i� hV (t1); : : : ; V (tn)i 2 V (p;w);� M;w j=V :' i� M;w 6j=V ';� M;w j=V ' ^  i� M;w j=V ' and M;w j=V  ;� M;w j=V ' _  i� M;w j=V ' or M;w j=V  ;� M;w j=V ' �  i� M;w 6j=V ' or M;w j=V  ;� M;w j=V (8x)' i� for every variable assignment V 0 that agrees with V everywhereexcept on x, and such that V 0(x) 2 J (w), M;w j=V 0 ';� M;w j=V (9x)' i� for some variable assignment V 0 that agrees with V everywhereexcept on x, and such that V 0(x) 2 J (w), M;w j=V 0 ';� M;w j=V [t]' i� for all w0 2 W such that (w;w0) 2 RV (t), M;w0 j=V ';� M;w j=V hti' i� there is a w0 2 W such that (w;w0) 2 RV (t), M;w0 j=V '.4That is, for each n-ary function f and for d1; : : : ; dn 2 J (w), V (f)(d1; : : : ; dn) 2 J (w).



48 V. First-OrderA formula' of a language LFO is satis�able in a Kripke interpretationM = hW;R;D;J ;V i if M;w j=V ' for some w 2 W with every term of ' interpreted in J (w). We say that' is valid in M if :' is not satis�able. Moreover, a formula ' is satis�able with respect toa class M of Kripke interpretations if ' is satis�able in some Kripke interpretation in M,and it is valid with respect to M if it is valid in all Kripke interpretations in M.Remark V.2.1 Notice that, since the domain may change from a world to another, thereis the problem of de�ning the satis�ability at a world w of a formula '(t) containing a termt whose interpretation is not in J (w). As mentioned by Fitting in [Fitting, 1983, pages341-342], there are three intuitive choices to deal with this problem:1. always take '(t) to be false in w;2. leave the truth undetermined in w;3. make no special restriction whatsoever.Concerning choice 1), as Fitting mentions, Kripke has observed that imposing this require-ment on atomic formulae leads to a modal logic in which the rule of substitution does notapply (see also [Hughes and Cresswell, 1996, pages 275-276]). Choice 2) has been madein [Hughes and Cresswell, 1968, Chapter 10]. In this case interpretations are three valued:the truth value of any formula in a world can be either true or false or unde�ned. Finally,choice 3) is the simplest one: �rst it does not put any special requirement on the valu-ation of formulae, provided that in de�ning validity and satis�ability of a formula, for eachinterpretation, only those worlds are considered such that the constants of the formulaehave their interpretation in the domain of the world. Indeed, choice 2) and choice 3) areequivalent [Fitting, 1983; Hughes and Cresswell, 1996].With regard to this we adopt choice 3 and we do not make any special restriction.However, when we de�ne satis�ability and validity of a formula we look at the truth valueof the formula in an interpretation at a certain world only if the interpretation of each termin the formula is in the domain of that world. Moreover, we require that functions mapelements of a domain to elements of the same domain of that world.Remark V.2.2 In general, when function symbols are present, each function symbol couldbe given a di�erent interpretation at each di�erent world. In the Kripke semantics above,however, function symbols are given the same interpretation in all possible worlds. As aconsequence, closed terms have the same interpretation in all possible worlds (rigid des-ignators). On the contrary, predicate symbols may have a di�erent interpretation in eachpossible world. For a survey of the di�erent systems for quanti�ed modal logic see [Garson,1984], while for more details on the characterization of �rst-order inclusion modal logicssee [Gasquet, 1994].As for the propositional case, we are interested in a particular subclass of Kripke inter-pretations. Given a predicative modal language LFO and a set of inclusion axiom schemas



V.3. A predicate tableau calculus 49A, we are interested in �rst-order Kripke A-interpretations, that is, �rst-order Kripke in-terpretations based on A-inclusion frames as de�ned in Section II.3. We denote with FALFOthe subset of FLFO that consists of all A-inclusion frames, withMALFO the subset ofMLFOof all Kripke A-interpretations, and with IPALFO the set of inclusion properties that a KripkeA-interpretation must verify. We will use the already introduced notation of satis�abilityand validity. Finally, we denote with IALFO the �rst-order inclusion modal logic determinedby means of the set of axiom A.V.3 A predicate tableau calculusIn this section we extend the tableau calculus presented in Chapter III in order to dealwith predicate case. However, for simplicity, in the following we will be concerned with alanguage containing:� only constant symbols and no function symbols (we will call C its collection);� the modalities are labeled as in the propositional case (with constant symbols) andnot with terms.Given a �rst-order modal language LFO, since the proofs in the tableau calculus haveto deal with free variables, we extend the LFO with countably many new constant, calledparameters [Fitting, 1983, Chapter 7, Section 2]. These parameters are used, as in tableauxfor classical predicate logic, as witnesses for existential quanti�ers. We call the extendedlanguage LFO. In particular, in order to deal with increasing domains, for each worldconstant symbol w 2 WC , we extend LFO with a countable list Pw of new individualconstant symbols, disjoint from those of LFO, and such that for each pair of distinct pre�xesw and w0 we have that Pw and Pw0 do not overlap [Fitting, 1993, Section 2.4].5 We sayaw 2 Pw a w-parameter. Note that a proof of a formula of LFO can make use of formulaeof LFO. Universal formulae
 
0(c)T(8x)' T'[c=x]F(9x)' F'[c=x] Existential formulae� �0(c)F(8x)' F'[c=x]T(9x)' T'[c=x]Figure V.1: Uniform notation for quanti�ed formulae.5This is necessary because we deal with modal tableau system with explicit accessibility. Other methods,such as the cut-free sequent calculus in [Wallen, 1990, Section 2.1] and in [Baldoni et al., 1997a, Section 6.1]or the tableau method in [Fitting, 1983, Chapter 7], do not need this trick because at any stage of a proofonly the formulae of the current world are present.



50 V. First-OrderNow, we can add the extension rules for predicate logic quanti�ers to those of proposi-tional modal logic. The meaning of proof (T ALFO -provability) is trivially updated. We makeuse of the uniform notation for the quanti�ed signed formulae given in Figure V.1.De�nition V.3.1 (Extension rules) Let LFO be a modal language and let A be a setof inclusion axiom schemas, the extension rules (tableau rules) for IALFO are given in Fig-ure III.2 and Figure V.2.w : 
w : 
0(c) 
-rule w : �w : �0(aw) �-rulec is a w-available world Engenvariable condition: aw isconstant symbol a w-parameter that does notoccur on the branch.Figure V.2: Tableau rules for quanti�ed formulae.A formula of type 
 is true at world w if 
0(c) is true for all constant symbols of thedomain of w. Therefore, if w : 
 occurs on an open branch S, we can add w : 
0(c) to theend of that branch for any constant c which belongs to the domain of w. Now, since thedomains are increasing, if w is reachable from a world w0, that is there is a path �(w0; w)in S, then, the constant c used in w : 
0(c) can be either a constant symbol of C or it is aw-parameter or w0-parameter in S. We say a such constant w-available.The interpretation of the extension rule for formulae of type � is the usual one. In orderto express the meaning of a formula of type �, there should be something making � true,we use a parameter never used before on the branch to substitute the existential quanti�edvariable.Example V.3.1 (Barcan formula) In IALFO , with A any set of inclusion axioms, the followinginstance of the Barcan formula BF (t) : ((8x)[t]')� [t](8x)' is not provable:1. i : F(((8x)[t]p(x))� [t](8x)p(x))2. i : T(8x)[t]p(x)3. i : F[t](8x)p(x)4. w1 : F(8x)p(x)5. i �t w16. w1 : Fp(aw1)Explanation: 1.: an instance of the Barcan formula; 2. and 3.: from 1., by �-rule; 4. and 5.:from 3., by application of �-rule; 6.: form 4., by application of �-rule. Since the constant symbolaw1 is not i-available the branch remains open.Example V.3.2 (Converse of Barcan formula) In IALFO , with A any set of inclusion axioms, thefollowing instance of the converse of Barcan formula BFc(t) : [t](8x)' � ((8x)[t]') is provable:



V.3. A predicate tableau calculus 511. i : F([t](8x)p(x)� ((8x)[t]p(x)))2. i : T[t](8x)p(x)3. i : F(8x)[t]p(x)4. i : F[t]p(ai)5. w1 : Fp(ai)6. i �t w17. w1 : T(8x)p(x)8. w1 : Tp(ai)�Explanation: 1.: an instance of the converse Barcan formula; 2. and 3.: from 1., by �-rule; 4.:from 3., by application of �-rule; 5. and 6.: form 4., by application of �-rule; 7.: from 2. and 6.,by application of �-rule; 8.: from 7., by application of 
-rule, branch closes.Theorem V.3.1 (Soundness and Completeness) Let LFO be a predicative modal lan-guage and let A be a set of inclusion axiom schemas, a formula ' of LFO is A-valid if andonly if ' is T ALFO -provable.Proof. Both the proofs of the soundness and completeness are based on the same techniqueused for the ones for propositional case given in Chapter III. In particular, we can notethat:� An A-mapping I (see page 28) must map both pre�xes and constant symbols of thelanguage to the worlds and constants of some �rst-order Kripke A-interpretation.� In the systematic tableau procedure, in order to deal with the pre�xed signed formulaeof form w : 
 and to make sure w : 
0(c) has been introduced for each constant symbolc that occurs on the considered branch, we use the same trick adopted for formulaeof type �t. Then, whenever we apply 
-rule to a formula of type 
, we add a freshoccurrence of it at the end of that branch.� In the line of [Fitting, 1983], we can update the De�nition III.3.2 of set of pre�xedsigned and accessibility relation formulae A-downward satured as follows:7. if w : 
 2 S, then w : 
0(c) 2 S for all c 2 C and all c 2 [w02SPw0 such thatthere exists a path �(w;w0) in S;8. if w : � 2 S, then w : �0(c) 2 S for some w-parameter c 2 Pw.� From an open A-downward-satured branch S we de�ne a �rst-order canonical modelMAc as follows. The set of worlds and the set of accessibility relations are de�nedas we did in the propositional case. D is C added to [w2SPw, the domain on S isC [ Pw together [w02SPw0 such that w is reachable by w0. Each constant symbol andparameter is interpreted as naming itself. Finally, for each predicative symbol p 2PREDn and world w used in S, we de�ne V (p;w) = fp(c1; : : : ; cn) j w : p(c1; : : : ; cn) 2Sg.2



52 V. First-Order



Chapter VITowards a wider class of logicsIn this chapter, we extend the tableau calculus of Chapter III in order to deal with the classof normal multimodal logics proposed in [Catach, 1988]. This class is determined by theinteraction axiom Ga;b;c;d, called a; b; c; d-incestuality axiom. It includes most of the modaland multimodal systems studied in the literature. Moreover, modal operator can be labeledby complex parameters, i.e. built from atomic ones, using an operator of composition andan operator of union.VI.1 Syntax and possible-worlds semanticsSyntaxLet us extend the alphabet of the language for propositional multimodal logics of Section II.1adding the following symbols:� a binary operator \[" (union);� a binary operator \;" (composition);� the symbol \"" (the neutral element w.r.t. the composition).The operators \[" and \;" allow to built up new labels for modal operators starting fromthe atomic ones in MOD. More formally, we de�ne the set LABELS as the least set thatsatis�es the following conditions:� " 2 LABELS;� MOD � LABELS;� if t; t0 2 LABELS then (t; t0) and (t [ t0) are in LABELS.11For readability, we omit parentheses if they are unnecessary: we give \[" lower precedence than \;".53



54 VI. Towards a wider class of logicsThe set FOR of formulae of a modal propositional language L is de�ned to be the leastset that satis�es the following conditions:� VAR � FOR;� if '; 2 FOR then (:'), (' ^  ), (' _  ), (' �  ) 2 FOR;� if ' 2 FOR and t 2 LABELS then ([t]') 2 FOR.Therefore, we allow modal operators labeled with expressions built by the operators unionand composition on the atomic labels MOD together the empty label ". As usual, hti'stands for :[t]:'. Examples of modalized formulae are [t; t0[ t00 [ "]' and ht; t0i'. Indeed,the empty label, union, and composition can be though as a shorthand, as stated by thefollowing de�nitions:� ["]' =Def : ';� [t [ t0]' =Def : [t]' ^ [t0]';� [t; t0]' =Def : [t][t0]'.For instance, the above modalized formulae are equivalent to [t][t0]' ^ [t00]' ^ ' and htiht0i',respectively.Possible-worlds semanticsIn order to de�ne the meaning of a formula, we have introduce in the previous chapter thenotion of Kripke interpretation. Formally, a Kripke interpretationM is a triple hW;R; V i,consisting of a non-empty set W of \possible worlds", a mapping R from MOD to thepowerset of W �W (it assigns to each atomic label of MOD some binary relation on W ),and a valuation function V , that is a mapping from W �VAR to the set fT;Fg. Here, inorder to deal with any label t 2 LABELS, we extend the mapping R inductively as follows:� R" = I, where I = f(w;w) j w 2 Wg (the identity relation);� Rt;t0 = Rt � Rt0 , where \�" denotes the composition of binary relations;� Rt[t0 = Rt [Rt0 , where \[" denotes the union of binary relations.We say that Rt is the accessibility relation of the modality [t] and w0 is accessible from wby means of Rt if (w;w0) 2 Rt.The meaning of a formula is given by means of a satis�ability relation, denoted by j=,as already seen.



VI.2. Incestual modal logics 55VI.2 Incestual modal logicsIn [Catach, 1988] incestual modal logics the class of normal modal logics obtained by takingaxiom systems containing: ["]' , ' (VI.1)[t; t0]' , [t][t0]' (VI.2)[t [ t0]' , [t]' ^ [t0]' (VI.3)where t; t0 2 LABELS, and a �nite set of a; b; c; d-incestual axiom schemas, that is axiomschemas of the form: Ga;b;c;d : hai[b]' � [c]hdi'where a, b, c, and d belong to LABELS. Given a modal language L and a set G ofincestual axiom schemas, we denote with SGL the axiom system SL2 extended with G togetherthe axioms (VI.1), (VI.2), and (VI.3). We use IGL to denote the incestual modal logicsdetermined by SGL. As we will see, the incestual axioms also determine inclusion propertieson the accessibility relations.As it is remarked in [Catach, 1988], the fact that a, b, c, and d of an incestual axiomschema may be arbitrary expressions built from atomic labels using the composition andunion operators, makes axiom Ga;b;c;d very general. In particular, it covers the axiom[Chellas, 1980; Hughes and Cresswell, 1984]:Gk;l;m;n : 3k2l' � 2m3n'where k; l;m; n � 0, and, therefore, it covers the traditional axiom schemas. Furthermore, itcaptures many axiom schemas which can express interaction between di�erent modal oper-ators (see Figure VI.1). Note that, the inclusion axiom schema [t1] : : : [tn]' � [s1] : : : [sm]'is an instance of the a; b; c; d-incestual axiom schema too. In fact, it is enough to take a = ",b = t1; : : : ; tn, c = s1; : : : ; sm, and d = ".All the �fteen modal systems obtained combining the axioms T , D, B, 4, and 5 [Chellas,1980; Hughes and Cresswell, 1996] and their multimodal versions [Halpern and Moses, 1992]are incestual modal logics, as well as the extensions of Kn and S4n with interaction axiomsof with agent \any fool" [Enjalbert and Fari~nas del Cerro, 1989].Example VI.2.1 (The wise men puzzle) The problem is again the well-known three wise menpuzzle already presented in Example II.3.4. We call back brie
y the formulation. Note that, inorder to avoid introducing many variants of the same formulae and axioms for the di�erent wisemen, as a shorthand, we use the metavariablesX , Y , and Z, where X; Y; Z 2 fa; b; cg and X 6= Y ,Y 6= Z, and X 6= Z:(1) [fool](ws(a)_ ws(b) _ ws(c))(2) [fool](ws(X)� [Y ]ws(X))(3) [fool](:ws(X)� [Y ]:ws(X))2See Chapter II.



56 VI. Towards a wider class of logicsaxiom name axiom schema incestual schemare
exivity T (t) [t]' � ' G";t;";"seriality D(t) [t]' � hti' G";t;";tsymmetry B(t) hti[t]' � ' Gt;t;";"transitivity 4(t) [t]' � [t][t]' G";t;(t;t);"euclideanity 5(t) hti' � [t]hti' Gt;";t;tdeterminism �(t) hti' � [t]' Gt;";t;"inclusion I(t; t0) [t]' � [t0]' G";t;t0;"mutual transitivity 4M(t; t0) [t]' � [t0][t]' G";t;(t0;t);"persistence P (t; t0) [t][t0]' � [t0][t]' G";(t;t0);(t0;t);"relative inclusion Ir(t; t0; t00) [t]' � ([t0]' � [t00]') G";(t[t0);t00;"semi-adjunction B(t; t0) ' � [t]ht0i' G";";t;t0mutual seriality D(t; t0) [t]' � ht0i' G";t;";t0union [t]' � [t0]' ^ [t00]' G";t;(t0[t00);"[t0]' ^ [t00]' � [t]' G";(t0[t00);t;"composition [t]' � [t0][t00]' G";t;(t0;t00);"[t0][t00]' � [t]' G";(t0;t00);t;"Figure VI.1: Some well-known axiom schemas included by the incestual axioms.where ws(X) means that the wise man X has a white spot on his forehead and [X ] is a modaloperator of type K. The formulae above are all preceded by the modal operator [fool] of typeS4 which captures to the information common to all wise men. That is, it is axiomatized by theaxioms:(A1) T (fool) : [fool]' � '(A2) 4(fool) : [fool]' � [fool][fool]'(A3) I(fool; a) : [fool]' � [a]'(A4) I(fool; b) : [fool]' � [b]'(A5) I(fool; c) : [fool]' � [c]'The formulae (1) says that at least one of the wise men has a white spot, whereas formulae (2) and(3) means that whenever one of them has (not) a white spot, the others know this fact. Moreover,whenever a wise man does (not) know something the others know that he does not know this. Thatis, the following axiom is assumed:(A6) :[X ]'� [Y ]:[X ]' (i.e. hXi'["] � [Y ]hXi')(A7) [X ]'� [Y ][X ]' (i.e. h"i[X ]' � [Y ;X ]h"i')From this formalization and the fact that neither a nor b know if they have a white spot on theirforehead:(4) :[a]ws(a)(5) :[b]ws(b)



VI.2. Incestual modal logics 57follows that c knows that he has a white spot:(6) [c]ws(b)Note that, di�erently than the formulation of Example II.3.4, here we do not need to expressdirectly the information that if someone does not know if his spot is white then the others knowsthat he does not know it (formulae (3) and (4) of Example II.3.4) but they are inferred by theaxiom (A6).De�nition VI.2.1 (Incestual frame) Let L be a propositional modal language and letG be a set of incestual axiom schemas. Then, a frame F 2 FL is a G-incestual frame ifand only if for each axiom Ga;b;c;d 2 G the following inclusion property (called in [Catach,1988] a; b; c; d-incestual property) on the accessibility relations holds:Rb � R�1d � R�1a � Rc (VI.4)where R is the mapping de�ned at page 54 and R�1t is the inverse relation of Rt. We callIP GL the set of incestual properties determined by G.In other worlds: \if (w;w0) 2 Ra and (w;w00) 2 Rc then there exists w� such that (w0; w�) 2Rb and (w00; w�) 2 Rd":8w;w0; w00 2 W (w;w0) 2 Ra ^ (w;w00) 2 Rc9w� 2 W (w0; w�) 2 Rb ^ (w00; w�) 2 Rd (VI.5)w02 Rb2 Ra 2 Rc2 Rd2 R�1a � Rcw
w� w002 Rb � R�1d�-ruleFigure VI.2: a; b; c; d-incestual property. This property is named incestual because theo�spring of a common parent have themselves an o�spring in common [Chellas, 1980].Figure VI.2 shows pictorially the a; b; c; d-incestual property.We denote with FGL the set of G-frame and with MGL the set of Kripke interpretationsbased on a G-frame (Kripke G-interpretations). The de�nitions of satis�ability relation\ j=G ", G-satis�ability, G-validity are the usual ones.Catach proved that a multimodal logic IGL is determined by the class of Kripke G-interpretations (the completeness proof uses the standard canonical model construction).



58 VI. Towards a wider class of logicsTheorem VI.2.1 ([Catach, 1988]) Let L be a propositional modal language and let G bea �nite set of incestual axiom schemas. Then, SGL is a sound and complete axiomatizationwith respect to MGL.Remark VI.2.1 Despite the fact that the class of incestual modal logics includes a wideclass of multimodal systems, it is worth noting that no set of inclusion properties of theform (VI.4) can characterize the the induction axiom that de�ne both the iteration operator\�" of dynamic logic [Harel, 1984] and the common knowledge operator \C" [Geneserethand Nilsson, 1987; Halpern and Moses, 1992]. In fact, let us consider the axioms:[b]' � ' ^ [a][b]' (VI.6)' ^ [b](' � [a]') � [b]' (VI.7)then, it is easy to see that the modal operator [b] represents both [a�] of dynamic logic andthe common knowledge operator (when a is the only agent). Axiom (VI.6) is an incestualaxiom (it is equal to h"i[b]' � ["[ a; b]h"i') but axiom (VI.7), the induction axiom, is not(see also [Catach, 1988]). From a semantics point of view, the axioms (VI.6) and (VI.7)are characterized by the class of Kripke interpretations in which the relation Rb is equal toR�a [Kozen and Tiuryn, 1990; Halpern and Moses, 1992] (i.e. the re
exive and transitiveclosure of Ra). On the contrary, incestual axioms are not strong enough to capture R�a.Indeed, axiom (VI.6) can be characterized by the inclusion properties Rb � I[Ra �Rb,from which, by some easy transformations, we have Rb � R�a. Unfortunately, the converseof axiom (VI.6), that is ' ^ [a][b]' � [b]' (VI.8)does not capture the converse inclusion relation R�a � Rb [Catach, 1988]. The modalsystems which contain the axioms (VI.6) and (VI.8) are sound and complete with respectto the class of Kripke interpretations for which the relationRb = I [Ra �Rbholds but this does not mean that Rb is equal to R�a. In fact, let us de�ne the functionF (X) = I [ Ra �Xthen, Rb is equal to a �xpoint of F . Now, F is monotone and continuous and, then, theleast �xed point of F exists and it is equal to [k2!F k(;), that corresponds to R�a. However,in general, this is not the only �xpoint of F .33Let us consider, for instance, W = fw1; w2g and, then, I = f(w1; w1); (w2; w2)g. Assume that Ra = I,the least �xpoint of F is R�a, that is I itself. Now, consider the set B = f(w1; w1); (w2; w2); (w1; w2)g then,F (B) = I [Ra �B and, since we have assumed Ra = I, F (B) = I [ I �B. Since I �B = B and I [B = B,we have that F (B) = B, that is B is a �xpoint of F but B 6= I (indeed, R�a = Ra 6� B).



VI.3. A tableau calculus 59VI.3 A tableau calculusThe tableau calculus for incestual modal logics extends the one presented in Chapter III.A tableau is a labeled tree where each node consists of a pre�xed signed formula or of anaccessibility relation formula. Intuitively, each tableau branch corresponds to the construc-tion of a Kripke interpretation that satis�es the formulae that belong to it. However, inorder to deal with arbitrary expressions as labels of modal operators, we need to extendthe notion of accessibility relation formula.De�nition VI.3.1 Let L be a propositional modal language, an accessibility relation for-mula w �t w0, where t 2 LABELS,4 is a binary relation between pre�xes of WC.We say that an accessibility relation formula w �t w0 is true in a tableau branch ifit belongs to that branch. Moreover, the relation �" on a branch de�nes an equivalencerelation among pre�xes: when w �" w0 holds, w and w0 can be regarded as representing thesame worlds. By taking the re
exive, transitive and symmetric closure of the relation �"we de�ne an equivalence relation among worlds. We denote by w the equivalence class ofw with respect to this equivalence relation. A formula w : T' (w : F') on a branch of atableau means that the formula ' is true (false) at the world w in the Kripke interpretationassociated with that branch.We say that a pre�x w is used on a tableau branch if it occurs on the branch in someaccessibility relation formula, otherwise we say that the pre�x w is new. Moreover, given alabel t, we say that an accessibility relation formula w �t w0 is available on a branch S ofa tableau if one of the following conditions hold:1. t = " and w = w0;2. w1 2 w, w2 2 w0 and w1 �t w2 is true in S;3. t = t0; t00 and both w �t0 w00 and w00 �t00 w0 are available on S, for some w00 used on thebranch S;4. t = t0 [ t00 and either w �t0 w0 is available on S or w �t00 w0 is available on S.Note that, if an accessibility relation formula is true in a tableau branch, it is also availableon it (as a special case of the condition 2 above). Moreover, for any world w on a givenbranch, w �" w is always available (condition 1). Intuitively, w �t w0 available on abranch of a tableau means that, in the Kripke interpretation associated with that branch,(w;w0) 2 Rt.De�nition VI.3.2 (Extension rules) Let L be a propositional modal language and letG be a set of incestual axioms, the extension rules (tableau rules) for IGL are given inFigure VI.3.



60 VI. Towards a wider class of logicsw : �w : �1w : �2 �-rule w : �w : �1 j w : �2 �-rulew : �t w �t w0w0 : �t0 �-rule w : �tw0 : �t0w �t w0 �-rulewhere w �t w0 is available on the branch where w0 is new on the branchw �t;t0 w0w �t w00w00 �t0 w0 ��-rule w �t[t0 w0w �t w0 j w �t0 w0 ��-rulewhere w00 is new on the branchw �a w0 w �c w00w0 �b w�w00 �d w� �-rulewhere w �a w0 and w �c w00 are available on the branch,w� is new on the branch, and hai[b]' � [c]hdi' 2 GFigure VI.3: Tableau rules for propositional incestual modal logics.The interpretation of the �, �, �, and � rule is the same already seen in the previouschapters, the only remark is that, now, the label t of a formula �t or �t can be an arbitrarilycomplex expression.Case ��-rule. If an accessibility relation formula w �t;t0 w0 is true in a tableau branchthen, (w;w0) 2 Rt;t0 holds in the Kripke interpretation represented by that branch. There-fore, (w;w0) 2 Rt � Rt0 and, hence, there exists a world w00 such that (w;w00) 2 Rt and(w00; w0) 2 Rt0. That is, w �t w00 and w00 �t0 w0 are true in that branch.Case ��-rule. If an accessibility relation formula w �t[t0 w0 is true in a tableau branchthen, (w;w0) 2 Rt[t0 holds in the Kripke interpretation represented by that branch. There-fore, (w;w0) 2 Rt [ Rt0 and, hence, (w;w0) 2 Rt or (w;w0) 2 Rt0 . That is, w �t w0 orw �t0 w0 is true in that branch.Finally, the intuitive meaning of the �-rule is similar to the one of the calculus for inclu-sion modal logics and it allows us to deal with any incestual axiom in an uniform way. Letus suppose, for instance, that hai[b]' � [c]hdi' 2 G in our modal logic IGL . If w �a w0 andw �c w00 are available on a tableau branch then, (w;w0) 2 Ra and (w;w00) 2 Rc in the Kripkeinterpretation associated to that branch. Since the incestual axiom hai[b]' � [c]hdi' 2 Gthen, the corresponding a; b; c; d-incestual property (VI.5) must hold, that is, there existsa world w� such that (w0; w�) 2 Rb and (w00; w�) 2 Rd. Hence, w0 �b w� and w00 �d w�are true in that Kripke interpretation for some new pre�x w� (see Figure VI.2). Again the4Instead of MOD!



VI.3. A tableau calculus 61�-rule can be regarded as a rewriting rule which creates new paths among worlds accordingto the inclusion properties of the incestual modal logic.We say that a tableau branch is closed if it contains w : T' and w0 : F' for someformula ' such that w = w0. A tableau is closed if every branch in it is closed.De�nition VI.3.3 Let L be a modal language and let G a set of incestual axioms. Then,given a formula ' of L, we say that a closed tableau for i : F', using the tableau rules ofFigure VI.3, is a proof of ' (' is T GL -provable).Let us see some examples of derivations.iw1b d i" i
(a) (b) (c)w2 w1b0 "b00 b0; b00 d c w2w1 a "w3b0 [ b00 b00 (branch \b")b0 (branch \a")

Figure VI.4: Kripke G-interpretation constructions of Example VI.3.1, VI.3.2, and VI.3.3.Example VI.3.1 Let us consider the incestual modal logic IGL where G that consists of the axiomschema h"i[b] � h"i[d]. Then, the formula [b]p � hdip has a tableau proof (see also Figure VI.4(a)):1. i : F([b]p� hdip)2. i : T[b]p3. i : Fhdip4. i �b w15. i �d w16. w1 : Tp7. w1 : Fp�Explanation: 1.: the goal; 2. and 3.: from 1., by �-rule; 4. and 5.: since i �" i is available fromaxiom G";b;";d, by �-rule; 6.: from 2. and 4., by �-rule; 7.: from 3. and 5., by �-rule, the branchcloses due to steps 6. and 7.



62 VI. Towards a wider class of logicsExample VI.3.2 Let us consider the incestual modal logic IGL where G that consists of the ax-iom schema h"i[b0; b00]' � ["]hdi'. Then, the formula [b0][b00]p � hdip has a tableau proof (see alsoFigure VI.4(b)):1. i : F([b0][b00]p � hdip)2. i : T[b0][b00]p3. i : Fhdip4. i �d w15. i �b0;b00 w16. i �b0 w27. w2 �b00 w18. w2 : T[b00]p9. w1 : Tp10. w1 : Fp�Explanation: 1.: the goal; 2. and 3.: from 1., by �-rule; 4. and 5.: by �-rule from axiomh"i[b0; b00]' � ["]hdi' since i �" i is available; 6. and 7.: from 5., by ��-rule; 8.: from 2. and 6., by�-rule; 9.: from 8. and 7., by �-rule; 10.: from 3. and 4., by �-rule. The branch close due to steps9. and 10.Example VI.3.3 Let us consider the incestual modal logic IGL where G that consists of the axiomschema hai[b0 [ b00]' � [c]h"i'. Then, the formula hai([b0]p ^ [b00]p) � [c]p has a tableau proof (seealso Figure VI.4(c)) We denote with \a" and \b" the two branches which are created by theapplication of ��-rule to step 10.1. i : Fhai([b0]p ^ [b00]p) � [c]p2. i : Thai([b0]p ^ [b00]p)3. i : F[c]p4. w1 : T([b0]p ^ [b00]p)5. i �a w16. w1 : T[b0]p7. w1 : T[b00]p8. w2 : Fp9. i �c w210. w1 �b0[b00 w311. w2 �" w312a. w1 �b0 w313a. w3 : Tp�12b. w1 �b00 w313b. w3 : Tp�Explanation: 1.: the goal; 2. and 3.: from 1., by �-rule; 4. and 5.: from 2., by �-rule; 6.and 7.: from 4., by �-rule; 8. and 9.: from 3., by �-rule; 10. and 11.: by �-rule from axiomhai[b0 [ b00]' � [c]h"i' since i �a w1 and i �c w2 are available; 12a. and 12b.: from 10., by ��-rule;



VI.3. A tableau calculus 6313a.: from 6. and 12a., by �-rule, 13b.: from 7. and 12b., by �-rule. Since w2 = w3 (w2 �"w3belongs to the branch at step 11.) the branchs \a" and \b" close due to step 8. and steps 13a. and13b., respectively.w1 w3w2i" "a cfool foolbw4 w5 bfoolfoolfoolfool aFigure VI.5: Kripke G-interpretation construction of Example VI.3.4.Example VI.3.4 (The wise men puzzle) We prove the formula (6) in Example VI.2.1 from theset of formulae (1)-(5). Figure VI.5 shows pictorially the counter-model construction.1. i : T[fool](ws(a)_ ws(b)_ ws(c))2. i : T[fool](:ws(b)� [a]:ws(b))3. i : T[fool](:ws(c)� [a]:ws(c))4. i : T[fool](:ws(c)� [b]:ws(c))5. i : T:[a]ws(a)6. i : T:[b]ws(b)7. i : F[c]ws(c)8. i : F[a]ws(a)9. i : F[b]ws(b)10. w1 : Fws(a)11. i �a w112. w2 : Fws(b)13. i �b w214. w3 : Fws(c)15. i �c w316. w1 �" w417. w2 �a w418. w2 �" w519. w3 �b w520. i �fool w221. w2 �fool w4



64 VI. Towards a wider class of logics22. i �fool w423. w4 : T(ws(a)_ ws(b)_ ws(c))24a. w4 : Tws(a)�24b. w4 : Tws(b)25b. w2 : T(:ws(b) � [a]:ws(b))26ba. w2 : F:ws(b)27ba. w2 : Tws(b)�26bb. w2 : T[a]:ws(b)27bb. w4 : T:ws(b)28bb. w4 : Fws(b)�24c. w4 : Tws(c)25c. i �fool w326c. w3 �fool w527c. i �fool w528c. w5 : T(:ws(c) � [a]:ws(c))29ca. w5 : F:ws(c)30ca. w5 : Tws(c)31ca. w3 : T(:ws(c) � [b]:ws(c))32caa. w3 : F:ws(c)33caa. w3 : Tws(c)�32cab. w3 : T[b]:ws(c)33cab. w5 : T:ws(c)34cab. w5 : Fws(c)�29cb. w5 : T[a]:ws(c)30cb. w4 : T:ws(c)31cb. w4 : Fws(c)�We denote with \a", \b", and \c" the three branches which are created by the application of �-ruletwice to step 23., \ba" and \bb" the two ones that are created by the �-rule to step 25b., \ca"and \cb" the ones that are created by the �-rule to step 28c. and, �nally, \caa" and \cab" thetwo ones which are created from step 31f. Explanation: 1.: formula (1) from Example VI.2.1; 2.,3., and 4.: instances of formula (3) from Example VI.2.1; 5. and 6.: formulae (4) and (5) fromExample VI.2.1; 7.: the goal; 8.: from 5., by �-rule; 9.: from 6., by �-rule; 10. and 11.: from 8., by�-rule; 12. and 13.: from 9., by �-rule; 14. and 15.: from 7., by �-rule; 16. and 17.: from 11. and13., by axiom (A6), when X = a and Y = b, and �-rule; 18. and 19.: from 13. and 15., by axiom(A6), when X = b and Y = c, and �-rule; 20.: from 13., by axiom (A4) and �-rule; 21.: from 17.,by axiom (A3) and �-rule; 22.: from 20. and 21., by axiom (A2) and �-rule; 23.: from 1. and 22.,by �-rule; 24a., 24b., and 24c.: from 23., by �-rule, the branch \a" closes due to steps 24a. and10. since w4 = w1; 25b.: from 2. and 20., by �-rule; 26ba. and 26bb.: from 25b., by �-rule; 27ba.:from 26ba., by �-rule, the branch \ba" closes due to 27ba. and 12.; 27bb.: from 26bb. and 17., by



VI.3. A tableau calculus 65�-rule; 28bb.: from 27bb., by �-rule, the branch \bb" closes due to 28bb. and 24b.; 25c.: from 15.,by axiom (A5) and �-rule; 26c.: from 19., by axiom (A4) and �-rule; 27c.: from 25c. and 26c., byaxiom (A2) and �-rule; 28c.: from 3. and 27c., by �-rule; 29ca. and 29cb.: from 28c., by �-rule;27ca.: from 29ca., by �-rule, 31ca.: from 4. and 25c., by �-rule; 32caa. and 32cab.: from 31ca.,by �-rule; 33caa.: from 32caa., by �-rule, the branch \caa" closes due to 33caa. and 14.; 33cab.:from 32cab. and 19., by �-rule; 34cab.: from 33cab., by �-rule, the branch \cab" closes due to34cab. and 30ca; 30cb.: from 29cb., 17., and 18. (i.e. w5 �a w4 is available), by �-rule; 31cb.:from 30cb., by �-rule, the branch \cb" closes due to 31cb. and 24c.Remark VI.3.1 Though we have focused on a propositional language, the tableau calculuswe have proposed in this chapter can be extended to the �rst-order case by introducing therules for quanti�ers already seen in Chapter V in the case of the calculus for the class ofinclusion modal logics.Soundness and completenessIn order to prove the soundness and completeness we follow the same guideline of Sec-tion III.3. We �rst prove that the tableau rules preserve the satis�ability.Let L be a modal language and let G be a set of incestual axioms. Given a set of pre�xedsigned formulae and accessibility relation formulae S of L and a Kripke G-interpretationM = hW;Rt; V i, we say v 2 W is Rt-idealizable if there is some v0 2 W such that(v; v0) 2 Rt. A G-mapping is a mapping I from the subset of equivalences classes of thepre�xes that occur in some accessibility relation formula of S to W such that if w �t w0 2 Sand I(w) is Rt-idealizable then (I(w); I(w0)) 2 Rt. We say S is G-satis�able under theG-mapping I in the Kripke G-interpretation M if, for each w : T',M; I(w) j=G ', for eachw : F', M; I(w) 6j=A ', and for each w �t w0, (I(w); I(w0)) 2 Rt. Finally, we say a set S ofpre�xed signed formulae and accessibility relation formulae G-satis�able if S is G-satis�ableunder some G-mapping.A branch of a tableau is G-satis�able if the set of formulae on it is G-satis�able and atableau is G-satis�able if some its branch is G-satis�able.Proposition VI.3.1 Let T be a G-satis�able pre�xed tableau and let T 0 be the tableauwhich is obtained from T by means of one of the extension rules given in Figure VI.3.Then, T 0 is also G-satis�able.Proof. As in the proof of the Proposition III.3.1, we can focus on application of the extensionrules to a branch. The cases when the applied extension rule is the �-rule, �-rule, �-rule,and �-rule are similar to Proposition III.3.1.Assume that the applied extension rule is the �-rule to obtain S 0. Let us supposew �a w0, and w �c w00 are available in S and that S 0 = S [ fw0 �b w�; w00 �d w�g, wherehai[b]' � [c]hdi' 2 G and w� is new on S. Then, I is already de�ned for w, w0, and w00and (I(w); I(w0)) 2 Ra, (I(w); I(w00)) 2 Rc. Since M is a Kripke G-interpretation, by(VI.5), there exist v� in W such that (I(w0); v�) 2 Rb and (v�; I(w0)) 2 Rd. This means



66 VI. Towards a wider class of logicsthat I(w0) is Rb-idealizable and I(w00) is Rd-idealizable then, we can extend the de�nitionof I by setting I(w�) = v�.Assume that the applied extension rule to obtain S 0 is the ��-rule. Then, an accessibilityrelation formula of the form w �t;t0 w0 is in S and S0 = S [ fw0 �t w00; w00 �t0 w0g, wherew00 2 WC is new on S and, therefore, I is not de�ned on w00. Since w �t;t0 w0 2 S we havethat (I(w); I(w0)) 2 Rt;t0 and, therefore, there exists a world v 2 W such that (I(w); v) 2 Rtand (v; I(w0)) 2 Rt0 . Then, it is enough to extend the de�nition of I by setting I(w00) = v.Assume that the applied extension rule to obtain S 0 is the ��-rule. Then, an accessibilityrelation formula of the form w �t[t0 w0 is in S and either S0 = S [ fw �t w0g or S0 =S [ fw �t0 w0g. But, since w �t;t0 w0 2 S, we have that (I(w); I(w0)) 2 Rt[t0 and, therefore,either (I(w); w0) 2 Rt or (I(w); I(w0)) 2 Rt0. 2Theorem VI.3.1 (Soundness) Let L be a modal language and let G be a set of incestualaxiom schemas, if a formula ' of L is T GL -provable then, it is G-valid.Proof. The proof is similar to the one of Theorem III.3.1. 2The completeness is proved by means of the usual counter-model construction. In orderto do this we �rst extend in a suitably way the de�nition of downward satured set offormulae.De�nition VI.3.4 Let L, G, and S be a modal language, a set of incestual axiom schemas,and a set of pre�xed signed and accessibility relation formulae in L, respectively. Then, wesay that S is G-downward satured if:1. for no atomic formula ', we have w : T' 2 S, w0 : F' 2 S and w = w0;2. if w : � 2 S, then w : �1 2 S and w : �2 2 S;3. if w : � 2 S, then w : �1 2 S or w : �2 2 S;4. if w : �t 2 S, then w0 : �t0 is available on S for all w0 such that w �t w0 is availableon S;5. if w : �t 2 S, then w0 : �t0 is available on S for some w0 such that w �t w0 is availableon S;6. if w �t;t0 w0 is available on S then w �t w00 and w00 �t0 w0 are available on S, for somew00;7. if w �t[t0 w0 is in S then w �tw0 or w �t0 w0 is available on S;8. if w �a w0 and w �c w00 are available in S and hai[b]' � [c]hdi' 2 G, then w0 �b w�and w00 �d w� are available in S, for some w�.



VI.3. A tableau calculus 67Now, we can note that it is quite easy to extend the fair systematic tableau procedureof Figure III.5 for the case of new extension rules presented here, in a such a way to builta G-downward satured set when it produces an open branch.De�nition VI.3.5 (Canonical model) Given a modal language L, let S be a set of pre-�xed signed formulae and accessibility relation formulae in L that is G-downward satured.The canonical model MGc is the ordered triple hW;R; V i, where:� W = fw j w is used on Sg;� for each t 2 MOD, Rt = f(w;w0) 2 W �W j w �t w0 is available on Sg;� for each p 2 VAR and each w 2 W , we setV (w; p) = �T if w : Tp 2 SF otherwiseProposition VI.3.2 LetMGc be the canonical model built by a G-downward satured set offormulae S. Then, w �t w0 is available on S if and only if (w;w0) 2 Rt.Proof. The proof is by an easy induction on the structure of the label. (If part) If t = "and w �t w0 then w = w0 and, therefore, (w;w0) 2 I. If t 2 MOD and w �t w0 then(w;w0) 2 Rt by de�nition of MGc . If t = t0; t00 and w �t0;t00 w0 is available on S then, sinceS is G-downward satured, there are w �t0 w00 and w00 �t00 w0 available on S, for some w00.By inductive hypothesis, (w;w00) 2 Rt0 and (w00; w0) 2 Rt00 and, therefore, (w;w0) 2 Rt0;t00.If t = t0 [ t00 and w �t0[t00 w0 is available on S then, since S is G-downward satured,there is w �t0 w0 or w �t00 w0 available on S. By inductive hypothesis, (w;w0) 2 Rt0 or(w;w0) 2 Rt00 and, therefore, (w;w0) 2 Rt0[t00. (Only if part) If t = " and (w;w0) 2 I thenw = w0 and, therefore, w �" w0 is available on S by de�nition of re
exive, transitive, andsymmetric closure of �" relation. If t 2 MOD and (w;w0) 2 Rt then w �t w0 is availableon S by construction of MGc . If t = t0; t00 and (w;w0) 2 Rt0;t00 then (w;w00) 2 Rt0 and(w00; w0) 2 Rt00, for some w00. By inductive hypothesis, w �t0 w00 and w00 �t00 w0 are availableon S and, therefore, by de�nition, w �t0 w0 is available on S too. Finally, If t = t0 [ t00and (w;w0) 2 Rt0;t00 then (w;w0) 2 Rt0 or (w;w0) 2 Rt00 . By inductive hypothesis, eitherw �t0 w00 or w00 �t00 w0 is available on S and, therefore, by de�nition, w �t0 w0 is available onS too. 2Proposition VI.3.3 The canonical model MGc given by De�nition VI.3.5 is a Kripke G-interpretation.Proof. We prove that each inclusion properties in IP GL is satis�ed by MGc . Let us supposethat Rb � R�1d � R�1a � Rc 2 IP GL , and (w;w0) 2 Ra and (w;w0) 2 Rc then, we haveto show (w0; w�) 2 Rb and (w00; w�) 2 Rd. If (w;w0) 2 Ra and (w;w0) 2 Rc then, byProposition VI.3.2, w �a w0 and w �c w00 are available on S. Now, since by hypothesis S isG-downward satured, by point (8) of De�nition VI.3.4, w0 �b w� and w00 �d w� are availableon S, for some w�. Thus, by Proposition VI.3.2, (w0; w�) 2 Rb and (w00; w�) 2 Rd. 2



68 VI. Towards a wider class of logicsNow, we can prove the key lemma (the model existence) to proving the completeness.Lemma VI.3.1 Given a modal language L, if S is a set of pre�xed signed formulae andaccessibility relation formulae of L that is G-downward satured then, S is G-satis�able.Proof. Suppose S is G-downward satured. For every formula ' and every pre�x w, we havethat if w : T' 2 S then MGc ; w j=G ' and if w : F' 2 S then MGc ; w 6 j=G '. That is, themapping I(w) = w is an G-mapping for S in the Kripke A-interpretationMGc . The proofis by induction on the structure of '. The case of formulae of type � and � are trivial. Letus suppose w : �t 2 S then, since S is G-downward satured, w0 : �t0 2 S for all w0 such thatw �t w0 is available on S. By inductive hypothesis, we have that MGc ; w0 j=G �t0, for eachworld w0 such that (w;w0) 2 Rt, hence, by de�nition of satis�able relation, MGc ; w j=G �t.Let us assume, now, w : �t 2 S then, since S is G-downward satured, w0 : �t0 2 Sfor some w0 such that w �t w0 is available on S. By inductive hypothesis, we have thatMGc ; w0 j=G �t0, for some world w0 such that (w;w0) 2 Rt, hence, by de�nition of satis�ablerelation,MGc ; w j=G �t. 2Theorem VI.3.2 (Completeness) Let L be a modal language and let G be a set of in-cestual axiom schemas, if a formula ' of L is G-valid then, ' is T GL -provable.Proof. The proof is similar to the one of Theorem III.3.2. 2



Chapter VIIRelated workIn this part of the thesis, we have presented the class of inclusion modal logics. This classincludes some well-known modal systems such as Kn, Tn, K4n, S4n. However, di�erentlythan other proposals, these systems can be non-homogeneous and can contain arbitrarilycomplex interaction axioms: features particularly suitable for modal systems modeling, forinstance, knowledge and beliefs in multiagent situation.An analytic tableau calculus for this class of logics has been developed. In order to havea general framework able to cope with any kind of inclusion axioms, we have chosen thesimplest way of representing models: pre�xes are worlds, and relations between them arebuilt step by step by the rules of the calculus. In particular, axioms are used as rewriterules which create new paths among worlds.The calculus is then extended in order to deal with the class of incestual modal logicsas de�ned in [Catach, 1988]. This allows to deal also with multimodal logics characterized,among other things, by serial, symmetric, and Euclidean accessibility relations. Further-more, some (un)decidability results for the class of inclusion modal logics are given.VII.1 Pre�xed tableau systemsOur approach to pre�xed tableaux and, in particular, to represent accessibility relationsby means of a graph is closely related to the approaches based on pre�xes used in [Fitting,1983] and by other authors for classical modal (though no multimodal) systems [Massacci,1994; Gor�e, 1995] and for dynamic logic [De Giacomo and Massacci, 1996]. In these works,pre�xes are sequences of integers which represent a world as a path in the model, thatconnects the initial world to the one at hand. Thus, instead of representing a model asa graph, as in the our approach, a model is represented as a set of paths which can beconsidered a spanning tree of the same graph. Although this representation may be moree�cient, the disadvantage is that it requires a speci�c �-rule for each logic. These rules codethe properties of accessibility relations. Depending on the logic, the �-rules may expresscomplex relations between pre�xes, which instead in our case are explicitly available fromthe representation. In particular, Massacci has proposed a \single step calculus" where �-69



70 VII. Related workrules make use only of immediately accessible pre�xes [Massacci, 1994]. His approach worksfor all the distinct basic normal logics obtainable fromK by addition on any combination ofthe axiom T , D, 4, 5, and B in a modular way but it still requires the de�nition of speci�c�-rules. On the contrary, our calculus deals with all modal logic considered by [Fitting,1983; Massacci, 1994; Gor�e, 1995] and many others by means of the only �-rule. Moreover,it is modular with respect to the characterizing axioms of the multimodal logic, i.e., it isenough to know the axioms to get the calculus.Besides the disadvantage of requiring speci�c �-rules and the fact that they do notwork with multimodal systems, we think that it is di�cult to extend the approach based onpre�xes as sequences to the whole class even though it might be adapted for some subclassesof inclusion and incestual axioms. In particular, it can be shown that a \generation lemma"([Massacci, 1994, page 732] [Gor�e, 1995, Section 6.2]) does not hold, i.e. it is not true that,for any pre�x occurring on a branch, all intermediate pre�xes occur too. This property isat the basis of the completeness proof for the calculus in [Massacci, 1994; Gor�e, 1995]. Letus consider the following example.Example VII.1.1 Assume that the multimodal logic IAL is characterized by the inclusion axiom[a][b]'� [c]'. Then, the formula [a]p ^ hciq � haip is provable:1. i : F([a]p ^ hciq � haip)2. i : T[a]p ^ hciq3. i : Fhaip4. i : T[a]p5. i : Thciq6. w1 : Tq7. i �c w18. i �a w29. w2 �b w110. w2 : Fp11. w2 : Tp�Explanation: 1.: the goal; 2. and 3.: from 1., by �-rule; 4. and 5.: from 2., by �-rule; 6. and 7.:from 5., by �-rule; 8. and 9.: form 7., by �-rule from axiom [a][b]'� [c]'; 10.: from 3. and 8., by�-rule; 11.: from 4. and 8., by �-rule; The branch close due to steps 10. and 11.By applying �-rule to the pre�xed formula at step 5., we get a new world w1 (step6. and step 7.). We can imaging to use the pre�x \1:1c" to represent the world w1 (seeFigure VII.1):1. 1: : F([a]p ^ hciq � haip)2. 1: : T[a]p ^ hciq3. 1: : Fhaip4. 1: : T[a]p5. 1: : Thciq6. 1:1c: : Tq



VII.1. Pre�xed tableau systems 71w1w2i bca (� 1:1c)(� 1:1a)(� 1:) (� 1:1a:1b)Figure VII.1: �-rule as rewriting rule: counter-model construction of Example VII.1.1.Now, by applying axiom [a][b]'� [c]', the same world can also be represented by thesequence \1:1a:1b" (accessibility relation formulae at steps 8. and 9. in Example VII.1.1):6. 1:1a:1b: : Tqwhose subpre�x \1:1a" (world w2 in Figure VII.1) does not occur on the branch. On theother hand, this subpre�x (world) is needed to apply the �-rule to the formula at step 3.and 4. in order to close branch.Moreover, adding explicitly subpre�xes, as the one above, is not enough to solve theproblem, since all pre�xes representing the same world have to be identi�ed.Example VII.1.2 Assume that the multimodal logic IAL is characterized by the inclusion axioms[a]' � [c]' and [b]' � [c]'. Then, the formula [a]p ^ hciq � hbip is provable:1. i : F([a]p ^ hciq � hbip)2. i : T[a]p ^ hciq3. i : Fhbip4. i : T[a]p5. i : Thciq6. w1 : Tq7. i �c w18. i �a w19. i �b w110. w1 : Fp11. w1 : Tp�Explanation: 1.: the goal; 2. and 3.: from 1., by �-rule; 4. and 5.: from 2., by �-rule; 6. and7.: from 5., by �-rule; 8.: form 7., by �-rule from axiom [a]' � [c]'; 9.: form 7., by �-rule fromaxiom [b]' � [c]'; 10.: from 3. and 9., by �-rule; 11.: from 4. and 8., by �-rule; The branch closedue to steps 10. and 11.Using pre�xes �a la Fitting we can represent the world w1 by means of the pre�x 1:1c,that is:



72 VII. Related workw1i(� 1:) a
bc (� 1:1c)(� 1:1a)(� 1:1b)Figure VII.2: �-rule as rewriting rule: counter-model construction of Example VII.1.2.1. 1: : F([a]p ^ hciq � hbip)2. 1: : T[a]p ^ hciq3. 1: : Fhbip4. 1: : T[a]p5. 1: : Thciq6. 1:1c: : TqNow, by applying axiom [a]' � [c]' and axiom [b]' � [c]' the same world w2 will bedenoted by the pre�xes 1:1a and 1:1b:7. 1:1a : Tq8. 1:1b : Tqand, then, applying twice the �-rule to the formulae at steps 3. and 4. we have:9. 1:1b : Fp10. 1:1a : Tpbut the branch does not close because we cannot identify 1:1b and 1:1a which are the sameworld (see Figure VII.2), whereas our calculus does (see Example VII.1.2).Other tableau methods for propositional modal logics which make use of pre�xed for-mulae are presented in [Governatori, 1995; Cunningham and Pitt, 1996]. The system in[Cunningham and Pitt, 1996] deals with all the �fteen propositional normal modal logics ob-tained by combining the axioms T , D, 4, 5, and B, while the system in [Governatori, 1995]considers the propositional modal logics K45, D45, and S5 and the propositional modallogics S5A and S5P(n). It has subsequently been extended to deal with the above mentioned�fteen modal systems and the predicative case in [Artosi et al., 1996; Governatori, 1997].These proof systems extend the calculus KE, a combination of tableau and natural deduc-tion inference rules which allows for a suitably restricted use of the cut rule [D'Agostinoand Modadori, 1994]. In order to have a more e�cient proof search, they generalize the



VII.2. Translation methods 73pre�x both allowing the occurrence of variables and using uni�cation to show that two pre-�xes can name the same world. The main di�erence between the system in [Governatori,1995; Artosi et al., 1996; Governatori, 1997] and the one in [Cunningham and Pitt, 1996]is that the former uses only one type of path variable (single worlds) while the latter allowsvariables over single as well as sequences of worlds. Furthermore, in [Governatori, 1995],only one �-rule is used and uni�cation is logic-dependent while, in [Cunningham and Pitt,1996], uni�cation is independent of the logic but there is a di�erent �-rule for each logic.One of the main features of these systems is the full permutability of the applicationof their rules. Unfortunately, our tableau method does not enjoy this property. In fact,similarly to the problem of applying the existential rules before the universal ones in theproof systems for classical logic, we need to apply the �-rules (or the �-rules) before the�-rules. On the other hand, we deal with a wider class of logics. In particular, we thinkthat it is hard to extend the uni�cation method of pre�xes so to deal with all the classes oflogics that we considered for the same reasons given above in the case of classical pre�xedsystems.In [Catach, 1991] a general theorem prover for propositional modal logics is presented.This system, named TABLEAUX, uses a representation for the accessibility relations thatis close to ours. In fact, in that work a tableau is a pair (�; R), where � is a set of pre�xedformulae and R is a set of relations between worlds. Pre�xes are constant symbols.TABLEAUX can deal with all the already mentioned �fteen modal systems, and alsowith their multimodal versions. However, it does not deal with any interaction axiom whileour does. This system uses three classes of tableau rules: the �rst is made of simpli�cationrules, that are world independent and whose aim is to simplify the proof search; the secondconsists of the transformation rules and allows to introduce new operators in terms of theexisting ones; �nally, the third class of rules deals with formulae belonging to di�erentworlds and can introduce modi�cations in the set R of relations.VII.2 Translation methodsInstead of developing speci�c theorem proving techniques and tools for modal logics, manyauthors have proposed the alternative approach of translating modal logics into classical�rst order logic, so that standard theorem provers can be used without the need to built newones [Ohlbach, 1993b]. The translation methods are based on the idea of making explicitreference to the worlds by adding to all predicates an argument representing the worldwhere the predicate holds, so that the modal operators can be transformed into quanti�ersof classical logic.The relational translation is based on the direct simulation of the Kripke semantics byintroducing a distinguished predicate symbol to represent the accessibility relation [Moore,1980]. This method has strong relationships with our approach. Indeed, we deal withinclusion properties of the accessibility relations, which are �rst-order axiomatizable, hence,the relational translation method can cope with them. On the other hand, as a drawback,the relational translation method destroys the structure of the formulae and it may cause



74 VII. Related workan exponential growth of translated formulae.An alternative method is the functional translation [Ohlbach, 1991; Au�ray and En-jalbert, 1992]. It is based on the idea of representing paths in the possible worlds structureby means of compositions of functions, which map worlds to accessible worlds. The mostcommon properties, such as transitivity or re
exivity, are taken into account by an equa-tional uni�cation algorithm. An advantage of this approach is that it keeps the structureof the original formula.In [Ohlbach, 1993a; Gasquet, 1993] various optimizations of the functional translationmethod are investigated. In particular, a substantial simpli�cation can be obtained forthe case that all accessibility relations are serial. However, even in this case equationaluni�cation cannot be avoided. In particular, an optimization method for the class of in-clusion logics has been presented in [Gasquet, 1993]. Gasquet shows that it is possible toget rid of the sort denoting possible worlds, used in [Ohlbach, 1991], when we deal withinclusion modal logics. Nevertheless, the seriality is assumed for each accessibility relationand, hence, this approach cannot be adopted, for instance, to deal with the logic we haveintroduced in Example III.2.3 at page 26.A way to avoid the use of equational uni�cation algorithms, retaining the advantagesof the functional translation, has been developed in [Nonnengart, 1993], where a mixedapproach based on a relational and functional translation is de�ned. One of the aims ofthe author was to obtain Prolog programs starting from Horn clauses extended with modaloperators [Nonnengart, 1994]. This method requires that accessibility relation properties are�rst-order predicate logic de�nable. In particular, he can provide a translation for the modalsystems (all requiring seriality) KD, KT , KD4, S4, but he can deal also with axioms like(B) : ' � 23', and, then, with logics like KDB, KD45, S5 and the multimodal systemKD45n.



Part TwoInclusion Modal Logicsfor Programming
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Chapter VIIIIntroductionThe problem of extending logic programming languages with modal operators has raiseda lot of attention in the last years. Several researchers have proposed extensions of lo-gic programming with temporal logics and with modal logics (see [Orgun and Ma, 1994;Fisher and Owens, 1993b] for detailed overviews) providing tools for formalizing temporaland epistemic knowledge and reasoning, that retain the characterizing properties of logicprogramming languages, such as, for instance, goal directed proof procedures, �xed pointsemantics and the notion of minimal Herbrand model.In this part of the thesis, we de�ne a logic programming language, called NemoLOG(which stands for New modal proLOG), that is based on the class of �rst-order inclusionmodal logics introduced in the previous part. It extends the language of Horn clauses withmodal operators which, in particular, can occur in front of clauses, in front of clause headsand in front of goals.NemoLOG is parametric with respect to the properties of modal operators determinedby means of the set of inclusion axiom schemas which, in turn, determine the underlyinginclusion modal logic. We show that this extension is well suited for structuring knowledgeand, in particular, for de�ning module constructs within programs, for representing agentsbeliefs and performing epistemic reasoning, simple forms of reasoning about actions, andfor interpreting some features of object-oriented paradigms in logic programming, such ashierarchical dependencies and inheritance among classes.One of the aims in de�ning NemoLOG comes from the need of de�ning structuring facil-ities to enhance modularity, readability, and reusability of logic programs. Logic languagesuse 
at collections of Horn clauses and they lack mechanisms for structuring programs,which are instead available in other programming paradigms. This problem has attracteda lot of interest and many di�erent approaches have been proposed (see [Bugliesi et al.,1994] for a detailed survey). In this thesis, in the line of some previous languages, such asthose de�ned in [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni et al., 1997a],we address this topic by means of the modal logic, using universal modal operators tode�ne modules. The key idea is to associate a modal operator with each module in orderto label its clauses. Module composition is obtained by allowing modules to export clausesor derived facts. To achieve this purpose, we use again a modal operator which makes it77



78 VIII. Introductionpossible to distinguish among clauses local to module, clauses that are fully exported froma module, and those whose consequences only are exported. As we will see, NemoLOGallows to model di�erent kinds of modules presented in the literature (such as [Monteiroand Porto, 1989; Brogi et al., 1990a; Brogi et al., 1990b]).Another important problem related to providing support for software engineering is theintegration of logic programming and object-oriented paradigms [Turini, 1995]. A signi�cantproposal to tackle this problem is the one by McCabe in [McCabe, 1992], where the idea ofrepresenting an object as a �rst-order logic theory is exploited. From a di�erent perspective,in this thesis, we show how modal logics and, in particular, inclusion modal logics canbe used to interpret the object-oriented paradigms in logic programming. Hierarchicaldependencies among modules (classes) can be represented by means of nested modules orby inclusion axiom schemas. For example, if [m1]M1 and [m2]M2 represent two modules,where M1 and M2 are sets of clauses, the inclusion axiom[m1]' � [m2]'says that all the clauses of module m1 are exportable into module m2; in di�erent wordsm1 is a more speci�c class of m2. Besides, a behaviour similar to the use of self can beobtained by means of a modal operator which is a sort of common knowledge operator.In Chapter IX, a goal directed proof procedure, which is modular with respect to thechosen set of inclusion axiom clauses, is presented by making use of a notion of derivationrelation between sequences of modal operators. The derivation relation only depends on theproperties of modalities themselves (i.e., it is based on the set of inclusion axiom clausescontained in the program). More speci�cally, the proof procedure is based on a notion ofmodal context, where modal context is a sequence of modal operators, which keeps traceof the ordering between modalities found in front of goals during a computation so that amodal context is associated with each goal to be solved. According to the modal context inwhich a subgoal has to be proved, a given clause of the program may or may not be used tosolve it, depending both on the modal structure of the clause itself and on its \relation" tothe modal context of the goal. This relation is de�ned by the above mentioned derivationrelation; thus, the derivation relation is used to select a clause for proving a goal in a certainmodal context, according to the properties of modalities of the clause. These properties arecompletely speci�ed by the derivation relation, that can be regarded as a rewriting system[Book, 1987]. The sequences of modalities are the domain of the strings and the rewritingrules are the axioms characterizing the modal operators of the underlying logic (speci�edby means of the inclusion axiom clauses).In this part of the thesis, we also investigate the relationship between NemoLOG and thegeneral proof theory presented in Chapter III. In particular, we, �rst, introduce a sequentcalculus that is a simple syntactical transformation of our tableau method and, then, weprove that, in the case of NemoLOG, we can restrict our attention to sequent proofs of aform, that corresponds to the uniform proofs in the meaning of [Miller et al., 1991]. Thiskind of proofs have a lot of importance because they can be constructed in a goal-directedmanner and, thus, automated deduction based on this kind of proofs can be optimized.



79This result is achieved due to the more \
exibility" of all pre�xed tableau methods in theapplication of the rules during the construction of a proof.We show that our goal directed proof procedure is sound and complete with respectto the possible-worlds semantics presented in Chapter V. To do this we de�ne a �xedpoint semantics by generalizing the standard construction of Horn clauses and we proveits completeness with respect to the possible-worlds semantics through a canonical modelconstruction. Though the construction is pretty standard, we believe that its advantageis in the modularity of the approach, i.e., both the completeness and soundness proof aremodular with respect to the underlying inclusion modal logics of the programs and so theywork for the whole class of inclusion modal systems.This part of the thesis is organized as follows. NemoLOG is introduced in Chapter IX.The operational semantics is presented and some examples of programs and operationalderivations are discussed. Moreover, the relations with the general proof theory of theinclusion modal logics is shown. In Chapter X, we show some interesting applications ofthe de�ned modal extension of Horn clauses, while in Chapter XI, we de�ne the �xed pointsemantics and we give the proof of soundness and completeness of operational semanticswith respect to possible-worlds semantics. Finally, in Chapter XII, we overview somerelated works. They are divided in two classes: the ones that are based on inclusion modallogics and the ones that are not.



80 VIII. Introduction



Chapter IXA Programming LanguageIn this chapter we introduce NemoLOG, our modal logic programming language. It extendsHorn clause logic allowing modalities to occur in clauses and in goals. In particular, it allowsfree occurrences of some universal modalities of the form [t], where t is an arbitrary termof the language, in front of clauses, clause heads and goals. A goal directed proof procedurewill be de�ned and, at the end, we will investigate the relationship between programs andgoals of NemoLOG and the tableau methods studied in the �rst part of the thesis. Finally,we give a method for translating NemoLOG programs into standard Horn clause logic, sothat the translated programs can be executed by any Prolog interpreter or compiler.IX.1 SyntaxGiven a �rst-order modal language LFO (see page 46) we de�ne NemoLOG as a �rst-ordermodal logic programming language whose alphabet contains:� all the symbols of LFO apart from the classical connectives \_", and \:";� the distinguished symbol T (true);� the binary operator \!";� the symbol \"" denoting the empty sequence of modalities.De�nition IX.1.1 (Modalized goals) The set GOAL of modalized goals in NemoLOGis de�ned as the least set of formulae that satis�es the following conditions:� T 2 GOAL;� if A is an atomic formulae of FOR then, A 2 GOAL;� if G1; G2 2 GOAL then, G1 ^ G2 2 GOAL;� if G 2 GOAL and x 2 VAR then, 9xG 2 GOAL;81



82 IX. A Programming Language� if t 2 TERM and G 2 GOAL then, [t]G 2 GOAL.De�nition IX.1.2 (Modalized de�ned clauses) The set DEFC of modalized de�nedclauses in NemoLOG is de�ned as the least set of formulae that satis�es the followingconditions:� if G 2 GOAL, A is an atomic formulae of FOR, and � is a sequence of modalities1(possible empty) then, G � �A 2 DEFC, �A is named modalized clause head;� if D1;D2 2 DEFC then D1 ^ D2 2 DEFC;� if t 2 TERM and D 2 DEFC then, [t]D 2 DEFC;� if D 2 DEFC and x 2 VAR then, 8xD 2 DEFC.NemoLOG allows free occurrence of modal operators in front of clauses[t1][[t2](a ^ b � c);in front of clause heads [t1][[t2](a ^ b � [t3][t4]c);and in front of each goal [t1][[t2]([t5]a ^ [t6][t7]b � [t3][t4]c):De�nition IX.1.3 (Inclusion axiom clauses) The set INC of inclusion axiom clausesin NemoLOG is de�ned as the least set of formulae that satis�es the following condition:� if �1 is a non-empty sequence of modalities and �2 is a possible empty sequence ofmodalities2 then, �1 ! �2 2 INC.We will refer to modalized clauses, modalized goals, modalized clause heads, and inclu-sion axiom clauses with clauses, goals, clause heads and axiom clauses when no confusionarises.De�nition IX.1.4 (Program) A program P in NemoLOG is a pair hDs;Axi, where:� Ds is a set of modalized de�ned clauses of DEFC; and� Ax is a �nite (possible empty) set of inclusion axiom clauses of INC.Intuitively, assume that NemoLOG is based on the �rst-order modal language LFO andlet hDs;Axi be a program of NemoLOG. Then, the set Ds of clauses can be consideredthe actual program speci�cation, while the set Ax of axiom clauses represents the setof inclusion axiom schemas the characterizes the underlying inclusion modal logic of theprogram. More precisely, the underlying logic of the set of clauses Ds is IALFO , whereA = f[t1] : : : [tn]' � [s1] : : : [sm]' j [t1] : : : [tn]! [s1] : : : [sm] 2 Axg.1For instance, � could be [t1][t2] : : : [tn].2Denoted by \"".



IX.1. Syntax 83Some examples of modal logic programsTo give an idea of how a program in NemoLOG is de�ned, let us consider two simpleexamples. The former is a formulation of the Fibonacci example from [Abadi and Manna,1989], while the latter presents the friends puzzle of Example II.3.3.Example IX.1.1 (The Fibonacci numbers) In this example the modal operator [next] representsthe next instant of time and it is axiomatized only by the axiom K, while [always] denote atemporal operator used to represent something that holds in any instant of time. [always] isaxiomatized by the following:(A1) T (always) : [always]' � ';(A2) 4(always) : [always]' � [always][always]';(A3) I(always; next) : [always]' � [next]'.We want fib(X) to hold after n instants of time, if X is equal to Fibonacci of n. The formulationis given by Program IX.1.Program IX.1 : Fibonacci numbers.Ax: (1) [always]! "(2) [always]! [always][always](3) [always]! [next]Ds: (4) T � fib(0)(5) T � [next]fib(1)(6) 8X8Y 8Z([always](fib(Y ) ^ [next]fib(Z) ^ X is Y + Z �[next][next]fib(X)))Axiom clauses (1), (2), and (3) represent the inclusion modal axioms (A1), (A2), and (A3), re-spectively. Clause (4) says that at time 0, fib(0) holds; clause (5) says that at time 1, fib(1)holds; clause (6) says that, for any time n, if fib(Y ) holds at time n, and if fib(Z) holds at timen+ 1, then fib(X), with X = Y + Z, holds at time n+ 2. The sequence [next] : : : [next] of n � 0modalities is used to represent what holds after n instants of time. From this program, the query[next][next][next]fib(X) succeeds with X = 2, and indeed 2 is Fibonacci of 3.Example IX.1.2 (The friends puzzle) The Program IX.2 shows the NemoLOG version of Ex-ample II.3.3.Program IX.2 : Friends puzzle.Ax: (1) [peter][john]! [john][peter](2) [peter]! "(3) [peter]! [peter][peter](4) [john]! "(5) [john]! [john][john](6) [wife(peter)]! [peter](7) [wife(peter)]! "



84 IX. A Programming Language(8) [wife(peter)]! [wife(peter)][wife(peter)]Ds: (9) [peter]time(10) [wife(peter)]([peter]time� [john]time)(11) [peter][john]place(12) [peter][john](place^ time � appointment)Again, the set Ax represents the inclusion axioms of the underlying modal logic of the set of clausesDs (see axioms (A1)-(A8) of Example II.3.3). The goal[john][peter]appointment ^ [peter][john]appointmentsucceeds from the program hDs;Axi.IX.2 Operational semanticsIn this section we introduce a goal directed proof procedure for our modal logic programminglanguage but, before to do this, we need to give some more notions.Derivability relationSince modalities are allowed to occur freely in front of goals, when proving a goal G from aprogram P we need to record the sequence of modalities which occur in the goal, that is themodal context in which each subgoal has to be proved. According to the modal context inwhich a subgoal has to be proved, a given clause of the program may be used or not to solveit: it depends on the modal structure of the clause itself, and on its relation to the modalcontext of the goal (see also [Baldoni et al., 1993; Giordano and Martelli, 1994; Baldoni etal., 1997a]). For instance, given a goal [t1][t2]p, the sequence [t1][t2] represents the modalcontext for the goal p. Assume that the program contains a clause [t3]p. This clause can beused to solve the goal p only if the modality [t3] relates somehow to the context [t1][t2]. Forinstance, if our set Ax of inclusion axiom clauses contains the axiom clause [t3] ! [t1][t2](that is, the underlying logic is characterized by axiom schema [t3]' � [t1][t2]'), then theclause [t3]p can certainly be used to prove the goal.We formalize this relationship between sequences of modalities (the modalities in theclause and the modalities in the modal context of a goal) by introducing a derivationrelation between them. This relation will depend on the inclusion axiom clauses in Ax ofthe program (and, therefore, by the logical axioms A of the underlying logic).More formally, let C be a set of all ground modal operators of the form [t], where t isa ground term of a language NemoLOG. We de�ne the set of modal contexts C� as the setof all �nite sequences on C, including the empty sequence \"". Moreover, we denote with[Ax] the set of all ground instance of the axiom clauses in Ax.De�nition IX.2.1 (Derivation relation) Given a set Ax of inclusion axiom clauses,the derivation relation �)Ax generated by Ax is the the transitive and re
exive closure of



IX.2. Operational semantics 85the relation )Ax de�ned as follows: for each �1 ! �2 2 [Ax] and �;�0 2 C�, ��1�0 )Ax��2�0.3Given a set Ax of axiom clauses two sequences of modalities �1 and �2, we say that �1derives �2 if �1 �)Ax �2; in this case �1 is an ancestor of �2 and �2 is a descendant of �1.We can prove the following property.Proposition IX.2.1 Given a set of inclusion axiom clauses Ax, for all formula  of LFOand for all �;�0 2 C�, if � �)Ax �0 then j=A � � �0 , where A = f�1' � �2' j �1 !�2 2 Axg.Proof. The proof is by induction on the de�nition of �)Ax . (Base) If ��1�0 �)Ax ��2�0and �1 ! �2 2 [Ax], then we have to prove j=A ��1� � ��2�0 , that is for all KripkeA-interpretation M and all world w in W , we have M;w j=A ��1� � ��2�0 . Let usassume M;w j=A ��1� and prove M;w j=A ��2�0 . If M;w j=A ��1� then, for anysequence of worlds w1, : : : , wn, such that (w;w1) 2 RV (t1), : : : , (wn�1; wn) 2 RV (tn), where[t1] : : : [tn] is �, we have that M;wn j=A �1� . Now, j=A �1' � �2', for any formula 'of LFO and, in particular, j=A �1(�0 ) � �2(�0 ). Thus, since M;wn j=A �1(�0 ), wehaveM;wn j=A �2(�0 ), for any sequence of worlds w1, : : : , wn, that is,M;w j=A ��2�0 .(Re
exivity) The case of re
exivity closure is trivial. (Transitivity) Let us assume that� �)Ax �0 and � �)Ax �00 and �00 �)Ax �0, we have to prove j=A � � �0 . By inductivehypothesis j=A � 0 � �00 0 and j=A �00 00 � �0 00, for any formula  0 and  00 of LFO and,in particular, for  0 =  and  00 =  . Let us assume that j=A � and prove j=A �0 . Ifj=A � , since j=A � � �00 , we have that j=A �00 and, since j=A �00 � �0 , we havej=A �0 . 2Remark IX.2.1 It is worth noting that the set [Ax] of ground inclusion axiom clauses ofa program can be regarded as a rewriting system on C, having as rewriting rules the pair(�1;�2) such that �1 ! �2 belongs to [Ax]. In others words, to establish if �1 �)Ax �2means to establish if �2 can be derived from �1 by means of a �nite number of applicationsof the rewriting rules of Ax. That is, to establish if �2 belongs to the language [�1]Ax =f� 2 C� : �1 �)Ax �g.Remark IX.2.2 Given two string �1 and �2, the problem of answering if �2 is a descendantof �1 is known in literature as the word problem for the rewriting system. In general theword problem is undecidable since it can be reduced to the Post's Correspondence Problem.Nevertheless, under certain restriction on such systems, it is decidable. For example whenthe system is complete, i.e., it is noetherian and con
uent [Book, 1987], or when the languagede�ned by �1 is a context sensitive language4 [Hopcroft and Ullman, 1979].3We denote by �1�2 the concatenation of the modal contexts �1 and �2.4In this case it is shown to be even a PSPACE-complete problem.



86 IX. A Programming LanguageThese remarks are quite relevant when we have to deal with the implementation of thematching relation in the case when only ground terms may occur within modalities in theprogram, in the goal and in the axiom clause Ax, and, in particular, no variables may occurwithin them. In the general case, the problem of implementing the matching relation is moreserious, and verifying if a sequence of modalities �1 matches another sequence �2 cannot besimply seen as the problem of determining if �2 can be derived from �1 by applying somerewriting rules. In fact, when the sequences �1 and �2 contain variables, and modalitiesin the axiom clauses contain variables too, verifying if �1 derives �2 involves some form oftheory uni�cation.A goal directed proof procedureThe goal directed proof procedure that we de�ne is modular with respect to the underlyinginclusion modal logic of a program: the di�erences among the logics are factored out in thederivation relation.It is worth noting that the proof procedure is an abstract one. In particular, we follow[Miller, 1989a], in order to avoid problems with variable renaming and substitutions. Givena program P = hDs;Axi, we denote by [Ds] the set of all ground instances of the set Ds.De�nition IX.2.2 Let be hDs;Axi a program in NemoLOG and let � be an arbitrarymodal context. De�ne [Ds] to be the smallest set satisfying the following conditions:� Ds � [Ds];� if �(8xD0) 2 [Ds] then �(D0[t=x]) 2 [Ds] for all ground terms t.Hence, given a program hDs;Axi, [Ds] contains ground clauses of the form �b(G � �hA),where �b and �h are arbitrary sequence of modalities (including the empty one), G is aground goal and A an atomic ground formula.The operational derivability of a closed goal G from a program P in a modal context �,is de�ned by induction on the structure of G. We introduce a proof rule for each kind ofgoal.De�nition IX.2.3 (Operational Semantics) Given a program P = hDs;Axi in NemoLOGand a modal context �, the operational derivability of a goal G from P in the modal context�, written P;� `o G, is de�ned by induction on the structure of G as follows:1. P;� `o T ;2. P;� `o A if there is a clause �b(G � �hA) 2 [Ds] and��b�h �)Ax �, for some ��b such that �b �)Ax ��b , and P;��b `o G;3. P;� `o G1 ^ G2 if P;� `o G1 and P;� `o G2;4. P;� `o [t]G if P;�[t] `o G;



IX.2. Operational semantics 875. P;� `o 9xG if P;� `o G[t=x], for some ground term t.Proving a goal G from a program P amounts to show that G is operationally derivable fromP in the empty modal context ", that is, to show that P; " `o G can be derived by makinguse of the above proof rules.While inference rules 1), 3) and 5) are the usual ones for dealing with distinguishedsymbol T , conjunctive goals and existential goals, rules 2) and 4) are those which deal withmodalities. By rule 4), to prove a goal [t]G, the modality [t] is added to the current context�, and the goal G is proved for the new context �[t]. By rule 2), a clause �b(G � �hA) canbe selected from [Ds] to prove an atomic formula A in a given context �, if the modalitiesoccurring in front of the clause and in front of the clause head are in a certain relation with�, if �b concatenated with �h derives � according to the properties of modalities speci�edby the set of axiom clauses Ax.Example IX.2.1 (The friends puzzle) The following is the successful derivation of the �rst con-junct of the goal [john][peter]appointment ^ [peter][john]appointment of Example IX.1.2 (theproof of the second conjunct is similar).1. P; " `o [john][peter]appointment2. P; [john] `o [peter]appointment3. P; [john][peter] `o appointment4. P; [john][peter] `o place ^ time5a. P; [john][peter] `o place6a. P; " `o T7a. success5b. P; [john][peter] `o time6b. P; [peter] `o [peter]time7b. P; [peter][peter] `o time8b. P; " `o T9b. successWe denote with \a" and \b" the two branches which are created by the application of the rule 3)to step 4. Explanation: 1.: goal; 2.: by rule 4); 3.: by rule 4); 4.: by rule 2), from clause (12)since [peter][john] �)Ax [john][peter]; 5a.: from 4., by rule 3); 6a.: by rule 2), from clause (11)since [peter][john] �)Ax [john][peter]; 7a. by rule 1); 5b.: from 4., by rule 3); 6b: by rule 2), fromclause (10) since [wife(peter)] �)Ax [peter] and [peter][john] �)Ax [john][peter]; 7b.: by rule 4);8b.: by rule 2), from clause (9) since [peter] �)Ax [peter][peter]; 9b.: by rule 1).Remark IX.2.3 Note that, when the axiom clauses are only of the form [t1]! [s1] : : : [sm],that is, there is a single modality on the antecedent, the proof procedure can be simpli�ed.In particular, due to the speci�city of the derivation relation, proof rule 2) for atomicformulas can be simpli�ed as follows:20. P;� `o A if there is a clause �b(G � �hA) 2 [Ds] such that,for some ��b and ��h, ��b��h = �, �b �)Ax ��b , �h �)Ax ��h, andP;��b `o G;



88 IX. A Programming Languagethat is, the current context can be split in two parts so that �b derives the �rst one, and�h derives the second one. This is the kind of semantics it is used in [Baldoni et al., 1993],where a modal logic programming language is proposed to de�ne modularity constructs,and where modalities were ruled by the axioms of S4 and K. In the general case, this isnot su�cient, and we must require that �b and �h jointly derive the current context �. Anexample is given by the derivation above, where 6b: is obtained from 5b: and clause (10),by applying rule 2), while it could not be obtained by applying rule 20).Example IX.2.2 (The Fibonacci numbers) The following is the successful derivation of the goal[next][next][next]fib(X) of Example IX.1.1.1. P; " `o [next][next][next]fib(X)2. P; [next] `o [next][next]fib(X)3. P; [next][next] `o [next]fib(X)4. P; [next][next][next] `o fib(X)5. P; [next] `o fib(Y ) ^ [next]fib(Z) ^ X is Y + Z6a. P; [next] `o fib(Y )7a. success, with Y = 16b. P; [next] `o [next]fib(Z)7b. P; [next][next] `o fib(Z)8b. P; " `o fib(Y1) ^ [next]fib(Z1) ^ Z is Y1 + Z19ba. P; " `o fib(Y1)10ba. success, with Y1 = 09bb. P; " `o [next]fib(Z1)9bb. P; " `o [next]fib(Z1)10bb. P; [next] `o fib(Z1)11bb. success, with Z1 = 19bc. P; " `o Z is 0 + 110bc. success, with Z = 16c. P; [next] `o X is 1 + 17c. success, with X = 2We denote with \a", \b", and \c" the three branches which are created by the application of the rule3) to step 5. and with \ba", \bb", and \bc" the three branches which are created by the applicationof the rule 3) to step 8b. Explanation: 1.: goal; 2.: by rule 4); 3.: by rule 4); 4.: by rule 4); 5.: byrule 2), from clause (6) since [always] �)Ax [next] and [next][next][next] �)Ax [next][next][next];6a.: from 5., by rule 3); 7a. by rule 1) and 2), from clause (5) since [next] �)Ax [next]; 6b.:from 5., by rule 3); 7b.: by rule 4); 8b.: by rule 2), from clause (6) since [always] �)Ax " and[next][next] �)Ax [next][next]; 9ba.: from 8b., by rule 3); 10ba. by rule 1) and 2), from clause(4); 9bb.: from 8b., by rule 3); 10bb.: by rule 4); 11bb. by rule 1) and 2), from clause (5) since[next] �)Ax [next]; 9bc.: from 8b., by rule 3) since Y1 = 0 and Z1 = 1; 6c.: from 5., by rule 3)since Y = 1 and Z = 1;



IX.3. Uniform proofs for NemoLOG 89IX.3 Uniform proofs for NemoLOGIn this section we study the relationship between our modal logic programming languageand the proof theory of the inclusion modal logics given in Chapter III. In particular, weshow that in the case of programs and goals of NemoLOG we can restrict our attention toproofs which are uniform as presented in [Miller et al., 1991], where the logical connectivesare interpreted as search instructions, so that a uniform proof can be found by a goal-directed manner. In order to do this in a easy way, we use the tableau calculus for �rst-order inclusion modal logic in the form of a cut-free sequent calculus but this is only astraightforward syntactic change. As we will observe at the end of the section, the use ofpre�xed formulae plays an important role which allows us to restrict to uniform proofs (seeRemark IX.3.1).A sequent calculusWe present the cut-free sequent calculus for the class of predicative inclusion modal logics.As in the case of tableau method studied in the �rst part of the thesis, for simplicity, werestrict our attention to a language containing only constant symbols and modal operatorslabeled with constant symbols. Recall that we denote with LFO the �rst-order modallanguage LFO extended with countably many new constants (parameters) in order to dealwith free variables in the proofs.De�nition IX.3.1 (Sequent calculus) Let LFO be a predicative modal language and letA be a set of inclusion axioms, the sequent calculus for IALFO is shown in Figure IX.1.In Figure IX.1, the set G contains the collection of accessibility relation formulae and,intuitively, it is used to keep the accessibility relationships among the worlds representedby means of the pre�xes. R8 and L9 have the proviso that aw is a w-parameter that doesnot occur in any formula of the lower sequent. In rule L8 and R9 c is any constant of thelanguage LFO. The meaning of the rules are simple to understand taking into account thealready presented tableau calculus. Note that, in the sequent calculus we do not use signedformulae. Formulae at the left side (the antecedent), with respect to the arrow symbol, arethe ones interpreted as true, while the formulae at the right side (the consequent) are theones interpreted as false.In this sequent calculus there is no need for structural rules, since in a sequent �!AG �the antecedent and the consequent are sets of statements rather than sequences of state-ments.Since T is a distinguished symbol which can be regarded as any propositional tautology,we can assume to have the additional initial sequent (axiom) � !AG w : T;� to deal withthis symbol.A proof for the sequent � !AG �, where � and � are two set of pre�xed signedformulae of IALFO , is a �nite tree constructed using the above rules, having the root labeledwith � !AG � and the leaves labeled with initial sequents, i.e. sequents of the form



90 IX. A Programming Language�; w : '!AG w : ';��!AG w : ';��; w : :'!AG � L: �; w : '!AG ��!AG w : :';� R:�; w : ';w :  !AG ��; w : ' ^  !AG � L ^ �!AG w : ';� �!AG w :  ;��!AG w : ' ^  ;� R ^�!AG w : ';� �; w :  !AG ��; w : ' �  !AG � L� �; w : '!AG w :  ;��!AG w : ' �  ;� R��; w : [x=c]'!AG ��; w : (8x)'!AG � L8 �!AG w : [x=aw]';��!AG w : (8x)';� R8�; w : [x=aw]'!AG ��; w : (9x)'!AG � L9 �!AG w : [x=c]';��!AG w : (9x)';� R9�; w0 : '!AG ��; w : [t]'!AG � L[t] �!AG0 w0 : ';��!AG w : [t]';� R[t]provided that w �t w0 2 G where w0 is new on Gand G0 = G [ fw �t w0g�!AG0 ��!AG � �-rulewhere w �s1 w1, : : : , wm�1 �sm w0 2 G,G0 = G [ fw �t1 w01, : : : , w0n�1 �tn w0g,w01; : : : ; w0n�1 are new on G,and [t1] : : : [tn]' � [s1] : : : [sm]' 2 AFigure IX.1: The sequent calculus for the class of predicative inclusion modal logics.



IX.3. Uniform proofs for NemoLOG 91�; w : ' !AG w : ';� or of the form � !AG w : T;�. We write � `A � if the sequent� !A; � has a proof, where � and � are sets of pre�xed signed sentences of IALFO withpre�x the initial world i. Furthermore, we say that � !A; � is A-valid in a Kripke A-interpretation M = hW;R;D;J ; V i, if, for all w 2 W , with every constant of the sequentinterpreted in J (w), we have that if M;w j=VA ', for each i : ' 2 �, then M;w j=VA  , forsome i :  2 �. A sequent �!A; � is A-valid if it is A-valid in each interpretationM ofMAL .The sequent calculus above is sound and complete with respect to the Kripke semanticsde�ned in Section V.2.Theorem IX.3.1 (Soundness and Completeness) A sequent � !A; � (with � and� sets of pre�xed signed sentences of IALFO with pre�x i) is valid i� �!A; � has a proofin the sequent calculus.Proof. By Theorem III.3.1 and Theorem III.3.2. 2Uniform proofsIn this section we show that we can restrict our attention to uniform proofs when we considersequent of the form i : Ds!A; i : G, where hDs;Axi is a program and G is a goal of ourmodal logic programming language NemoLOG.First of all, we can observe that the language NemoLOG does not allow existentiallyquanti�ed clauses nor universally quanti�ed goals. Moreover, negation never occurs inprograms nor in goals and implication never occurs in goals. For this reason, we can provethe following lemma.Lemma IX.3.1 Let � be a proof of a sequent i : Ds !A; i : G where hDs;Axi is aprogram and G a goal of NemoLOG. Then � contains no application of the rules L:, R:,R� , L9 and R8, where A = f�' � �0' j �! �0 2 Axg.Proof. Our sequent calculus is cut-free. Hence, by the subformula property, derivationsare formed entirely from the subformulae of their end sequent. In particular, no negationoccurs in Ds and G, and therefore, no application of R: or L: is allowed in the proof ofi : Ds !A; i : G. The same for the implication. Moreover, rules L9 and R8 are notapplicable too, since in a proof of i : Ds !A; i : G existentially quanti�ed goals can neveroccur in the left hand side of a sequent and universally quanti�ed clauses can never occurin the right hand side of a sequent. 2A second observation is about L� rule. We show that if we have to prove the sequenti : Ds!A; i : G then, we can use a weaker version of L� , namely L�0, instead of L� .



92 IX. A Programming LanguageProposition IX.3.1 Let � be a proof of a sequent i : Ds !A; i : G where hDs;Axi is aprogram and G a goal of NemoLOG, then there is a proof �0 which uses the rule�!AG w : ' �; w :  !AG ��; w : ' �  !AG � L�0instead of L� .Proof. We prove the lemma that for all sequent �!AG � in � the following properties hold:1. there exists a proof of �!AG � which uses the rule L�0 instead of L� ;2. if � has the form w : ';�0 (i.e. the sequent has the form �!AG w : ';�0) then thereis a proof for �!AG w : ' or for �!AG �0 which makes use of L�0 instead of L�.In particular, since i : Ds !A; G is a sequent which belongs to � the thesis holds. Weprove the properties above by induction on height of the proof � of �!AG �. If the heighth of � is 1 then � is an axiom.1. Trivial.2. If � !AG � is � !AG w : ';�0 and it is an axiom then there is a formulaw0 :  2 � \ (fw : 'g [�0) and, in particular, w0 :  2 (fw : 'g [�0). Thus, thereare two cases. If  = ' and w = w0 then, � !AG w : ' is provable, while if  2 �0then, �!AG �0 is provable.The height of � is h+1. By inductive hypothesis the thesis holds for the sequents whoseproof has height less or equal to h. We consider the following cases, one for each inference�gure in which � can terminate.R ^ ; L ^ : Assume that the root inference �gure in � is R ^ . Hence, � is of the form�1�!AG w : ';�0 �2�!AG w :  ;�0�!AG w : ' ^  ;�0 R ^1. Trivial, by application of the inductive hypothesis.2. By inductive hypothesis we have a proof for � !AG w : ' or � !AG �0 anda proof for � !AG w :  or � !AG �0, that is a proof for � !AG w : ' and�!AG w :  (and hence for �!AG w : ' ^  by applying R ^ ), or �!AG �0.The case when the last inference �gure is L ^ is similar.R[t] : Assume that the root inference �gure in � is R[t]. Hence, � is of the form�1�!AG0 w0 : ';�0�!AG w : [t]';�0 R[t]



IX.3. Uniform proofs for NemoLOG 931. Trivial, by application of the inductive hypothesis.2. If we have a proof for �!AG0 w0 : ';�0 then, we have a proof for �!AG0 w0 : 'and, by applying the ruleR[t], we have a proof for �!AG w : [t]A.L� : Assume that the root inference �gure in � is L�. Hence, � is of the form�1�!AG w : ';� �2�; w :  !AG ��; w : ' �  !AG � L�1. Since �1 is shorter than �, by inductive hypothesis there is a proof which usesL�0 instead of L� for �!AG w : ' or �!AG �. Moreover, there is a proof �02for �; :  !AG �.(a) If there is a proof �001 for � !AG w : ', which uses L�0 instead of L�, weget the following proof for the root sequent�001�!AG w : ' �02�; w :  !AG ��; w : ' �  !AG � L�0(b) If there is a proof for � !AG � which uses L�0 instead of L�, then, byweakening5 there is a proof for �; w : ' �  !AG �.2. Assume that �; w : ' �  !AG � is �; w : ' �  !AG w0 : �;�0. Now, we havejust proved that �001�!AG w : ' �02�; w :  !AG w0 : �;�0�; w : ' � B !AG w0 : �;�0 L�0Since, by inductive hypothesis, we have a proof which use L�0 instead of L�for � !AG w : ' and for �; w :  !AG w0 : � or �; B !AG �0, we have a proofwhich use L�0 instead of L� for � !AG w : ' and �; w :  !AG w0 : � orfor � !AG w : ' and �; w :  !AG �0. By applying L�0, we have a proof for�; w : ' �  !AG w0 : � or �; w : ' �  !AG �0, respectively.L[t]; R� ; L8; R9; � : Trivial, by application of the inductive hypothesis.2 From now on we will refer to the sequent calculus with rules L ^ , R ^ , L[t], R[t], L�0,R � , L8, and R9 and �. As a corollary of Proposition IX.3.1 we have the following.5It is easy to show that if � !AG � is a provable sequent then, �; Z !AG �, where Z is an arbitrarypre�xed formula, is a provable sequent too.
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Figure IX.2: A partial schema of the results about NemoLOG.Corollary IX.3.1 Let � be a proof of a sequent i : Ds !A; i : G, where hDs;Axi is aprogram and G a goal of NemoLOG. Then, each sequent occurrence in � has a singletonset as its consequent.Finally, we show that when we deal with programs and goals of NemoLOGwe can restrictour attention on only uniform sequent proofs, if we refer to the notion of uniform proof aspresented in [Miller et al., 1991]. This notion provides a natural interpretation of logicalconnectives as search operators in the space of the proofs.De�nition IX.3.2 ([Miller et al., 1991]) A uniform proof is a proof in which each se-quent occurrence has a singleton set for its consequent and each occurrence of a sequentwhose consequent contains a non-atomic formula is the lower sequent of the inference �gurethat introduces its top-level connective.In our case, we write � `uA � if � `A � and the proof is uniform.Theorem IX.3.2 Let hDs;Axi be a program and G a goal of NemoLOG then, Ds `A Gif and only if Ds `uA G, where A = f�' � �0' j �! �0 2 Axg.Proof. (If part) Trivial. (Only if part) We prove that for all sequent proof � of �!AG w : �in the proof � of i : Ds !A; i : G there exists a uniform proof �0 of � !AG w : �. Byinduction of the height h of the proof of � !AG w : �. If h is 1 then � must be an axiomand the thesis holds trivially. The height of � is h+ 1. By inductive hypothesis the thesisholds for proofs with height less of equal to h. We consider the following cases, one foreach inference �gure in which � can terminate.L[t]; L ^ ; L8 : Assume that the root inference �gure of � if L[t]. Hence, � is of the form�1�; w00 : '!AG w : ��; w0 : [t]'!AG w : � L[t]



IX.3. Uniform proofs for NemoLOG 95By inductive hypothesis there is a uniform proof �01 with root inference �gure �; w00 :' !AG w : �. Now, we can recognize in �01 all the points where a rule is appliedto w00 : '. Then, let us change �01 in the following way. Let us assume that � isthe sub-proof of �01 associated with one of this point with the root inference �gure�0; w00 : '!AG0 v : A. Note that the right end of this sequent must contains an atomicformula. Thus, we add the following step��0; w00 : '!AG0 v : A�; w0 : [t]'!AG0 v : A L[t]obtaining another uniform proof. Now, we can change �01 substituting � with theabove proof and replacing all formulae w00 : ' with w0 : [t]' along the path betweenthe sequent �0; w00 : ' !AG0 v : A and �; w00 : ' !AG w : � in the proof �01. Now, werepeat this for all above recognized points.The case when the last inference �gure in � are L ^ and L8 are similar.L�0 : Assume that the root inference �gure of � if L�0. Hence, � is of the form�1�!AG w0 : ' �2�; w0 :  !AG w : ��; w0 : ' �  !AG w : � L�0By inductive hypothesis there are a uniform proof �01 with root inference �gure�!AG w0 : ' and a uniform proof �02 with root inference �gure �; w0 :  !AG w : �.Now, we can recognize in �02 all the points where a rule is applied to w0 :  . Then,let us change �02 in the following way. Let us assume that � is the sub-proof of �02associated with one of this point with the root inference �gure �0; w0 :  !AG0 v : A.Note that the right end of this sequent must contains an atomic formula. Thus, weadd the following step ��0; w0 :  !AG0 v : A �2�; w0 :  !AG w : ��; w0 : ' �  !AG0 v : A L�0obtaining another uniform proof. Now, we can change �02 substituting � with theabove proof and replacing all formulae w0 :  with w0 : ' �  along the path betweenthe sequent �0; w0 :  !AG0 v : A and �; w0 :  !AG w : � in the proof �01. Now, werepeat this for all above recognized points.R ^ ; R9; R[t]; � : Obvious by inductive hypothesis.Finally, since i : Ds!A; i : G belongs to � the thesis also holds for it. 2



96 IX. A Programming LanguageRemark IX.3.1 Note that the above theorem could be proven only because we make useof a pre�xed sequent calculus.In more standard sequent and tableau calculus for modal logics, such as the ones presen-ted in [Fitting, 1983, Chapter 2] and in [Wallen, 1990, Chapter 3], the modal rule R[t] hasthe e�ect of deleting some formulae of the \denominator" of the rule to obtain the \numer-ator" (destructive sequent (tableau) systems [Fitting, 1996]). The choice of the formulaeis based on both the syntactic structure of the formulae themselves and the properties ofthe considered logic. Therefore, we can in
uence the content of a sequent by changing theorder of rule application, restricting (or enlarging) the set of formulae available to complete,eventually, the proof (see, for more details, [Wallen, 1990, Chapter 4]). On the contrary, ina pre�xed sequent (tableau) calculus this not happened.In the case of uniform proofs, as shown in [Baldoni et al., 1997a], the problem is thatthe modal operators in a proof have the e�ect of changing the \context" and, then, theycannot be given an interpretation as search operators in the space of proofs (i.e. they donot have a goal directed interpretation) because before using R[t] some applications of leftrules may be needed, which is not possible in a uniform proof. In fact, each occurrenceof a sequent � ! G in an uniform proof, where G is not an atomic formula, is obtainedby applying the right rule for the main logical connective of G. Instead, in this section, wehave shown that a calculus based on pre�xed formulae can avoid the necessity of applyingleft rules before the right rule R[t].Figure IX.2 summarizes the results of this section. This schema will be completed inChapter XI, where the soundness and completeness of operational semantics with respectto possible-worlds semantics will be proved by means of a �xed point semantics.IX.4 Translating NemoLOG programs into Horn clauselogicNemoLOG has a goal directed operational semantics which has been proved to be soundand complete with respect to the Kripke semantics. The operational derivability of a goalis de�ned with respect to a notion of modal context, which consists of a sequence of modaloperators. The modal context keeps track of the new clauses which are added to theprogram when evaluating implication goals.The goal directed procedure gives a precise de�nition of the operation behaviour of aprogram, and provides a means for executing a program. However the actual implement-ation of the procedure can raise several problems. The simplest solution of building aninterpreter (say in Prolog), may turn out to be ine�cient, since the interpreter will have todeal with the modal context.In this section we present a di�erent approach, based on translating our language intoHorn clause logic, so that the translated programs can be executed by any Prolog interpreteror compiler, with the advantage that many features, such as uni�cation or variable renaming,are directly provided. Furthermore, a real program usually needs to use built-in predicates



IX.4. Translating NemoLOG programs into Horn clause logic 97and extra logical features, which, again, are provided by the Prolog environment (as, forinstance, cut).The translation methods is based on the idea of implementing directly the operationalsemantics making explicit reference to the modal context. This is achieved by adding toall predicates an extra argument representing the modal context where the predicate musthold. In particular, a modal context allows us to record the ordering between modalitiesfound in front of goals, during a computation. Note that the notion of modal context playsa role similar to that of pre�xes of formulas in the tableau method presented in Chapter III.Intuitively, a pre�x is a name for a possible world, and the same is for a modal context.A modal context allows us to recognize syntactically whether the worlds being named areaccessible or not.As we will see this approach is closely related to functional translation methods formodal logics [Ohlbach, 1993b] and it is adapted from the translation method for Hornclause languages extended with embedded implication presented in [Baldoni et al., 1996b].For sake of simplicity, we will be concerned with the case in which the modal operators areonly labeled with constant symbols and not with terms6. In Appendix A you can �nd acollection of translated NemoLOG programs taken among the ones presented in this chapterand the following ones.The translation methodSince universal modal operators are distributive with respect to the conjunction of clausesand goals and due to the converse of Barcan formula that holds, we can assume without lossof generality that a NemoLOG program can always contain universally quanti�ed modalizedde�ned clauses of the following form:7�b(�hA0 :� �g1A1; : : : ;�gmAm) (IX.1)and modalized goals of the form: �g1A1; : : : ;�gmAm (IX.2)where A1; : : : ; Am are atomic predicates and �b;�h;�g1 ; : : : ;�gm arbitrary sequences ofmodalities.Thus, by combining rules 2), 3) and 4) of De�nition IX.2.3, we can de�ne the operationalderivability of the atomic formulae by means of the new following rule:200. P;� `o Aif there is a clause �b(�hA :� �g1A1; : : : ;�gmAm) 2 [Ds] and ��b�h �)Ax �, for some��b , and P;��b�g1 `o A1, : : : , P;��b�gm `o Am.6Nevertheless, in Appendix A, we have reported some examples which make use of terms with variables.7For readability, we use the standard Prolog syntax extended with modal operators.



98 IX. A Programming LanguageThe idea for eliminatingmodalities is based on the structure of rule 200) and it is obtainedadding to all atomic predicates an argument which represents the modal context where thepredicates have to be proved. In others worlds, to move the modal context of operationalsemantics directly into the predicates.Let P be a program in NemoLOG and let derive(�b;�h;X; Y ) be a predicate such thatit has success if the joint sequence of modalities �b and �h derives the current context X,according to the set of inclusion axiom clauses in P and De�nition IX.2.1, and it returnsthe derived sequence of ��b by �b in Y . So a clause of the form (IX.1) can be translated asA0(X) :� derive(�b;�h;X; Y ); A1(Y � �g1); : : : ; Am(Y � �gm)8obtaining a Horn clause, and operational derivability will be de�ned as SLD resolution. Inparticular, let �gA be a subgoal in the body of a clause, we can translate it inA(Y � �g)where Y is a variable which is uni�ed with the current context (the name of the world where�gA has to be proved) and linked (denoted by \�") with �g for proving A. While a queryof the form (IX.2) can be translated asA1(�g1); : : : ; Am(�gm):Note that the added argument \X" in the translated clauses will always be ground duringthe computation. In fact, since we ask to prove a query in the empty initial modal context,we start each resolution with a goal as A(�), where � does not contain variables. Thus,it is not possible to introduce variables into resolvent, so the the derivation relation workscorrectly.We can now give the procedure for translating modalized clauses of NemoLOG into�rst-order logic, by eliminating modal operators.De�nition IX.4.1 (Procedure for translating into Horn clauses logic) Let P be aprogram and a goal in NemoLOG. Then, the procedure in Figure IX.3 takes as input thepair P and returns as output P tr, the program obtained by translation of P into Hornclauses logic.Note that the sequence �0 � �00 is the concatenation of sequences �0 and �00. Moreover,if A is p(t1; : : : ; ts), then A(X) and A(Y � �gj) are p(X; t1; : : : ; ts) and p(Y � �gj ; t1; : : : ; ts),respectively. Finally, the predicate derive=4 carries out the derivation relation of De�ni-tion IX.2.1, and X and Y are variables.Let us see how the translation works on the programs IX.1 and IX.2.Example IX.4.1 (The Fibonacci numbers) Given the Program IX.1 of the Example IX.1.1, afterapplying the procedure of De�nition IX.4.1, we will obtain the following program P tr (we willdenote with " the empty sequence of modalities).8Together the proviso that X and Y do not belong to the set of variables of clause (IX.1).



IX.4. Translating NemoLOG programs into Horn clause logic 99beginS := P ;for each clause C � �b(�hA :� �g1A1; : : : ;�gmAm) 2 S dobeginC 0 := A(X) :� derive(�b;�h;X; Y );A1(Y � �g1); : : : ; Am(Y � �gm);S := (S � fCg) [ fC 0gend;P tr := S;endFigure IX.3: Procedure for translating NemoLOG programs into Horn clause logic.Program IX.3 : Fibonacci numbers translated.(1) fib(X; 0) :�derive("; ";X; Y ).(2) fib(X; 1) :�derive("; [next]; X; Y ).(3) fib(X;A) :�derive([always]; [next][next]; X; Y );fib(Y � "; B);fib(Y � [next]; C);A is B + C.The goal [next][next][next]fib(A), that is translated into fib([next][next][next]; A) succeeds fromP tr with the following SLD derivation (denoted by the symbols `SLD):1. P tr `SLD fib([next][next][next]; A)2. P tr `SLD derive([always]; [next][next]; [next][next][next]; Y0);fib(Y0 � "; B0); fib(Y0 � [next]; C0); A is B + C3a. P tr `SLD derive([always]; [next][next]; [next][next][next]; Y0)4a. success, with Y0 = [next]3b. P tr `SLD fib([next] � "; B)4b. P tr `SLD derive("; [next]; [next]; Y1)5b. success, with Y1 = " and B = 13c. P tr `SLD fib([next] � [next]; C)4c. P tr `SLD derive([always]; [next][next]; [next][next]; Y2)fib(Y1 � "; B1); fib(Y1 � [next]; C1); C is B1 + C15ca. P tr `SLD derive([always]; [next][next]; [next][next]; Y2)6ca. success, with Y1 = "5cb. P tr `SLD fib(" � "; B1)6cb. P tr `SLD derive("; "; "; Y3)7cb. success, with Y3 = " and B1 = 0



100 IX. A Programming Language5cc. P tr `SLD fib(" � [next]; C1)6cc. P tr `SLD derive("; [next]; [next]; Y4)7cc. success, with Y4 = " and C1 = 15cd. P tr `SLD C is 0 + 16cd. success, with C = 13d. P tr `SLD A is 1 + 14d. success, with A = 2Example IX.4.2 (The Friends puzzle) Given the Program IX.2 of the Example IX.1.2, afterapplying the procedure of De�nition IX.4.1, we will obtain the following program P tr .Program IX.4 : Friends puzzle translated.(1) time(X) :�derive("; [peter];X; Y ).(2) time(X) :�derive([wife(peter)]; [john]; X; Y ); time(Y � [peter]).(3) place(X) :�derive("; [peter][john];X; Y ).(4) appointment(X) :�derive([peter][john]; ";X; Y ),place(Y � ");time(Y � "):The goal [john][peter]appointment, that is translated into appointment([john][peter]) succeedsfrom P tr with the following SLD derivation:1. P tr `SLD appointment([john][peter])2. P tr `SLD derive([peter][john]; "; [john][peter]; Y0);place(Y0 � "); time(Y0 � ")3a. P tr `SLD derive([peter][john]; "; [john][peter]; Y0);4a. success, with Y0 = [john][peter]3b. P tr `SLD place([john][peter] � ")4b. P tr `SLD derive([peter][john]; "; [john][peter]; Y1);5b. success, with Y1 = [john][peter]3c. P tr `SLD time([john][peter] � ")4c. P tr `SLD derive([wife(peter)]; [john]; [john][peter]; Y2); time(Y2 � [peter])5ca. P tr `SLD derive([wife(peter)]; [john]; [john][peter]; Y2);6ca. success, with Y2 = [peter]5cb. P tr `SLD time([peter] � [peter])6cb. P tr `SLD derive("; [peter]; [peter][peter]; Y3);7cd. success, with Y3 = "Notice that the steps of the derivations closely correspond to the step of the derivationsin Example IX.2.2 and IX.2.1.The correctness of the whole process of translation is given by the following theorem.



IX.4. Translating NemoLOG programs into Horn clause logic 101Theorem IX.4.1 (Correctness of the Translation) Let P be a program and G a goalin NemoLOG, then P; " `o G i� P tr [ derive=4 `SLD Gtrwhere P tr and Gtr are the new program after applying procedures of De�nition IX.4.1 andthe translated goal, respectively, `SLD is standard operational derivability relation for Hornclause logic, and derive=4 is de�ned on the basis of the set of inclusion axiom clauses inP .Proof. It follows easily by the above argumentation. 2Remark IX.4.1 This technique has been implemented and tested on several examples.Since the performance of the translated program heavily depends on the predicate derive=4,special care was devoted to its implementation. Unfortunately, it is not possible to de�ne apredicate derive=4 that works for any set of inclusion axiom clauses of a program becausein general, as we have already remarked, the derivation relation for the class of unrestrictedgrammars is undecidable [Hopcroft and Ullman, 1979]. However, this is not for mostof interesting cases such as the ones shown in this chapter and in the Chapter X (seeAppendix A).Translation methods for modal logics have been developed by many authors [Ohlbach,1993b] as an alternative approach to the development of speci�c theorem proving techniquesand tools. In fact, by translating a modal theorem into predicate logic, it is possible to usea standard theorem prover without the need to build a new one.The translation methods for modal logics are based on the idea of making explicitreference to the worlds by adding to all predicates an argument representing the world wherethe predicate holds, so that modal operators can be transformed in quanti�ers of classicallogic. In particular, in the functional approach [Ohlbach, 1991; Au�ray and Enjalbert,1992], accessibility is represented by means of functions: a modal operator [m] is translatedinto 8Fm, where Fm is a function of sort m, and the worlds will always be represented bya composition of functions, such as Fm1 � : : : � Fmn. For instance, the following NemoLOGmodalized clause [wife(peter)]([john]time :� [peter]time)will be translated into8Fwife(peter)((8Gjohntime(Fwife(peter) �Gjohn)) :�(8Hpetertime(Fwife(peter) �Hpeter)))This translation is correct if the accessibility relation is assumed to be serial and if thedomain of interpretations is constant. We can assume that these conditions hold in ourcase. The above formula can be transformed to clausal form as followstime(Fwife(peter) �Gjohn) :� time(Fwife(peter) � cpeter)where cpeter is a Skolem constant of sort peter. Note that, since the body is negated, alluniversally quanti�ed variables in the body have to be skolemized.



102 IX. A Programming LanguageThe properties of the accessibility relation, such as re
exivity or transitivity, can usuallybe described with equations which can be translated into a theory uni�cation algorithm.In our case, for instance, a variable Fwife(peter) can derive any sequence of functions of sortwife(peter) and peter, whereas a variable Fpeter can derive only a function of sort peter.It is easy to see that this approach closely corresponds to our translation. Sequencesof functions in the functional approach correspond to sequences of modal operators in ourcase and the equational uni�cation is performed by predicate derive=4 (in our case we donot need full uni�cation, but only matching).



Chapter XApplicationsOne of the aims at de�ning our modal extension of Horn clause logic is to provide structuringfacilities as a basic feature. Modal operators can be used to this purpose. They can beused to de�ne modules, by associating a modality [ti] with each module, and, in a moregeneral setting, to provide reasoning capabilities in a multiple agent situation, by associatinga modality [ti] with each agent. Furthermore, this language provides some well-knownfeatures of object-oriented programming, like the possibility of representing dependenciesamong modules in a hierarchy, and the notion of self to reason on this hierarchy.In the following we show these features through some examples. For readability, we usethe standard Prolog syntax extended with modal operators.X.1 Beliefs, knowledge, and actions representationWe have already remarked that multimodal systems are particularly suited to formalizeknowledge and belief operators or to reasoning about actions. NemoLOG inherits thisability, Program IX.2 is an example.Example X.1.1 is a variant of the above mentioned example that introduce a slightlyweaker version of the common knowledge operator in [Halpern and Moses, 1992] alreadyused in Example II.3.4. Example X.1.2, instead, uses modal operators to represent actions.Example X.1.1 (Epistemic reasoning and common knowledge: The friends puzzle II) Let usconsider the Example II.3.3, it is reasonable to think that the information that \Peter knows thatif John knows the place and the time of their appointment, then John knows that he has anappointment", it is, indeed, a common knowledge. We use the modal operator [fool] to representthis kind of information in Program X.1.Program X.1 : The friends puzzle II.[fool]! [fool][fool][fool]! "[fool]! [peter][fool]! [john] 103



104 X. Applications[fool]! [wife(peter)][peter][john]! [john][peter][peter]! [peter][peter][peter]! "[john]! [john][john][john]! "[wife(peter)]! [peter][wife(peter)]! [wife(peter)][wife(peter)][wife(peter)]! "[peter]time.[peter][john]place.[wife(peter)]([john]time :� [peter]time).[fool](appointment :� place; time).Remark X.1.1 As already remarked above, our modal operator [fool] can be taken asa weaker version of the common knowledge operator. In fact, in the possible-worlds se-mantics associated, di�erently that the one in [Halpern and Moses, 1992], the accessibilityrelation associated to [fool] includes the transitive and re
exive closure of the union ofthe accessibility relations associated with the other epistemic operators and not to be equalto it (see also Remark VI.2.1). That means that [fool] cannot be regarded as a commonknowledge operator, though it shares some of its properties. In particular, in our example,the formula: ' ^ [fool](' � [peter]' ^ [john]' ^ [wife(peter)]') � [fool]'(the induction axiom for common knowledge) is not valid in the possible-worlds semantics ofour language, while it is expected to be a valid formula when [fool] is a common knowledgeoperator. In [Genesereth and Nilsson, 1987] a similar weaker version of common knowledgeoperator is suggested. To explain this notion of common knowledge, in [Genesereth andNilsson, 1987] a �ctitious knower has been assumed, sometimes called any fool. What anyfool knows is what all other agents know, and all agents know that others know (and soon). In other words, instead of regarding common knowledge as an operator over beliefs ofagents, it is regarded as a new agent which interacts with the others.The following example presents a modal version of the well-known \shooting problem".The solution proposed, di�erently than [Baldoni et al., 1997b], is monotonic and the frameaxiom is explicitly represented in the clauses.Example X.1.2 (Reasoning about actions: The shooting problem) Assume that our languagecontains a K modality [a] for each possible atomic action a, and modalities [s1; s2] to representsequences of actions and a modality ["] to represent the initial state. The set A will contain thelogical axioms [s1][s2]� � [s1; s2]�, for all action sequences s1 and s2. We formalize the well known\shooting problem" with the Program X.2.Program X.2 : Shooting problem.



X.2. De�ning modules 105(1) [S1][S2]! [S1; S2](2) ["]alive.(3) ["]unloaded.(4) [S]([shoot]dead :� loaded).(5) [S; load]loaded.(6) [S]([A]alive :� alive; A 6= shoot).(7) [S]([shoot]alive :� alive; unloaded).(8) [S]([A]loaded :� loaded; A 6= shoot).(9) [S]([A]unloaded :� unloaded;A 6= load).Clauses (2) and (3) represent the initial facts, the clauses (4) and (5) the causal rules, and the clauses(6)-(9) the frame axioms. In this example it is worth using modalities labeled with terms which con-tains variables to represent arbitrary sequences of actions. The goal G = ["; load;wait; shoot]deadsucceeds with the following derivation.1. " `o ["; load;wait;shoot]dead2. ["; load;wait;shoot] `o dead3. ["; load;wait] `o loaded by clause (3) and S = "; load;wait and["; load;wait][shoot] �)Ax ["; load;wait;shoot],4. ["; load] `o loaded by clause (7) and S = "; load, A = wait and["; load][wait] �)Ax ["; load;wait],5. success, by clause (4) and S = " and ["; load] �)Ax ["; load].It is interesting to note the also the goal G0 = [Z]dead succeeds with Z = "; load; shoot.X.2 De�ning modulesOne of the main motivations in de�ning this language comes from the need of structuringfacilities to enhance modularity, readability and reusability of logic programs. This problemhas been addressed in the literature using many di�erent approaches (like the meta-levelapproach [Bowen and Kowalski, 1982; Brogi et al., 1992], the algebraic approach [O'Keefe,1985; Mancarella and Pedreschi, 1988; Brogi et al., 1994], and the approach based on useof higher-order logic [Nait Abdallah, 1986; Chen, 1987]) and, in particular, it has beentackled by extending the language of Horn clauses with implications embedded in goals, asproposed in [Miller, 1989a; Monteiro and Porto, 1989; Giordano et al., 1992; Lamma et al.,1993; Giordano and Martelli, 1994] (see [Bugliesi et al., 1994] for a survey of the di�erentapproaches).In this section we show, through some examples, that the language we have introduced iswell suited to de�ne module constructs. And, in particular, it allows to introduce structuringconstructs in logic programs while preserving their logical semantics.The key idea is to use a modal operator [mi] of type K for representing what is true ina module, i.e. each label mi can be regarded as a module name (see also [Baldoni et al.,1993; Baldoni et al., 1997a]).



106 X. ApplicationsFlat collection of modulesAs we have mentioned above, a modal operator [mi] of type K can be associated with amodule and can be used to represent what is true in it. In this case, the term mi can beregarded as amodule name. This provides a simple way to de�ne a 
at collection of modulesand to specify the proof of a goal in a module. In particular, if Ds is a set (conjunction)of clauses we may de�ne the clauses in Ds as belonging to module mi through the modulede�nition [export][mi]Ds:The modality [export] of type KT4 in front of the module de�nition is needed to make thede�nition visible in any context (and, in particular, from inside other modules). To thispurpose the inclusion axiomI(export;mi) : [export]' � [mi]'is required. To prove a goal G in module mi, we have simply to write the goal[mi]G:Initially, we assume that clauses in a module must have the form G � A, where G maycontain occurrences of goals [ai]G.Example X.2.1 (Bubblesort I) Consider the simple Program X.3 containing two module de�ni-tions. For readability, we put module name in front of the sequence of clauses of the module, ratherthan in front of each one.Program X.3 : Bubblesort I.[export]! "[export]! [export][export][export]! [list][export]! [sort][export][list] fappend([ ]; X; X):append([XjY];Z; [XjY1]) :�append(Y;Z;Y1): : : :g % End of module list.[export][sort] fbusort(L;S) :�[list]append(X; [A;BjY]; L);B < A;[list]append(X; [B;AjY]; M);busort(M;S):busort(S;S): : : :g % End of module sort.



X.2. De�ning modules 107The module list contains the de�nition of append and other predicates on list, while the modulesort contains the de�nition of the predicate busort for ordering a list according to the bubblesortalgorithm.The goal [sort]busort([2;1;3];S) succeeds with answer S = [1; 2; 3]. Note that, in its compu-tation, the subgoal append(X; [A;BjY]; [2;1;3]) has to be proved in the context [sort][list] and,hence, it can only be proved by making use of the clauses in the module list. In fact, the clausesin module sort cannot be used in the context [sort][list], since all of them are pre�xed by thesequence of modalities [export][sort] which does not derive [sort][list] by means of Ax.Composition of modules: exporting informationIn the previous section modules are closed environments, and they cannot be composed.Thus, in this case, the query [m1][m2]G which succeeds if G can be proved from the clausesin module m2, is completely equivalent to the query [m2]G.However, our language also enables modules to be de�ned as open environments, so thatproving the query [m1][m2]G amounts to prove the goal G in the composition of modulesm1 and m2. Languages providing modularity features of this kind have been presented in[Miller, 1989a; Monteiro and Porto, 1989; Lamma et al., 1993]. Also, a similar point ofview has been taken in [Bugliesi, 1992], where a declarative characterization of inheritanceis de�ned, and in [McCabe, 1992], where an extension of logic programming is proposed tocapture the main features of object-oriented programming.When a module is regarded as being open, it is allowed to export some information tothe external environment. Consider for instance the query [m1][m2][m3]G, the goal G mustbe proved in the composition of modules m1, m2 and m3. The ordering of modules in thequery determines the direction in which information is exported: each module can exportinformation to the modules following it in the sequence.In our language, di�erent forms of module composition can be obtained by making useof the already introduced modal operator [export] to control the information (either clausesor derived facts) that can be exported by a module. In particular, we can make a distinctionamong: clauses that are local to the module in which they are de�ned,G � A(as in the Example X.2.1), clauses that are wholly exported by the module,[export](G � A)(we call these clauses dynamic), and clauses that only export their head (consequences),G � [export]A(we call these clauses static). This feature allows to model di�erent kinds of modulespresented in the literature (so that in each situation the kinds of module that suit bettercan be adopted).



108 X. ApplicationsExample X.2.2 (Bubblesort II) Let us consider ProgramX.4 another formulation of the previousexample, which makes use of static clauses.Program X.4 : Bubblesort II.[export]! "[export]! [export][export][export]! [list][export]! [sort][export][list] f[export]append([ ]; X; X):[export]append([XjY];Z; [XjY1]) :�append(Y;Z;Y1): : : :g % End of module list.[export][sort] f[export]busort(L;S) :�append(X; [A;BjY];L);B < A;append(X; [B;AjY];M);busort(M;S):[export]busort(S;S): : : :g % End of module sort.In this formulation, di�erently from the previous one, the subgoals append in the body of the �rstclause for busort are not preceded by the modal operator [list], and hence, they must be provedin the current context, in which a de�nition of the append predicate must be provided. This canbe done by asking the query [lists][sort]busort([2;1; 3];S), that is, by asking for a proof of thegoal busort([2;1; 3];S) in the composition of the two modules list and sort. The query succeedsfrom the program.The predicate append is exported from module list (which contains static clauses) and thusit is visible from sort. Note that the body of the second append clause must be proved only inthe module list and its proof cannot use any predicate de�ned within module sort.Remark X.2.1 When, as in Example X.2.2, static visibility rules are used, our languagehas a behavior similar to that of the language proposed in [Monteiro and Porto, 1989;Monteiro and Porto, 1990]. A di�erence between the two languages is that their languageadopts predicate overriding between modules, that is, given a query [m1][m2][m3]G, theclause de�nitions for the predicate p in m3 override (cancel) the de�nitions of p in m2 andin m1. In our language, on the other hand, the de�nitions of a predicate may be spread indi�erent modules, and all of them can be used.Nested modulesIn the previous sections we have seen some programs consisting of a 
at collection ofmodules. However, NemoLOG also allows nested modules to be de�ned. By exploiting the



X.2. De�ning modules 109feature that clauses can be preceded by an arbitrary sequence of modal operators, we cangeneralize module de�nitions [export][mi]Ds, given above, as follows:[export][mi][mj]Dswhere the modulemj is de�ned locally to mi, and it becomes visible whenevermi is entered.The following example (from [Goldberg and Robson, 1983]) shows how we can usenested modules.Example X.2.3 (Dictionary) We de�ne a dictionary of pairs (name, value) with two possibleimplementations. The �rst one, named fast, makes use of a search tree and can be used for bigdictionaries, where fast access is important. The second one, named small, makes use of a list andcan be used for small dictionaries, if we want to minimize the space needed to store information.The formulation is given by Program X.5.Program X.5 : Dictionary.[export]! "[export]! [export][export][export]! [dictionary][export]! [small][export]! [fast][export][dictionary] f[export](getvalue(Name;Value; Dictionary) :�not empty(Dictionary);search(Name;Dictionary;Value)):[export](putvalue([Name;Value];Dictionary;NewDictionary) :�not member(Name;Dictionary);insert([Name;Value];Dictionary; NewDictionary)):[fast] fnot empty([[Name;Value];L;R]):search(Name; [[Name; Value]; ; ]; Value):search(Name; [[Name1; ]; L; R];Value) :�Name < Name1;search(Name;L;Value): : : : g % End of module fast.[small] fnot empty([[Name;Value]jL]):search(Name; [[Name; Value]j ]; Value):search(Name; [[Name1; ]jL]; Value) :�Name 6= Name1;search(Name;L;Value): : : : g % End of module small.: : : g % End of module dictionary.



110 X. ApplicationsThe module dictionary contains the de�nition of getvalue, which returns the value associatedwith a name, and putvalue, which insert a new pair (name; value) in a dictionary if it is notalready a member of it. The module dictionary also contains two nested modules, fast andsmall, which describe the predicates used in the de�nition of getvalue and putvalue, in the casewe wish to use a fast dictionary or a small dictionary, respectively. Then, we can retrieve a valueassociated to a name in a fast dictionary by asking the goal[dictionary][fast]getvalue(Name; V alue)Note that we can use module fast only when module dictionary is entered. In fact, using mod-ule fast (respectively small) is meaningful only when it is composed with module dictionary.Observe, moreover, that the usage of a dynamic clause for predicates getvalue and putvalue inmodule dictionary is due to the fact that they use predicates de�ned in module fast (respectively,small).Parametric modulesParametric modules are an important features of a module system. They allow to en-hance the modularity [Giordano et al., 1994; Hill, 1993] as well as to support some aspectsof object-oriented [McCabe, 1992; Monteiro and Porto, 1990; Lamma et al., 1993]. InNemoLOG a modalized de�ned clause can be of the form8x[t(x)](Ds(x))where the variable x is free in the set of clauses Ds(x). Indeed, the above formula is also thede�nition of a module and, in particular, of a parametricmodule. In NemoLOG, parametricmodules can be obtained by sharing some variables between the label of the modalities (thename of a module) and their associated clauses (the body of a module).Example X.2.4 (Bubblesort III) Let us consider the module de�nition in Program X.6Program X.6 : Bubblesort III.[export]! "[export]! [export][export][export]! [list][export]! [ascending][export]! [descending][export]! [sort(ascending)][export]! [sort(descending)][export][list]fappend([ ]; X; X):append([XjY];Z; [XjY1]) :�append(Y;Z;Y1): : : :g % End of module list.



X.2. De�ning modules 111[export][ascending]fordered(X; Y) :� X < Y: : : :g % End of module ascending.[export][descending]fordered(X; Y) :� X > Y: : : :g % End of module descending.[export][sort(Order)]fbusort(L;S) :�[list]append(X; [A;BjY]; L);[Order]ordered(B;A);[list]append(X; [B;AjY]; M)busort(M;S):busort(S;S): : : :g % End of module sort.As already seen, the module lists contains the de�nition of append and the other predicateson lists, while the module sort(Order) contains the de�nition of the predicate busort as in Pro-gramX.3. In order to parameterize the algorithmwith respect to the type of the order, we introducetwo modules, named ascending and descending, which contain two di�erent de�nition of the pre-dicate ordered. Now, we can specify a particular order through the variable Order. Thus, thegoal [sort(ascending)]busort([2;1;3];S)succeeds with answer S = [1; 2; 3], while the goal[sort(descending)]busort([2;1; 3];S)succeeds with answer S = [3; 2; 1].Nested and parametric modules can be used in supporting the notion of an abstractdata-type. Program X.5 and X.6 are examples of this. The following example shows howto extend the Program X.6 in order to deal with pairs of natural number instead of onlysimple natural number.Example X.2.5 (Bubblesort IV) We can extend Program X.6 to deal also with pairs of numbersimply adding the module in Program X.7Program X.7 : Bubblesort IV.[export]! [cartesian(Ord1; Ord2)][export][cartesian(Ord1;Ord2)]fordered([X;Y]; [U;V]) :�[Ord1]ordered(X;U):ordered([X;Y]; [X;V]) :�[Ord2]ordered(Y;V): : : :g % End of module cartesian.



112 X. ApplicationsThe module cartesian(Ord1;Ord2) speci�es the predicate ordered for pairs of number. Note thatthis module is parametric so that we can choose by means of the variables Ord1 and Ord2 the kindof ordering for each element of the pairs. The goal[sort(cartesian(ascending;descending))]busort([[3;4]; [1; 6]; [3;2]; [10; 5]];S)succeeds with answer S = [[1; 6]; [3;4]; [3; 2]; [10;5]].X.3 Inheritance and hierarchiesAnother important problem related with providing support for software engineering is theintegration of logic programming and object-oriented paradigms [McCabe, 1992; Bugliesi,1992] (see also [Bugliesi et al., 1994, Section 3.6] and [Turini, 1995]). A signi�cant proposalto tackle this problem is the class template language presented in [McCabe, 1992], where theidea of representing an object as a �rst-order logic theory is exploited. McCabe interpretsattributes and methods of an object as a set of formulae. Classes are introduced by meansof parametric modules whose parameters play the role of instance variables of the object-oriented languages. Class rules allow to specify the structure of the classes and, thus, theinheritance hierarchy.From a di�erent perspective, in the following examples, we show how modal logics canbe used to obtain some features of object-oriented paradigms, although we do not dealwith the state of objects. In particular, hierarchical dependencies among modules can berepresented both by means of nested modules and by inclusion axiom schemas. For example,if [mi]Dsi and [mj]Dsj represent two modules, the inclusion axiom[mi]' � [mj]'says that all the clauses of module mi are exportable into module mj; in di�erent wordsmj is a more speci�c subclass of mi. Besides, a behavior similar to the use of self can beobtained by means of the previously introduced modal operator [export] and using dynamicclauses.Example X.3.1 (Animal taxonomy I) This is an example of the usefulness of dynamic clausesin nested modules. It is taken from [Brogi et al., 1990b] and describes inheritance in a hierarchyof modules. Program X.8 describes a simple taxonomy that has three levels: the root (animal),which contains the subclasses horse, bird, and tweety, which is a subclass of bird.Program X.8 : Animal taxonomy I.[export]! "[export]! [export][export][export]! [animal][export]! [bird][export]! [tweety]



X.3. Inheritance and hierarchies 113[export][animal] f[export]mode(walk):[export](mode(run) :� no of legs(X); X � 2):[export](mode(gallop) :� no of legs(X); X = 4):[horse] f[export]no of legs(4):[export]covering(hair): : : :g % End of module horse.[bird] f[export]no of legs(2):[export]covering(feather):[export]mode(fly):[tweety] f[export]owner(fred): : : :g % End of module tweety.: : :g % End of module bird.: : :g % End of module animal.The goal [animal][bird][tweety]mode(run)succeeds, since the clause de�ning mode(run) is exported by the module animal and its bodycan be evaluated in the current context, including module bird which contains the informationno of legs(2). The goal would fail, if the modality [export] in front of the clause[export](mode(run) :�no of legs(X); X� 2)in module animal were omitted. By using clauses preceded by the operator [export] (dynamicclauses) we can achieve a result somewhat similar to the use of self in object-oriented languages,by allowing methods of a class to use information coming from a more speci�c class.In the following example we show how to obtain the same description of Example X.3.1but using inclusion axioms to describe the hierarchical dependency among modules insteadof nested modules.Example X.3.2 (Animal Taxonomy II) Let us consider again the four classes animal, horse,bird and tweety. Since what is true for animals is also true for birds and horses, the bird andhorse class inherit from the animal class. Moreover, the class tweety inherits from bird and thusfrom animal. To model this situation, we use the following set of inclusion axioms for de�ning theinheritance rules: I(animal; horse): [animal]� � [horse]�I(animal; bird): [animal]� � [bird]�I(bird; tweety): [bird]�� [tweety]�Thus, the Program X.8 becomes the following.



114 X. ApplicationsProgram X.9 : Animal taxonomy II.[animal]! [horse][animal]! [bird][bird]! [tweety][animal]fmode(walk):mode(run) :� no of legs(X); X� 2:mode(gallop) :� no of legs(X); X= 4: : : :g % End of module animal.[horse]fno of legs(4):covering(hair): : : :g % End of module horse.[bird]fno of legs(2):covering(feather):mode(fly): : : :g % End of module bird.[tweety]fowner(fred): : : :g % End of module tweety.The goal [tweety]mode(run) succeeds, since the clause de�ning mode(run) is inherited by the classtweety from animal.Note that, ProgramX.9 enjoys some distinctive characteristics with respect to the ProgramX.8:� we do not need to use dynamic clause inside a module for export its clauses; and� we do not need to specify the whole hierarchy to query something about a class (tweety inthe example) even with statically con�gured module systems [Brogi et al., 1990b]. Inclusionaxiom clauses works like class rules in class template language of McCabe.Finally, it is also interesting to note that we can ask goals like [X]mode(fly). In fact, it succeedswith answers X = bird and X = tweety.The following example, inspired from [McCabe, 1992], shows another interesting featureof NemoLOG related to the use of parametric modules and axiom clauses.Example X.3.3 The class human(S;A) is a subclass of animal. It is de�ned by a parametricmodule whose parameters allow to specify the attribute age and sex of a particular instance of ahuman. Furthermore, we de�ne the class mathematician that is not subclass of any other class.Program X.10 : Humans.[animal]! [human(S;A)][human(S;A)]f



X.3. Inheritance and hierarchies 115sex(S):age(A):no of legs(2):likes(logic) :�sex(male);age(Ag);Ag < 40:likes(logic) :�sex(female):: : :g % End of module human.[mathematician]flikes(logic):likes(math):: : :g % End of module mathematician.[human(male;30)]! [peter][human(female;42)]! [jane][human(male;45)]! [john][mathematician]! [john]Now, the axiom clauses are used both to specify a hierarchical structure among modules and tocreate particular instance of the class human. Then, peter, jane, and john are the instance ofthe class human and inherits all its content. Thus, the goal[peter](mode(walk) ^ likes(logic))succeeds because peter is a human aged 30 and because he is an animal and, then, he can walk.It is interesting to note that, despite the fact that john is a human aged 42, the goal[john](mode(walk) ^ likes(logic))succeeds. In fact, john is also a mathematician and, then, inherits both from the class humanand from the class mathematicial (multiple inheritance).Evolving and conservative systems with dynamic or static con�gur-ation of modulesIn [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al., 1993] a general unifying frameworkfor structuring logic programs, called Ctx Prolog, is presented. It is inspired by the worksin [Monteiro and Porto, 1989; Miller, 1989a] and it is aimed at giving a framework in whichdi�erent proposals for structuring logic programs can be described and compared.A program in Ctx Prolog is a collection of named modules (unit) while goals are provedin variable sets of clauses (context) obtained by suitably combining units by means of the



116 X. Applicationsextension operators \>>" (cactus extension) and \>>>" (linear extension). In particular,in Ctx Prolog a distinction is made between statically and dynamically con�gured systemsand between conservative (or nested) and evolving (or global) policies to establish bindingsof predicate calls (this distinction roughly corresponds to the distinction between static anddynamic visibility rules for non-local predicate de�nitions in [Giordano and Martelli, 1992;Giordano and Martelli, 1994]).A statically con�gured system is de�ned as a system where hierarchies among units arespeci�ed when units are de�ned. In these systems the context in which a unit is used doesnot depend on the dynamic sequence of goals but is always �xed when the unit is de�ned.For instance, in [Lamma et al., 1993], to specify that whenever a unit m1 is used, it is usedonly in the context of the modules m2, m3, and m4 a de�nition of the formunit(m1; closed([m2; m3; m4]))takes place in the program. On the contrary, the context of unit m1 can be di�erent indi�erent queries.In our language, nested modules allows to describe a sort of statically con�gured mod-ules. Let us consider the Example X.3.1, the module tweety is visible only if bird andanimal are entered. However, nested modules does not model the meaning of static con-�guration of modules as given in [Lamma et al., 1993], In fact, since animal is exportable,the sequence of modules [animal][bird][tweety] can be the su�x of di�erent contexts and,thus, tweety can inherit information not only from animal and bird. On the other hand,module animal needs to be de�ned exportable in order to make it visible inside othermodules.Nevertheless, statically con�gured modules can be allowed by introducing a new modaloperator [public] of type S4 to control the information that can be exported by a module(instead of [export]) and the modal operator [closed] of type K to make a context closed.Example X.3.4 (Statically and dynamically con�gured systems) Let us consider three modules,named respectively m1, m2 and m4. Modules m1 and m2 are static, while module m3 is dynamic[Brogi et al., 1990a, Example 6].Program X.11 : Statically and dynamically con�gured systems.(1) [export]! " (2) [public]! "(3) [export]! [export][export] (4) [public]! [public][public](5) [export]! [closed](6) [export]! [m1] (7) [public]! [m1](8) [export]! [m2] (9) [public]! [m2](10) [export]! [m3] (11) [public]! [m3](12) [m1][public]! [m2][export][m1] f(13) [public]b: g



X.3. Inheritance and hierarchies 117[export][m2] f(14) [public]a :� b:g(15) [public]a0 :� b0:g[export][m3] f(16) [public]c :� [closed][m2]a:(17) [public]c0 :� [closed][m2]a0:(18) [public]b0: gIn this way, m2 always inherits the \public" information of module m1 (by means of the inclusionaxiom clause [m1][public]! [m2]) but not the other ones. The goal [m3]c has the following successfulderivation:1. " `o [m3]c2. [m3] `o c3. [m3] `o [closed][m2]a by clause (16) and [export][m3] �)Ax [m3], [m3][public] �)Ax [m3]4. [m3][closed] `o [m2]a5. [m3][closed][m2] `o a6. [m3][closed][m2] `o b by clause (14) and [export][m2] �)Ax [m3][closed][m2],[m3][closed][m2][public] �)Ax [m3][closed][m2]7. success, by clause (13) and [export][m1] �)Ax [m3][closed][m1],[m3][closed][m1][public] �)Ax [m3][closed][m2]On the other hand, the goal [m3]c0 does not succeed since clause (18) is not visible inside the context[m3][closed][m2] because [export][m3][public] does not derive [m3][closed][m2]. In other worlds, themodal operator [closed] in front of a goal has the e�ect of closing a context.We said that the proposal in [Brogi et al., 1990a; Brogi et al., 1990b; Lamma et al.,1993] makes a a distinction between conservative and evolving policies. More precisely, itis possible in Ctx Prolog to put the symbol \#" in front of the atomic goals. #p meansthat p is a lazy atom and, operationally, it has to be solved dynamically from the currentcontext of modules. This gives the evolving policy. On the other hand, if the operator \#"is not used in front of an atomic goal (eager atom), it means that the atom coming from amodule has to be solved statically only using clauses de�ned in that module or in externallynested modules. This gives the conservative policy.In order to support both binding policies, a rather complex operational semantics, whichmakes use of two context have to be maintained during a computation: the global contextand the partial context. Accordingly, two context extension operators >> and >>> areprovided in Ctx Prolog. The former, the cactus extension, has a static behavior and extendsthe partial context while the latter, the linear extension, has a dynamic behavior and extendsthe global context.In NemoLOG, we can use dynamic clauses and static clauses to model Ctx Prolog ex-tended clauses whose body consist of all lazy and eager atoms, respectively.1 For ex-ample, the Ctx Prolog clause p :� #q;#r corresponds to the dynamic NemoLOG clause1Where, however, we use the modal operator [public] instead of [export].



118 X. Applications[public](p :� q; r), while the clause p :� q; r corresponds to static clause [public]p :� q; r.In the case of extension operators, both cactus extension u >> G and linear extensionu >>> G are modeled by the NemoLOG goal [u]G. The cactus extension can be regardedas the modalized goal [u]G occurring in a static clause, while the linear extension as themodalized goal [u]G occurring in a dynamic clause. Note that in Ctx Prolog both lazyand eager atoms (linear and cactus extension) are allowed to occur in the same clausebody. For instance, p :� #q; r is a clause. Such a clause cannot be directly represented inNemoLOG because our distinction is made at the level of clauses and not at the level of goals.However, it is su�cient to use two clauses instead of a single one as [public](p :� q; s)and [public]s :� r, where s is a dummy proposition. In this way the subgoal q is proveddynamically, while r is proved statically (see also [Giordano and Martelli, 1992]).Though there is a correspondence between the conservative and evolving policies inCtx Prolog and the use of dynamic and static clauses as we have introduced, this corres-pondence is not perfect, as it is shown by the following example.Example X.3.5 Let us consider the following Ctx Prolog and corresponding NemoLOG program:unit(m1) : [export][m1]fa :� d: [public]a :� d:d :� #b: [public](d :� b):gunit(m2) : [export][m2]fb: [public]b:gThen, both the goal m1 >> m2 >> d and the goal m1 >> m2 >> a succeed, while it does not in ourlanguage, i.e. the goal [m1][m2]d succeeds and [m1][m2]a fails. In fact, in this case, though theatom d in the body of the clause a :� d is eager and therefore has to be solved with a clause inm1, the subgoals generated by it can be solved dynamically. Indeed, the proof of the eager goal dcam make use of the atom b de�ned in the nested module m2. This behaviour is allowed by meansof using two context (the global one and the partial one) instead of a single one as the operationalsemantics we have de�ned for NemoLOG (see also [Giordano and Martelli, 1992]).



Chapter XIFixed Point SemanticsIn this chapter, we present a �xpoint semantics for our language, which is used to provesoundness and completeness of the proof procedure in Section IX.2 with respect to themodel theory de�ned in Section V.2. We also show that there is no loss of generalityin restricting �rst-order Kripke A-interpretations to those in which the domain at eachworld is the Herbrand universe. It is worth noting that the TP operator, canonical modelconstruction, and all de�nitions and proofs are modular with respect to the underlying logicof the program speci�ed by means of its set of inclusion axiom clauses.XI.1 Immediate consequence transformationWe de�ne an immediate consequence operator TP based on a relation of weak satis�abilityfor closed goals in the line of [Miller, 1989a]. This allows to capture the dynamic evolutionof the modal context in the operational semantics during a computation.Completeness with respect to the model theory is proved by a Henkin-style canonicalmodel construction, which is similar to the one given in [Bonner et al., 1989].Interpretations and weak satis�abilityThe weak satis�ability is de�ned on a Kripke-like semantics, where each world represents amodal context and it interprets the program at that modal context. As a result, we de�nean interpretation for a program P as any function I : C� ! 2B(P ); that is a mapping frommodal contexts to Herbrand interpretations of the program P . We denote by = the setof all interpretations. It is easy to note that (=;v=) is a complete lattice, where v= isde�ned as the ordering I1 v= I2 if and only if (8� 2 C�) I1(�) � I2(�): The bottom element,denoted by ?, is the interpretation? such that ?(�) = ;, for all context � 2 C�. Moreover,we de�ne the join, denoted by \t", of two interpretations I1 and I2 as the interpretation(I1tI2)(�) = I1(�)[I2(�), and the meet, denoted by \u", of I1 and I2 as the interpretation(I1 u I2)(�) = I1(�) \ I2(�). 119



120 XI. Fixed Point SemanticsDe�nition XI.1.1 (Weak satis�ability) Let I be an interpretation and let � be a modalcontext, and Ax a set of inclusion axiom clauses then, we say that a closed goal G ofNemoLOG is weakly satis�able in I(�), denoted by I(�) jj=Ax G, by induction on thestructure of G as follows:1. I(�) jj=Ax T ;2. I(�) jj=Ax A i� A 2 I(�);3. I(�) jj=Ax G1 ^ G2 i� I(�) jj=Ax G1 and I(�) jj=Ax G2;4. I(�) jj=Ax 9xG0 i� I(�) jj=Ax G0[t=x], for some t 2 UP ;5. I(�) jj=Ax [t]G0 i� I(�0) jj=Ax G0, for all �0 2 C� such that �[t] �)Ax �0.Given an interpretation I and a context �, I(�) jj=Ax G means that the goal G is truein the interpretation associated with �.Remark XI.1.1 In the rule 5) the derivation relation �)Ax between modal context de-pends on the choice of the set of axioms A. A goal [t]G holds in a world � if the goal Gis true in all worlds reachable from �, that is in all world �0 such that �[t] �)Ax �0. Thisallows to satisfy the inclusion relation properties of the Kripke A-interpretation which isbuilt by the �xed point semantics (as we will see from the canonical model construction atthe page 126).TP operatorWe are interested in �nding an interpretation I such that G is operationally derivablefrom hDs;Axi if and only if I(") jj=Ax G. This particular interpretation is the least �xedpoint of the following immediate consequence transformation TP de�ned in the domain ofinterpretations (=;v=). We denote with UP the Herbrand universe of P .De�nition XI.1.2 (Immediate consequence operator) Let hDs;Axi be a program ofNemoLOG, � a modal context, and let I be a interpretation, then we de�ne a function TPfrom interpretations to interpretations as follows:TP (I)(�) = fA 2 B(P ) : �b(G � �hA) 2 [Ds] and ��b�h �)Ax �;for some ��b such that �b �)Ax ��b ; and I(��b) jj=Ax Gg:To prove that TP is monotone and continuous we �rst state two lemmas concerning theweak satis�ability. We present the proof for only the �rst lemma. The proof of the secondis similar.Lemma XI.1.1 Given a set Ax of inclusion axiom clauses in NemoLOG, if I1 v= I2 thenI1(�) jj=Ax G implies I2(�) jj=Ax G, for all � 2 C�.



XI.1. Immediate consequence transformation 121Proof. By induction on the structure of G.G = T : Trivial.G = A : If I1(�) jj=Ax A then, A 2 I1(�) and, since I1 v I2, A 2 I2(�). Hence I2(�) jj=AxA.G = [t]G0 : If I1(�) jj=Ax [t]G0 then, I1(�0) jj=Ax G0 for all modal contexts �0 such that�[t] �)Ax �0. By inductive hypothesis, I2(�0) jj=Ax G0 and, thus, by de�nition of weaksatis�ability, I2(�) jj=Ax [t]G.G = G1 ^ G2; G = 9xG0 : Trivial, from de�nition of jj=Ax applying the inductive hypo-thesis.2Lemma XI.1.2 Given a set Ax of inclusion axiom clauses in NemoLOG, let I1 v= I2 v=I3 v= � � � be a sequence of interpretations. If G is a goal, � 2 C� a modal context andFk2! Ii(�) jj=Ax G, then there exist a k � 1 such that Ik(�) jj=Ax G.Now we are ready to show that TP is monotone and continuous.Theorem XI.1.1 Given a program P = hDs;Axi in NemoLOG, TP is monotone, that is,if I1 v I2 then TP (I1) v= TP (I2).Proof. Let I1 v= I2 and assume that � 2 C� and A 2 TP (I1)(�). Thus, there is a groundclause �b(G � �hA) 2 [Ds] such that ��b�h �)Ax �, for some ��b such that �b �)Ax ��b , andI(��b) jj=Ax G. For Lemma XI.1.1 we have that I2(��b) jj=Ax G and A 2 TP (I2)(�). Since �and A are arbitrary, we have proved that TP (I1) v= TP (I2). 2Theorem XI.1.2 Given a program P = hDs;Axi in NemoLOG, TP is continuous, thatis, if I1 v= I2 v= I3 v= : : : is a sequence of interpretations, thenGk2! TP (Ik) = TP 0@Gk2! Ik1A :Proof. We prove the inclusion in two directions.1. If Ij v= tk2!Ik for any j, j � 1, we have, since TP is monotone, that TP (Ij) v=TP (tk2!(Ik). j is arbitrary, so we can concludetk2!TP (Ik) v= TP (tk2!Ik):2. If � 2 C� and A 2 TP (tk2!Ik)(�) then there is a ground clause �b(G � �hA) 2 [Ds]such that ��b�h �)Ax �, for some ��b such that �b �)Ax ��b , and (tk2!Ik)(��b) jj=Ax G.By Lemma XI.1.2, there exists a k, k � 1, such that TP (Ik)(��b) jj=Ax G and, thus,A 2 TP (Ik)(�) v= (tk2!TP (Ik)(�)). � and A are arbitrary, thusTP (tk2!(Ik)) v= tk2!TP (Ik):



122 XI. Fixed Point Semantics2 The transformation TP is monotone and continuous in (=;v=). Thus, the least �xedpoint T !P of TP exists by monotonicity and, by continuity, we have T !P (?) = Fk2! T kP (;),where T 0P (;) = ; and, for each k > 0, T kP (;) = TP (T k�1P (;)).It is worth noting that for T !P (?) the following property holds. It is the �xpoint semanticscounterpart of the inclusion property of the Kripke A-interpretations.Proposition XI.1.1 Let P = hDs;Axi be a program, G a closed goal and let � be a modalcontext, then T !P (?)(�) jj=Ax G implies T !P (?)(�0) jj=Ax Gfor all context �0 such that � �)Ax �0.Proof. We prove, by double induction on k and the structure of G, thatT kP (?)(�) jj=Ax G implies T kP (?)(�0) jj=Ax Gfor all �0 2 C� such that � �)Ax �0 and k � 0.If k = 0 then the theorem holds trivially.Let assume that the theorem holds for k � 1 and we prove it for k. We consider thefollowing cases, one for each possible structure of G.G = T : Trivial.G = A : If T kP (?)(�) jj=Ax A then, A 2 TP (T k�1P (?))(�). Now, there are two cases:1. A 2 T k�1P (?)(�). By inductive hypothesis on k, we have that A 2 T k�1P (?)(�0),for all �0 2 C� such that � �)Ax �0. Hence, A 2 T kP (?)(�0), for all �0 2 C� suchthat � �)Ax �0, by Theorem XI.1.1.2. A 62 T k�1P (?)(�). There is a clause �b(G0 � �hA) 2 [Ds] such that ��b�h �)Ax �,for some ��b such that �b �)Ax ��b , and T k�1P (?)(��b) jj=Ax G0. Now, for all �0,such that � �)Ax �0, we have that ��b�h �)Ax � �)Ax �0. Let us �x a �0, byinductive hypothesis on k, we have that T k�1P (?)(��0b ) jj=Ax G0, for all ��0b 2 C�such that ��b �)Ax ��0b , in particular, since ��b �)Ax ��b , T k�1P (?)(��b) jj=Ax G0.Since ��b�h �)Ax �0, we have that A 2 T kP (?)(��b) and, by De�nition XI.1.2,T kP (?)(�0) jj=Ax A.G = [t]G0 : If T kP (?)(�) jj=Ax [t]G0 then, T kP (?)(��) jj=Ax G0, for all �� such that �[t] �)Ax ��.Now, we have to prove that, 8�0, � �)Ax �0, T kP (?)(�0) jj=Ax [t]G0, that is, 8�0,� �)Ax �0, 8�0�, �0[t] �)Ax �0�, T kP (?)(�0�) jj=Ax G0. Let us �x �0 and �0�, we haveto prove that T kP (?)(�0�) jj=Ax G0. Since � �)Ax �0 and [t] �)Ax [t], �[t] �)Ax �0[t],therefore �[t] �)Ax �0� and, by inductive hypothesis, T kP (?)(�0�) jj=Ax G0.G = G1 ^ G2; G = 9xG0: Trivial, from de�nition of weak satis�ability applying the induct-ive hypothesis on the structure.2



XI.2. Soundness and completeness 123Related workIn [Balbiani et al., 1988] a �xpoint semantics is provided for an instance of MOLOG. Inparticular, the declarative semantics associated to a program is developed in terms of atree, de�ned as the �xed point of a certain transformation TP . Such a tree represents theminimal Kripke model of the program. In [Baudinet, 1989] a �xpoint characterization ofthe declarative semantics of TEMPLOG programs is also given. Both of these languagescan be seen to belong to the class of intensional logic programs introduced in [Orgun andWadge, 1992]. There, a language-independent theory is developed, which can be appliedto a variety of intensional logic programming languages by investigating general propertiesof intensional operators (of which modal operators are a special case). In particular, theauthors of [Orgun and Wadge, 1992] use a neighborhood semantics of Scott and Montagueas an abstract formulation of the denotations of intensional operators and they show thatintensional Horn programs (i.e. programs in which atomic formulas can be pre�xed byany sequence of intensional operators) have a �xed point characterization of the declarativesemantics under some conditions. In particular, intensional operators that appear in clauseheads have to be universal, monotonic and conjunctive, and those in clause bodies haveto be monotonic and �nitary. Our language does not belong to the class of languages thatsatisfy the above conditions. In fact, the universal modal operators used in clause bodiesare not �nitary. Nevertheless, as we have seen, a �xed point semantics can be given to thelanguage.XI.2 Soundness and completenessIn this section, we prove the soundness and completeness of �xed point semantics withrespect to both operational semantics and possible-worlds semantics. In particular, thecorrespondence between the �xed point and declarative semantics is proved through acanonical model construction.With respect to operational semanticsThe soundness of the �xed point semantics with respect to the operational semantics isgiven by the following theorem.Theorem XI.2.1 (Soundness) Let P = hDs;Axi be a program of NemoLOG and let Gbe a closed goal, then T !P (?)(") jj=Ax G implies P; " `o G:Proof. It is proved by showing, with a double induction on k and the structure of G, thatT kP (?)(�) jj=Ax G implies P;� `o G, for any modal context � and k � 0. In particular, forthe empty context ", we have the main theorem.If k = 0 then the theorem holds trivially.Let us assume that the theorem holds for k � 1 and we prove it for k. We consider thefollowing cases, one for each possible structure of G.



124 XI. Fixed Point SemanticsG = T : Trivial.G = A : If T kP (?)(�) jj=Ax A then, A 2 TP (T k�1P (?))(�). Now, there are two cases:1. A 2 T k�1P (?)(�). By inductive hypothesis on k, we have that P;� `o A.2. A 62 T k�1P (?)(�). Hence, there is a clause �b(G0 � �hA) 2 [Ds] such that��b�h �)Ax �, for some ��b such that �b �)Ax ��b , and T k�1P (?)(��b) jj=Ax G0.By inductive hypothesis on k, we have that P;��b `o G0 and, by de�nition ofoperational derivability, P;� `o A.G = [t]G0 : If T kP (?)(�) jj=Ax [t]G0 then, T kP (?)(�0) jj=Ax G0, for all �0 such that �[t] �)Ax �0.By inductive hypothesis on the structure, P;�0 `o G0, for all �0 such that �[t] �)Ax �0.In particular, since �[t] �)Ax �[t], P;�[t] `o G0, and, by de�nition of operationalderivability, P;� `o [t]G0.G = G1 ^ G2; G = 9xG0 : Trivial, from de�nition of operational derivability, applying theinductive hypothesis on the structure.2 The completeness of �xed point semantics with respect to operational semantics is statedby the following theorem.Theorem XI.2.2 (Completeness) Let P = hDs;Axi be a program of NemoLOG and letG be a closed goal, then P; " `o G implies T !P (?)(") jj=Ax G:Proof. It is proved by showing, by induction on the length h of the derivation of G, thestronger property that, for any modal context �, if P;� `o G then T !P (?)(�) jj=Ax G.If h is 1 then G must be T then, it is obvious that P;� `o T implies T !P (?)(�) jj=Ax Tby de�nition of weak satis�ability.The length of the derivation is h+1. Assume that the theorem holds for derivation withlength less or equal than h. We consider the following cases, one for each possible structureof G.G = T : Trivial.G = A : If P;� `o A then there exists a clause �b(G0 � �hA) 2 [Ds] such that ��b�h �)Ax �,for some ��b such that �b �)Ax ��b , and P;��b `o G0. By inductive hypothesis,T !P (?)(��b) jj=Ax G0 and, by De�nition XI.1.2, we have that A 2 T !P (?)(�). Hence,by de�nition of weak satis�ability, T !P (?)(�) jj=Ax A.G = [t]G0 : If P;� `o [t]G0 then P;�[t] `o G0. Hence, by inductivehypothesis, T !P (?)(�[t]) jj=AxG0 and, by Proposition XI.1.1, T !P (?)(�0) jj=Ax G0, for all �0 such that �[t] �)Ax �0.Thus, by de�nition of weak satis�ability, we have that T !P (?)(�) jj=Ax [t]G0.



XI.2. Soundness and completeness 125G = G1 ^ G2; G = 9xG0 : Trivial, from the de�nition of weak satis�ability applying theinductive hypothesis.2With respect to possible-worlds semanticsThe soundness of �xed point semantics with respect to possible-worlds semantics is statedby the following theorem.Theorem XI.2.3 (Soundness) Let P = hDs;Axi be a program of NemoLOG, let G be aclosed goal and let � be a modal context, thenT !P (?)(") jj=Ax G implies j=A Ds � Gwhere A = f[t1] : : : [tn]' � [s1] : : : [sm]' j [t1] : : : [tn]! [s1] : : : [sm] 2 Axg.Proof. We prove, by double induction on k and the structure of G, that T kP (?)(�) jj=Ax Gimplies Ds j=A �G, for any modal context � and k � 0.If k = 0 then the theorem holds trivially.Let us assume that the theorem holds for k � 1 and we prove it for k. We consider thefollowing cases, one for each possible structure of G.G = T : Trivial.G = A : If T kP (?)(�) jj=Ax A then, A 2 TP (T k�1P (?))(�). Now, there are two cases:1. A 2 T k�1P (?)(�). By inductive hypothesis on k, we have that Ds j=A �A.2. A 62 T k�1P (?)(�). Hence there is a clause �b(G0 � �hA) 2 [Ds] such that��b�h �)Ax �, for some ��b such that �b �)Ax ��b , and T k�1P (?)(��b) jj=Ax G0. Letus assume that j=A Ds, in particular j=A �b(G0 � �hA). Since �b �)Ax ��b ,j=A ��b(G0 � �hA), hence j= ��bG0 � ��b�hA. Now, by inductive hypothesis onk, j=A Ds � ��bG0 and since, by hypothesis, j=A Ds, we have that j=A ��b�hA.Finally, since ��b�h �)Ax �, we have that j=A �A holds.G = [t]G0 : If T kP (?)(�) jj=Ax [t]G0 then, T kP (?)(�0) jj=Ax G0, for all �0 such that �[t] �)Ax �0.In particular, since �[t] �)Ax �[t], T kP (?)(�[t]) jj=Ax G0. By inductive hypothesis onthe structure, Ds j=A �[t]G0, that is Ds j=A �G.G = G1 ^ G2; G = 9xG0 : Trivial, from de�nition of satis�ability relation and applying theinductive hypothesis on the structure.2



126 XI. Fixed Point SemanticsLet us now consider the completeness of the �xed point semantics with respect to thepossible-worlds semantics. The completeness proof is given by constructing a canonicalmodel for a given program P , whose domain is constant and is the Herbrand universe UPof the program.De�nition XI.2.1 (Canonical Model) The canonical model MAxc for a program P =hDs;Axi of NemoLOG is a tuple hW;R;D;J ; V i, where:� W = C�;� D = UP (the Herbrand universe of P );� J is the constant function J (w) = UP , for all w 2 W ;� V is an assignment function, such that:(a) it interprets terms as usual in Herbrand interpretations;(b) for each predicate symbol p 2 PREDn and each world � 2 C�, V (p;�) =fht1; : : : ; tni : T !P (?)(�) jj=Ax p(t1; : : : ; tn) and t1; : : : ; tn 2 UPg.� R is de�ned as follows: for all t 2 UP ,Rt = f(�;�0) 2 W �W : �;�0 2 C� and �[t] �)Ax �0g;The canonical modelMAxc for a program P of NemoLOG is a Kripke A-interpretation.In fact, it is easy to see that for each axiom [t1] : : : [tn]' � [s1] : : : [sm]' in A, RV (t1) �: : : � RV (tn) � RV (s1) � : : : � RV (sm) holds. It is enough noting that RV (t1) � : : : � RV (tn) =f(�;�0) : �;�0 2 C� and �[t1] : : : [tn] �)Ax �0g, RV (ts1) � : : : � RV (sm) = f(�;�0) : �;�0 2C� and �[s1] : : : [sm] �)Ax �0g and [t1] : : : [tn] �)Ax [s1] : : : [sm].Completeness proof is based on the following two properties of MAxc . They can beproved by induction on the structure of the goals G and the clauses D.Theorem XI.2.4 Let P = hDs;Axi be a program in NemoLOG, MAxc its canonical modeland let G be a closed goal, then the following properties hold:1. for any � 2 C�, MAxc ;� j=A G i� T !P (?)(�) jj=Ax G;2. MAxc satis�es Ds; i.e., for all clauses D in Ds, MAxc ; " j=A D.Where A = f[t1] : : : [tn]' � [s1] : : : [sm]' j [t1] : : : [tn]! [s1] : : : [sm] 2 Axg.Proof. We prove property 1) by induction on the structure of G.G = T : Trivial.G = A : MAxc ;� j=A A, whereA = p(t1; : : : ; tn), i� ht1; : : : ; tni 2 V (p;�), that is T !P (?)(�) jj=AxA.



XI.2. Soundness and completeness 127G = G1 ^ G2 : MAxc ;� j=A G1 ^ G2 i� MAxc ;� j=A G1 and MAxc ;� j=A G2; by inductivehypothesis, T !P (?)(�) jj=Ax G1 and T !P (?)(�) jj=Ax G2, hence T !P (?)(�) jj=Ax G1 ^G2.G = 9xG0 : MAxc ;� j=A 9xG0 i� MAxc ;� j=A G0[t=x], for some t 2 UP , and, by inductivehypothesis, T !P (?)(�) jj=Ax G0[t=x], for some t 2 UP , that is T !P (?)(�) jj=Ax 9xG0.G = [t]G0 : MAxc ;� j=A [t]G0 i�MAxc ;�0 j=A G0, for each world �0 such that (�;�0) 2 RV (t).By inductive hypothesis and de�nition of RV (t), T !P (?)(�0) jj=Ax G0, for each �0 suchthat �[t] �)Ax �0 and hence T !P (?)(�) jj=Ax [t]G0.We prove the property 2) if we prove that for all clauseD inDs holds thatMAxc ; " j=A D.First we prove the property that MAxc ;� j=A D, for all clause �0D in Ds, such that�0 �)Ax �, with �;�0 2 C�. In particular, since " is a modal context, the main propertyholds. We prove this property by induction on the structure of D.D = G � �hA : If �0(G � �hA) is in Ds, and �0 �)Ax �, then MAxc ;� j=A G � �hA i�MAxc ;� j=A G impliesMAxc ;� j=A �hA. Let us assumeMAxc ;� j=A G, by property 1)we have that T !P (?)(�) jj=Ax G. Hence, by De�nition XI.1.2 and since �0 �)Ax �,A 2 T !P (?)(��00), that is T !P (?)(��00) jj=Ax A, for all ��00 such that �0�h �)Ax ��00.Hence, since �0�h �)Ax �0�h by re
exivity of �)Ax , T !P (?)(�0�h) jj=Ax A. Now,let us assume �h = �0h[t], if T !P (?)(�0�0h[t]) jj=Ax A, then, by Proposition XI.1.1,8��, �0�0h[t] �)Ax ��, T !P (?)(��) jj=Ax A, hence, by de�nition of weak satis�ability,T !P (?)(�0�0h) jj=Ax [t]A. We can continue so on until we have that T !P (?)(�0) jj=Ax�hA. Again, by Proposition XI.1.1, 8��, �0 �)Ax ��, T !P (?)(��) jj=Ax �hA, and, inparticular, since �0 �)Ax �, we have that T !P (?)(�) jj=Ax �hA. Finally, by property 1),MAxc ;� j=A �hA.D = [t]D0 : Let us assume �0([t]D0) is in Ds and �0 �)Ax �. We have thatMAxc ;� j=A [t]D0if MAxc ;�� j= D0, for all �� such that �[t] �)Ax ��. By inductive hypothesis, since(�0[t])D0 is in Ds, MAxc ;�00 j=A D0, for any �00 such that �0[t] �)Ax �00. In particular,since �0 �)Ax � and [t] �)Ax [t], we have that �0[t] �)Ax �[t], �[t] �)Ax ��, that is, bytransitivity of the derivation relation, �0[t] �)Ax �� and, thus, MAxc ;�� j=A D0.D = D1 ^D2; G = 8xD0 : Trivial, from the de�nition of satis�ability relation and applyingthe inductive hypothesis.2 By Theorem XI.2.4, the canonical model de�nition makes it explicit the fact that the�xed point construction builds a Kripke A-interpretation for a program P . We can nowprove the following result.Theorem XI.2.5 (Completeness) Let P = hDs;Axi be a program of NemoLOG, andlet G be a closed goal then,j=A Ds � G implies T !P (?)(") jj=Ax G



128 XI. Fixed Point Semanticswhere A = f[t1] : : : [tn]' � [s1] : : : [sm]' j [t1] : : : [tn]! [s1] : : : [sm] 2 Axg.Proof. (If part) Let us assume that j=A Ds � G. Then, for every Kripke A-interpretationM = hW;R;D;J ; V i, for every w 2 W , M;w j=A P implies M;w j=A G. Hence, inparticular, for the canonical model MAxc and the world " 2 C�, MAxc ; " j=A P impliesMAxc ; " j=A G. By TheoremXI.2.4, property 2), we have thatMAxc ; " j=A P , thusMAxc ; " j=A Gholds and then, by Theorem XI.2.4, property 1), T !P (?)(") jj=Ax G. 2XI.3 Herbrand domainsIn this section we show that for the programs in our language we can, without loss ofgenerality, restrict our concern to Kripke interpretations in which the Herbrand universe isthe constant domain of quanti�cation for each world. A similar property has been provedto hold for other modal and temporal languages and, in particular, for TEMPLOG in[Baudinet, 1989], for an instance of MOLOG in [Balbiani et al., 1988], and for a generalclass of intensional logic programs in [Orgun and Wadge, 1992]. Moreover, in [Cialdea andFari~nas del Cerro, 1986] a general Herbrand's property has been proved to hold for themodal system Q and, based on it, a �rst-order extension of propositional modal resolutionis de�ned. In our case this result is a consequence of the completeness and soundness of�xed point semantics with respect to possible-worlds semantics.In the following we will denote by UP the Herbrand universe for a program P , i.e., theset of ground terms built up from the constants and function symbols that appear in P .Let us start by de�ning a Kripke interpretation with Herbrand domain.De�nition XI.3.1 Let P be a program of NemoLOG. A Kripke interpretation on theHerbrand universe of P is a Kripke interpretation M = hW;R;DH ;JH; VHi such that:� DH is the Herbrand Universe of P , UP ;� JH is a constant function which maps all worlds in W to the Herbrand universe UP ;� VH interprets terms as usual in Herbrand interpretations; i.e., VH(t) = t.The relation j= between members of W and statements of IL, the satis�ability, andvalidity of a closed formula ' of the modal logic is the same of Section V.2. As well as therestriction to the Kripke A-interpretations for characterizing the inclusion modal logics IAL .Theorem XI.3.1 Let P = hAx;Dsi be a program of NemoLOG and G a closed goal, thenj=A Ds � G if and only if j=A;H Ds � Gwhere j=A;H denotes the satis�ability in Kripke A-interpretations with constant domain UPand A = f[t1] : : : [tn]' � [s1] : : : [sm]' j [t1] : : : [tn]! [s1] : : : [sm] 2 Axg.



XI.3. Herbrand domains 129Theorem XI.3.1Ds j=A;H G
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Figure XI.1: Summary of the results about NemoLOG.Proof. (Only if part) If j=A Ds � G then, Ds � G holds in all Kripke A-interpretations.In particular, Ds � G is true in all Kripke A-interpretations with constant domain UP . (Ifpart) Let us assume that j=A;H Ds � G and 6 j=A P � G. By Theorem XI.2.3, we have thatT !P (?)(") 6jj=Ax G. Hence, by Theorem XI.2.4, property 1), we have that MAxc ; " 6 j=A G.On the other hand, MAxc ; " j=A Ds, by Theorem XI.2.4, property 2), thus, we have thatMAxc ; " j=A Ds and MAxc ; " 6 j=A G, i.e. MAxc ; " 6 j=A Ds � G. Since, by construction,MAxcis a KripkeA-interpretation with constant domain UP , we have thatMAxc ; " 6j=A;H Ds � G,a contradiction. 2Figure XI.1 summarizes the results obtained about NemoLOG.
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Chapter XIIRelated workIn this part of the thesis, we have developed a modal extension of logic programming thatis based on the class of inclusion modal logics. This language (called NemoLOG) is a modalextension of the language of Horn clauses. More precisely, the modal operators may occur infront of clauses, clause heads and in front of goals, and are of the form [t], where t is a term.The properties of the modal operators used in a program, that is the underlying inclusionmodal logic that characterizes it, are speci�ed by a set of inclusion clause. Actually, theseclauses represent the set A of inclusion axioms.Furthermore, we have de�ned a goal directed proof procedure. Its main advantage isthat it is modular with respect to the axiom clauses. This feature is achieved by usinga notion of derivation relation between sequences of modalities, which only depends onthe properties of modalities themselves. We have also de�ned a �xpoint semantics bygeneralizing the standard construction for Horn clauses. It is used to prove soundness andcompleteness of the operational semantics with respect to model theoretic semantics and itworks for the whole class of logics identi�ed by the inclusion axioms. Last but not least, acomparison with the proof theory given in the �rst part of the thesis is made. In particular,we have shown that in the case of programs and goals of NemoLOG we can restrict touniform proof as presented in [Miller et al., 1991].XII.1 Languages based on inclusion modal logicsIn [Baldoni et al., 1993] a logic programming language which provides modules as a basicfeature is de�ned. This language is a clausal fragment of an inclusion multimodal logic. Infact, in order to deal with modules, Horn clauses are extended with a collection of modaloperators [mi] of type K. Module composition can be obtained by allowing modules toexport clauses or derived facts. To achieve this purpose, a modal operator 2 of type S4is introduced, which makes it possible to distinguish among clauses local to a module,clauses that are fully exported from a module, and those whose consequences are exported.This language allows to model di�erent kinds of modules presented in the literature (sothat in each situation the kinds of module that suit better can be adopted). Furthermore,131



132 XII. Related workthis language provides some well-known features of object-oriented programming, like thenotion of self.NemoLOG includes the language in [Baldoni et al., 1993] because it is not restricted toa particular inclusion modal logic and because the occurrence of modal operators in frontof clauses and clause heads is not restricted to a particular form. Moreover, from the pointof view of the programming language it is wider and more 
exible. In fact, it allows tode�ne nested and parametric modules and it is possible to represent dependencies amongmodules in a hierarchy.In [Baldoni et al., 1997a] an extension of the language in [Baldoni et al., 1993] is presen-ted. In this proposal, both multiple universal modal operators and embedded implicationsare allowed. The authors show that this extension is well suited for structuring knowledgeand, more speci�cally, for de�ning module constructs within programs for representingagents beliefs and, also, for hypothetical reasoning. The language is again a clause frag-ment of the multimodal logic of the proposal in [Baldoni et al., 1993], however, besides theembedded implications, free occurrences of modal operators are allowed in front of clauses,clause heads, and goals. In the same way of the language in [Baldoni et al., 1993], a setof modal operators of type K has been used to de�ne modules, by associating a modalitywith each module for labeling its clauses. In a more general setting, these modalities areused to provide reasoning capabilities in a multiple agents situation, by associating a modaloperator with each agent to represent its beliefs. Moreover, a modal operator 2 of typeS4 has been used as a weaker version of the common knowledge operator of [Halpern andMoses, 1992].In [Baldoni et al., 1997a] embedded implications are allowed to occur both in goalsand in clause bodies. Languages with embedded implications have been extensively studied[Gabbay and Reyle, 1984; Gabbay, 1985; Miller, 1986; McCarty, 1988a; McCarty, 1988b].These languages allow implications of the form D � G which provide a way of introducinglocal de�nitions of clauses: the clauses in D are intended to be local to the goal G, asthey can be used only in a proof of G. The meaning of embedded implications, is that ofhypothetical insertion: the goal D � G is derivable from a program P if G is derivable fromthe program updated with D. When intuitionistic logic is taken as the underlying logic ofthis language, like in N Prolog [Gabbay and Reyle, 1984; Gabbay, 1985] and in [Miller etal., 1991], embedded implications allow hypothetical reasoning to be performed, and forthis reason they are often called hypothetical implications.In [Giordano et al., 1992; Giordano and Martelli, 1994] the problem of de�ning struc-turing facilities in a language with embedded implications is studied. In some way, anembedded implication D � G could be compared to what is called a block in Algol-likelanguages, that is, a pair hde�nitions, statementi, where D is a set of clause de�nitions andG plays the role of the statement. In [Giordano et al., 1992] it is shown how di�erent logiclanguages with embedded implications (or blocks) can be obtained by choosing di�erentvisibility rules for locally de�ned clauses. On the other hand, in [Giordano and Martelli,1994], a modal extension of Horn clause logic (based on the S4 logic and, consequently, onan inclusion modal logic) is de�ned to provide a unifying framework in which these di�er-ent kinds of local de�nitions of clauses can be integrated. These extensions with embedded



XII.1. Languages based on inclusion modal logics 133implications provide di�erent notions of a block, from which various kinds of modules canalso be de�ned, by introducing some syntactic sugar.In [Baldoni et al., 1997a] embedded implications have been used to introduce localde�nitions of clauses like blocks in imperative programming and for performing some formof hypothetical reasoning. In particular, since 2 is an S4 modality, the language subsumesN Prolog: by adopting the well-known translation of intuitionistic logic to modal logic S4,N Prolog clauses can be translated in this language.The logic programming language presented in [Baldoni et al., 1997a] is modal logicre�nement of hereditary Harrop formulae [Miller et al., 1991], and it lies on the same lineas other logic programming languages which are not based on classical �rst-order logic, like,for instance, those based on intuitionistic logic [Gabbay and Reyle, 1984; Gabbay, 1985;McCarty, 1988a; McCarty, 1988b; Miller, 1986; Miller, 1989a; Miller, 1989b], higher-orderlogic [Miller et al., 1991], and linear logic [Hodas and Miller, 1991].In [Baldoni et al., 1996b] a translation to standard Horn clauses for the language in[Baldoni et al., 1997a] is presented, this translation method consisting of two steps. Inthe �rst step all embedded implications are eliminated so to obtain a program consistingonly of modal Horn clauses. This step requires the introduction of a new modal operatorfor each embedded implication, so that the extracted clauses can be used only in the rightenvironment. The second step is based on an approach similar to the functional translation:modalities are eliminated by adding to each predicate an argument which represents themodal context.Despite the fact that NemoLOG does not allow embedded implications to occur in goalsand in the body of clauses, it can deal with modal operators which are characterized by morecomplex properties than the ones in [Baldoni et al., 1997a]. Due to the fact that it is possibleto de�ne \ad hoc" interaction axioms by means of the inclusion axiom clauses, NemoLOGcan express more sophisticated knowledge information and, then, it is better suited toperform epistemic reasoning. Furthermore, as we have seen in Chapter X, inclusion axiomclauses allow to de�ne hierarchical dependencies among modules in a simple way.In [Baldoni et al., 1993; Baldoni et al., 1997a], the logic is described by de�ning asequent calculus for it. The sequent calculus is used to prove soundness and completenessof the proof procedures with respect to the model theoretic semantics showing that the proofprocedure looking for derivations which correspond to sequent proofs of a certain form. Theapproach could be regarded as being complementary to the one in [Giordano and Martelli,1994]. In fact, in [Giordano and Martelli, 1994], the soundness and completeness of theproof procedure with respect to the Kripke semantics has been proved by making use of aHenkin-style canonical model construction. In [Baldoni et al., 1993; Baldoni et al., 1997a],instead, the goal directed proof procedures is proved sound and complete by means of asequent calculus.If we compare the kind of sequent proofs in [Baldoni et al., 1993; Baldoni et al., 1997a]with uniform proofs as presented in [Miller et al., 1991], we can observe that the former arenot uniform. As already remarked in Chapter IX, this happens because a pre�xed sequentcalculus is not used. In fact, since NemoLOG subsumes the language in [Baldoni et al.,1993] and that we have proved that for programs and goals in NemoLOG there exists a



134 XII. Related worknotion of uniform proof, we have that a notion of uniform proof exists also for the languagein [Baldoni et al., 1993]. Furthermore, we believe that a similar proof could be given alsofor the language in [Baldoni et al., 1997a] provided that the pre�xed sequent calculus likethe one here adopted is used.In [Baldoni et al., 1996a], it is presented a framework for developing modal extensions oflogic programming, which is parametric with respect to the properties chosen for the modaloperators and which allow sequences of universal modalities to occur in front of clauses,goals, and clause heads. This work is at the basis of our logic programming languageNemoLOG.Finally, we would like to mention the modal programming language LA for reasoningabout actions presented in [Baldoni et al., 1997b]. LA makes use of abductive assumptionsto deal with persistence and provides a solution to the rami�cation problem by allowing one-way \causal rules" to be de�ned among 
uents. Both the semantics and the goal directedabductive proof procedure are de�ned within the argumentation framework [Bondarenko etal., 1993; Dung, 1993b] developing a three-valued semantics which can be regarded as ageneralization of Dung's admissibility semantics [Dung, 1993a] to modal settings.The language LA can be regarded as an extension of Gelfond and Lifschitz' languageA [Gelfond and Lifschiftz, 1993]. However, rather than following the way of de�ning alanguage with an \ad hoc" (and high-level) semantics and, then, translating it into a logicprogramming language with negation as failure, in [Baldoni et al., 1997b] actions are rep-resented by modal operators and the semantics is a standard Kripke semantics. The reasonis that modal logics allow to interpret actions as state transitions through the accessibilityrelations in a natural way.XII.2 Other languagesNemoLOG bears strong similarities with MOLOG [Fari~nas del Cerro, 1986] (later evolvedin TIM [Balbiani et al., 1991]), a framework for modal logic programming in which the usercan �x the underlying modal logic. In MOLOG both existential and universal modalitiescan occur in front of clauses, in front of clause heads, and in front of goals. A resolutionprocedure (close to Prolog resolution) is de�ned for modal Horn clauses in the logic S5 whichcontains only universal modal operators of the form knows(t), where t is an arbitrary term.TIM is a meta-level inference system which can support some well-known modal systemsand epistemic logics such as Q, T , S4, and S5 and it provides a general methodology toimplement non-classical logics. Though the language in similar to ours, the properties ofS5 modalities are di�erent from the ones we have considered, in the sense that we did nottake into account S5. In [Balbiani et al., 1988], instead, a modal SLD-resolution methodis presented for a fragment of MOLOG in which 2 cannot be used in the bodies of modalclauses (while 3 can). Some di�erent modal systems (Q, T and K4) are considered. A�xpoint semantics is also provided.Modal logic programming languages based on S5 have been also proposed in [Akama,1986]. There, a program is de�ned as a set of modal de�nite clauses whose literals are pre-



XII.2. Other languages 135�xed by any sequence of universal and existential modalities. An SLD-resolution procedureis de�ned for these languages.In NemoLOG universal modalities are allowed to freely occur in front of clauses, clauseheads and clause bodies (or goals), while existential modal operators are not allowed. Inparticular, di�erently than other languages proposed in the literature, like TEMPLOG[Abadi and Manna, 1989], Temporal Prolog [Gabbay, 1987], the fragment of MOLOG in[Balbiani et al., 1988], and the language in [Akama, 1986], existential modalities are notallowed to occur in front of goals. In spite of this limitation, the features of parametricmodalities and the possibility of introducing inclusion axioms, make NemoLOG well suitedfor performing some epistemic reasoning, for de�ning parametric and nested modules, forrepresenting inheritance in a hierarchy of classes and for reasoning about actions.Actually, NemoLOG could be extended to allow existential modalities in front of goals.Indeed, due to the analogy between universal (existential) quanti�ers and universal (exist-ential) modalities, and from the fact that, in standard logic programs, universal quanti�ersoccur in front of clauses, while existential quanti�ers occur in front goals, the use of exist-ential modalities should be possible. Of course, to deal with existential modalities hti infront of goals, the proof procedure presented in Chapter IX should be modi�ed substan-tially. The main di�erence would be that, since existential modalities hti do not distributeon conjunctions, a goal hti(G1 ^ G2) cannot be proved by proving the two subgoals htiG1and htiG2. For this reason, the policy of recording the sequence of modalities that are foundin front of a goal in a context � does not work in that case in a straightforward way.TEMPLOG is a temporal logic programming language and it allows temporal operatorslike
 (next moment in time), 2 (from now on), and 3 (sometime in the future) to occur inHorn clauses. 3 is allowed in front of goals while2 is not. In our language, while existentialmodalities are not admitted, universal modalities can occur in goals and clause bodies.Despite these di�erences, there are some similarities with TEMPLOG. In particular, inTEMPLOG a distinction is made between initial clauses (G � A and G � 2A), andpermanent clauses (2(G � A)). This distinction is quite similar to ours between local,static and dynamic clauses (see Chapter X).Temporal Prolog [Gabbay, 1987] allows occurrences of temporal operators like F (some-time in the future), P (sometime in the past), 2 (always). This language is rather di�erentfrom ours and in particular, it admits embedded implications in clause heads.We have already mentioned to the translation approach to modal logics in Chapter VII.In the case of modal logic programming, this approach has been used in [Debart et al.,1992; Nonnengart, 1994] to obtain a standard Prolog program starting form Horn clausesextended with modal operators. In [Debart et al., 1992] the functional translation method isextended to multimodal logic and it is applied to modal logic programming. The modalitiesconsidered are both universal and existential, and are of any type among KD, KT , KD4,KT4, KF . Interaction axioms of the form I(ai; aj) : [ai]' � [aj]' are allowed but, in[Debart et al., 1992], general inclusion axioms as the ones in NemoLOG are not considered.Nonnengart has proposed a mixed approach based on a relational and functional translation[Nonnengart, 1993]. One of his aims is to avoid theory uni�cation. As a particular case,following this approach, modal Horn clauses can be directly translated to Prolog clauses



136 XII. Related work[Nonnengart, 1994]. This method requires that accessibility relation properties are �rst-order predicate logic de�nable. Moreover, if Prolog is to be used as a �rst order inferencemachine, accessibility relation properties must be de�ned through Horn clauses. In par-ticular, he can provide Prolog translation for modalities with the properties of KD, KT ,KD4, S4 and he can also deal with axioms like (B) : ' � 23', and, hence, with logicslike KDB, KD45 and S5.An optimization of the functional translation method for the class of inclusion logicshas been proposed in [Gasquet, 1993], where, however, seriality is assumed for each modaloperator. Then, since we deal with modal Horn clauses containing only universal modalities,the case we consider can be regarded as a special instance of the one in [Gasquet, 1993]. Inparticular, in the case when only ground terms can occur within modalities in the program,in the goal and in the axioms (which is the one he considers), the generality of equationaluni�cation may be replaced with a notion of matching (or a notion of string rewriting).Di�erently than [Gasquet, 1993], we deal with parametric modalities. However, in thegeneral case when variables occur within modalities we also need some form of equationaluni�cation.



ConclusionsIn this thesis we have studied the class of normal multimodal logics determined by axiomschemas of the form [t1][t2] : : : [tn]' � [s1][s2] : : : [sm]' (n > 0;m � 0)This class is called inclusion modal logics because it is characterized by particular inclusionproperties between accessibility relations. For this class of logics we have de�ned a pre�xedanalytic tableau calculus and given some undecidability and decidability results. First-orderis also considered, though only in the case of increasing domains.Afterwards, we have extended the class of the considered multimodal logics and, inparticular, we have focused on the ones that are characterized by axiom schemas of theform Ga;b;c;d : hai[b]' � [c]hdi'where the labels of the modal operators are arbitrarily complex parameters, built fromthe atomic ones, by using an operator of composition and an operator of union. Theincestual axiom copes with most of the well-known axioms, such as T , D, B, 4, 5, and theirmultimodal versions. For this class of logics we have introduced a tableau calculus that isa generalization of the one presented for the inclusion modal logics.In the course of this work, we have also de�ned a logic programming language basedon the above class of inclusion modal logics. This language, called NemoLOG, extends theHorn clause language by allowing free occurrences of universal modal operators in front ofclauses, in front of clause heads, and in front of goals. NemoLOG is parametric with respectto the class of inclusion modal logics and this feature is achieved by adding to a programa collection of inclusion axiom clauses of the form [t1] : : : [tn] ! [s1] : : : [sm], one for eachinclusion axiom schema of the considered logic.NemoLOG is particularly suitable to represent knowledge and beliefs of agents. Moreover,due to the fact that we can characterize our modal operators by means of arbitrary inclu-sion axioms, our language is particularly well-suited to performing epistemic reasoning in amultiagent situation with interactions between agents. Moreover, in a software engineeringsettings, we have shown how to use NemoLOG to modularize logic programs in order toenhance their readability and reusability; parametric and nested modules are considered.Furthermore, NemoLOG allows to de�ne hierarchies among modules and inheritance mech-anisms similar to the ones of object-oriented languages.137



138 ConclusionsNemoLOG has a goal directed proof procedure which is modular with respect to theproperties of modalities: it uses a notion of derivation relation between sequences of modaloperators, which only depends on the properties of modalities themselves. As it is usualin logic programming setting, a �xed point semantics is given and it is used to prove thesoundness and the completeness of the proof procedure with respect to model theoreticsemantics.Indeed, despite the fact that NemoLOG shows quite a simple operational semantics,where the properties of the modal operators are factored out by means of a derivationrelation, we think that it is better to consider the NemoLOG language as a framework fordeveloping modal extension of logic programming aimed at solving particular problems.The examples shown in Chapter X can actually be reconsidered in this perspective: on onehand, restricting to speci�c cases it is possible to improve the language itself for the caseat issue, optimizing at the same time the computational aspects, while on the other handthe general framework supplies theoretical results that can be inherited by the speci�c casestudies. For instance, in the case of the problem of dealing with inheritance in hierarchiesof modules and, in a more general setting, with the introduction of object-oriented featuresin a logic programming language, tackled in Chapter X, only a few axiom kinds wereused. It would be interesting to deepen this investigation by making the proof proceduree�ective, i.e. to see if the general procedure, which cannot be implemented in an easyway, can be operationalized for the case of interest. Another example is the restrictionof the language to dealing with actions and change. We are currently working at thedevelopment of a specialization of the framework for reasoning about dynamic domains ina logic programming setting [Baldoni et al., 1997b; Baldoni et al., 1998b]. To summarize,we think that it is important to consider Logic Programming as a general framework thatsupplies proof theories and other theoretical results that, specialized or extended ad hoc forthe particular application, can be exploited for building languages and systems that solvea broad variety of problems.Nevertheless, the work presented in this thesis is in progress and lots of problems arestill open.We have shown that the class of right-regular modal logics is decidable, however, we saynothing about the decidability of the inclusion modal logics based on left type-0 grammars,i.e. grammars whose production rules are of the form A! A0� or A! �, where A, A0 arevariables and � is a string of terminals. We believe that also this class is decidable but thetechnique used to prove the decidability for the right-regular modal logics does not workfor it.Another open problem regards a decision procedure. Apart from the naive algorithmgiven by generating all �nite Kripke interpretations for checking whether or not a formulais a theorem, we have seen that our tableau calculus is not a decision procedure even ifit deals with decidable modal logics. It would be interesting to transform it in a decisionprocedure, in the line of the works in [Fitting, 1983; Massacci, 1994].In Chapter VI, we have introduced complex parameters as labels for the modal operators.In this case, we have used an operator of composition and an operator of union, however,



Conclusions 139further extensions could also be incorporated. For example, we could add the iterationoperator \�" and the test operator \?" of dynamic logic to the language. In this case twoquestions would arise: how to extend the tableau calculus in order to deal with these newoperators? And, moreover, what is the relationship among multimodal logics and dynamiclogics? A recent work [De Giacomo and Massacci, 1996] shows a tableau calculus fordynamic logic that could be at the basis for such a kind of study.As remarked in [Fitting, 1996], although resolution is the most used approach to auto-mated deduction, tableaux will continue to have a great importance because they are relat-ively easy to develop due to the strong relationship with the semantics issue, i.e. they relyon the explicit construction of models. We think it would also be a goal of this research todevelop a theorem prover for better studying the expressive features of the logics considered;this would also help to implement a NemoLOG inference machine.We have seen, in Chapter IV, that the validity problem for the whole class of inclusionmodal logic is undecidable and it still remains undecidable even though we restrict ourattention to some subclasses. However, we have not studied what happens restricting tomodal Horn clauses of NemoLOG. For example, the class of inclusion modal logics based oncontext-free grammars is undecidable but the method used to prove this in Theorem IV.2.2does not work in the case of formulae of NemoLOG.Furthermore, another important problem related to our logic programming languagethat we have not studied is the computational complexity of the satis�ability. On the otherhand, when we do not consider the multimodal case, our de�nition of modal Horn clausesfalls into the one given in [Fari~nas del Cerro and Penttonen, 1987; Chen and Lin, 1994]where the problem of the complexity of the satis�ability of modal Horn clauses is studiedfor di�erent modal logics. In particular, in [Chen and Lin, 1994], it is shown that thesatis�ability problem of modal Horn clauses for each of K, T , and S4 is PSPACE-complete.Finally, it is worth noting that in Chapter IX we have proved that for programs andgoals of NemoLOG there exists a uniform proof in the pre�xed sequent calculus that wehave de�ned. However, we do not know if such a kind of proof exists also for fragments ofinclusion modal logics that are wider than the clausal fragment we have given. In particular,we refer to the possibility of extending our language allowing free occurrences of embeddedimplications in goals and clause bodies in the line of [Giordano and Martelli, 1994; Baldoniet al., 1997a]. The existence of a uniform proof would be a powerful tool to study a goaldirected proof procedure for the extended language.
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Appendix ASome examples of translated NemoLOGprogramsIn this appendix we present some example of NemoLOG programs translated into standardHorn clause logic obtained applying the translation method de�ned in Section IX.4.Before presenting the programs, it is necessary to give some more information. Inparticular, we have represented a sequence of modal operators by means of the list oflabels of the modalities themselves. For example, the sequence [animal][bird][tweety] isrepresented by [animal; bird; tweety]. Consequently, the operator \�" de�ned at page 98is simply implemented by the predicate append=3, the concatenation relation for lists:% The concatenation relation for lists.append([], L2, L2).append([X | L1], L2, [X | L]):-append(L1, L2, L).In this way a translated clause would be of the form:A0(X) :� derive(�b;�h;X; Y );append(Y;�g1 ; Yg1); A1(Yg1);: : : ;append(Y;�gm ; Ygm); Am(Ygm)However, in order to simplify the form of a translated clause, we have chosen to move theappend at the top of a predicate de�nition, before the call of the predicate derive=4. To doso we need to add another argument to all predicate de�nition:1A0(X1;X2) :� append(X1;X2;X); derive(�b;�h;X; Y ); A1(Yg1;�g1); : : : ; Am(Ygm;�gm)The following predicate de�nitions are common to all programs.1Note that, in the programs presented in the following we use the predicate derive1=5 which performsthe concatenation and derivation operations together.141



142 A. Some examples of translated NemoLOG programs% The membership relation.member(X, [X | _]):-!.member(X, [_ | List]):-member(X, List).% The prefix relation. The element that forms the prefix% must be among the ones which belong to a given set.prefix_in([], _, _).prefix_in([X | Prefix], [X | List], Set):-member(X, Set),prefix_in(Prefix, List, Set).% The predicate derive/5 performs the concatenation of the% lists X1 and X2 and the derivation operation returning% the new context in Y.derive1(Gamma_b, Gamma_h, X1, X2, Y):-append(X1, X2, Gamma),derive(Gamma_b, Gamma_h, Gamma, Y).For each example in the following we show the \ad hoc" derive=4 predicate and thetranslated program.Program A.1 : Fibonacci numbers.derive([], [], [], []).derive([], [always | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [always, next]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [next | Gamma_h], [next | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([always | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [always, next]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([next | Gamma_b], Gamma_h, [next | Gamma], [next | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).fib(X1, X2, 0):-derive1([], [], X1, X2, _).fib(X1, X2, 1):-derive1([], [next], X1, X2, _).



143fib(X1, X2, A):-derive1([always], [next, next], X1, X2, Y),fib(Y, [], B),fib(Y, [next], C),A is B + C.Program A.2 : Friends puzzle I and II.derive([], [], [], []).derive([peter], [john | Gamma_h], Gamma, [peter]):-prefix_in(Prefix, Gamma, [peter, john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([wife(peter)], [john | Gamma_h], Gamma, [peter]):-prefix_in(Prefix, Gamma, [wife(peter), peter, john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [peter, john | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [peter, john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [fool | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [fool, wife(peter), peter, john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [wife(peter), john | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [wife(peter), peter, john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [wife(peter) | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [wife(peter), peter]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [peter | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [peter]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [john | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [john]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([peter, john | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [peter, john]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([wife(peter), john | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [wife(peter), peter, john]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([fool | Gamma_b], Gamma_h, Gamma, NResult):-



144 A. Some examples of translated NemoLOG programsprefix_in(Prefix, Gamma, [fool, wife(peter), peter, john]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([wife(peter) | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [wife(peter), peter]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([peter | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [peter]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([john | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [john]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).time(X1, X2):-derive1([], [peter], X1, X2, _).time(X1, X2):-derive1([wife(peter)], [john], X1, X2, Y),time(Y, [peter]).place(X1, X2):-derive1([], [peter, john], X1, X2, _).appointment(X1, X2):-derive1([peter, john], [], X1, X2, Y),place(Y, []),time(Y, []).% In the case of Friends puzzle II the relation appointment% is defined by the following one:appointment(X1, X2):-derive1([fool], [], X1, X2, Y),place(Y, []),time(Y, []).Program A.3 : Bubblesort I.derive([], [], [], []).derive([], [export | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [export, list, sort]),append(Prefix, Suffix, Gamma),derive([], [list | Gamma_h], [list | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [sort | Gamma_h], [sort | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([export | Gamma_b], Gamma_h, Gamma, NResult):-



145prefix_in(Prefix, Gamma, [export, list, sort]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).% module list.new_append(X1, X2, [], X, X):-derive1([export, list], [], X1, X2, _).new_append(X1, X2, [A | B], C, [A | B1]):-derive1([export, list], [], X1, X2, Y),new_append(Y, [], B, C, B1).% module sort.busort(X1, X2, L, S):-derive1([export, sort], [], X1, X2, Y),new_append(Y, [list], C, [A, B | D], L),B < A, !,new_append(Y, [list], C, [B, A | D], M),busort(Y, [], M, S).busort(X1, X2, S, S):-derive1([export, sort], [], X1, X2, _).Program A.4 : Bubblesort II.derive([], [], [], []).derive([], [export | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [export, list, sort]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [list | Gamma_h], [list | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [sort | Gamma_h], [sort | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([export | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [export, list, sort]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([sort | Gamma_b], Gamma_h, [sort | Gamma], [sort | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).% module list.



146 A. Some examples of translated NemoLOG programsnew_append(X1, X2, [], X, X):-derive1([export, list], [export], X1, X2, _).new_append(X1, X2, [A | B], C, [A | B1]):-derive1([export, list], [export], X1, X2, Y),new_append(Y, [], B, C, B1).% module sort.busort(X1, X2, L, S):-derive1([export, sort], [export], X1, X2, Y),new_append(Y, [list], C, [A, B | D], L),B < A, !,new_append(Y, [list] ,C, [B, A |D], M),busort(Y, [], M, S).busort(X1, X2, S, S):-derive1([export, sort], [export], X1, X2, _).Program A.5 : Bubblesort III and IV.derive([], [], [], []).derive([], [export | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [export, list, sort(_),ascending, descending, cartesian(_, _)]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [list | Gamma_h], [list | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [ascending | Gamma_h], [ascending | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [descending | Gamma_h], [descending | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [sort(X) | Gamma_h], [sort(X) | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [cartesian(X, Y) | Gamma_h], [cartesian(X, Y) | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([export | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [export, list, sort(_),ascending, descending, cartesian(_, _)]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([list | Gamma_b], Gamma_h, [list | Gamma], [list | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([ascending | Gamma_b], Gamma_h, [ascending | Gamma], [ascending | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([descending | Gamma_b], Gamma_h, [descending | Gamma], [descending | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([sort(X) | Gamma_b], Gamma_h, [sort(X) | Gamma], [sort(X) | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([cartesian(X, Y) | Gamma_b], Gamma_h, [sort(X) | Gamma], [cartesian(X, Y) | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).



147% module list.new_append(X1, X2, [], X, X):-derive1([export, list], [], X1, X2, _).new_append(X1, X2, [A | B], C, [A | B1]):-derive1([export, list], [], X1, X2, Y),new_append(Y, [], B, C, B1).% module ascending.ordered(X1, X2, A, B):-derive1([export, ascending], [], X1, X2, _),A < B.% module descending.ordered(X1, X2, A, B):-derive1([export, descending], [], X1, X2, _),A > B.% module cartesian(Ord1, Ord2).ordered(X1, X2, [A, B], [U, V]):-derive1([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),ordered(Y, [Ord1], A, U).ordered(X1, X2, [A, B], [A, V]):-derive1([export, cartesian(Ord1, Ord2)], [], X1, X2, Y),ordered(Y, [Ord2], B, V).% module sort(Order).busort(X1, X2, L, S):-derive1([export, sort(Order)], [], X1, X2, Y),new_append(Y, [list], C, [A, B | D], L),ordered([export, sort(Order)], [Order], B, A),new_append(Y, [list], C, [B, A | D], M),busort(Y, [], M, S).busort(X1, X2, S, S):-derive1([export, sort(Order)], [], X1, X2, _).Program A.6 : Animal taxonomy I.derive([], [], [], []).derive([],[export | Gamma_h], Gamma, []):-prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),append(Prefix, Suffix, Gamma),derive([], Gamma_h, Suffix, _).derive([], [animal | Gamma_h], [animal | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [horse | Gamma_h], [horse | Gamma], []):-



148 A. Some examples of translated NemoLOG programsderive([], Gamma_h, Gamma, _).derive([], [bird | Gamma_h], [bird | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [tweety | Gamma_h], [tweety | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([export | Gamma_b], Gamma_h, Gamma, NResult):-prefix_in(Prefix, Gamma, [export, animal, horse, bird, tweety]),append(Prefix, Suffix, Gamma),derive(Gamma_b, Gamma_h, Suffix, Result),append(Prefix, Result, NResult).derive([animal | Gamma_b], Gamma_h, [animal | Gamma], [animal | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([bird | Gamma_b], Gamma_h, [bird | Gamma], [bird | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).% class animal.mode(X1, X2, walk):-derive1([animal, export], [], X1, X2, _).mode(X1, X2, run):-derive1([animal, export], [], X1, X2, Y),no_of_legs(Y, [], X),X >= 2.mode(X1, X2, gallop):-derive1([animal, export], [], X1, X2, Y),no_of_legs(Y, [], X),X >= 4.% class horse.no_of_legs(X1, X2, 4):-derive1([animal, horse, export], [], X1, X2, _).covering(X1, X2, hair):-derive1([animal, horse, export], [], X1, X2, _).% class bird.no_of_legs(X1, X2, 2):-derive1([animal, bird, export], [], X1, X2, _).covering(X1, X2, feather):-derive1([animal, bird, export], [], X1, X2, _).mode(X1, X2, fly):-derive1([animal, bird, export], [], X1, X2, _).% class tweety.



149owner(X1, X2, fred):-derive1([animal, bird, tweety, export], [], X1, X2, _).Program A.7 : Animal taxonomy II and Humans.derive([], [], [], []).derive([], [animal | Gamma_h], [X | Gamma], []):-member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),derive([], Gamma_h, Gamma, _).derive([], [bird | Gamma_h], [X | Gamma], []):-member(X, [bird, tweety]),derive([], Gamma_h, Gamma, _).derive([], [horse | Gamma_h], [horse | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [tweety | Gamma_h], [tweety | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [human(S, A) | Gamma_h], [human(S, A) | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [human(male, 30) | Gamma_h], [X | Gamma], []):-member(X, [human(male, 30), peter]),derive([], Gamma_h, Gamma, _).derive([], [human(female, 42) | Gamma_h], [X | Gamma], []):-member(X, [human(female, 42), jane]),derive([], Gamma_h, Gamma, _).derive([], [human(male, 45) | Gamma_h], [X | Gamma], []):-member(X, [human(male, 45), john]),derive([], Gamma_h, Gamma, _).derive([], [mathematician | Gamma_h], [X | Gamma], []):-member(X, [mathematician, john]),derive([], Gamma_h, Gamma, _).derive([], [peter | Gamma_h], [peter | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [jane | Gamma_h], [jane | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([], [john | Gamma_h], [john | Gamma], []):-derive([], Gamma_h, Gamma, _).derive([animal | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-member(X, [animal, horse, bird, tweety, human(_, _), peter, jane, john]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([bird | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-member(X, [bird, tweety]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([horse | Gamma_b], Gamma_h, [horse | Gamma], [horse | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([tweety | Gamma_b], Gamma_h, [tweety | Gamma], [tweety | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([human(S, A) | Gamma_b], Gamma_h, [human(S, A) | Gamma], [human(S, A) | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([human(male, 30) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-member(X, [human(male, 30), peter]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([human(female, 42) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-



150 A. Some examples of translated NemoLOG programsmember(X, [human(female, 42), jane]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([human(male, 45) | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-member(X, [human(male, 45), john]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([mathematician | Gamma_b], Gamma_h, [X | Gamma], [X | Result]):-member(X, [mathematician, john]),derive(Gamma_b, Gamma_h, Gamma, Result).derive([peter | Gamma_b], Gamma_h, [peter | Gamma], [peter | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([jane | Gamma_b], Gamma_h, [jane | Gamma], [jane | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).derive([john | Gamma_b], Gamma_h, [john | Gamma], [john | Result]):-derive(Gamma_b, Gamma_h, Gamma, Result).% class animal.mode(X1, X2, walk):-derive1([animal], [], X1, X2, _).mode(X1, X2, run):-derive1([animal], [], X1, X2, Y),no_of_legs(Y, [], X),X >= 2.mode(X1, X2, gallop):-derive1([animal], [], X1, X2, Y),no_of_legs(Y, [], X),X >= 4.% class horse.no_of_legs(X1, X2, 4):-derive1([horse], [], X1, X2, _).covering(X1, X2, hair):-derive1([horse], [], X1, X2, _).% class bird.no_of_legs(X1, X2, 2):-derive1([bird], [], X1, X2, _).covering(X1, X2, feather):-derive1([bird], [], X1, X2, _).mode(X1, X2, fly):-derive1([bird], [], X1, X2, _).% class tweety.owner(X1, X2, fred):-derive1([tweety], [], X1, X2, _).% class human(S, A).



151sex(X1, X2, S):-derive1([human(S,A)], [], X1, X2, _).age(X1, X2, A):-derive1([human(S,A)], [], X1, X2, _).no_of_legs(X1, X2, 2):-derive1([human(S,A)], [], X1, X2, _).likes(X1, X2, logic):-derive1([human(S,A)], [], X1, X2, Y),sex(Y, [], male),age(Y, [], Ag),Ag < 40.likes(X1, X2, logic):-derive1([human(S,A)], [], X1, X2, Y),sex(Y, [], female).% class mathematician.likes(X1, X2, logic):-derive1([mathematician], [], X1, X2, _).likes(X1, X2, math):-derive1([mathematician], [], X1, X2, _).



152 A. Some examples of translated NemoLOG programs



Index of Symbols4M(t; t0), 124(t), 12A, 12, 49, 82A, 86A-downward satured, 30, 51A-inclusion frame, 15, 49A-mapping, 28, 51A-satis�able, 28A-satis�able in, 16A-satis�able under, 28A-satis�able with respect to, 16A-valid in, 16, 91A-valid with respect to, 16w �t w0, 21, 59w �t;t0 w0, 60w �t[t0 w0, 60�, 22�-rule, 23, 59�1, 22�2, 22[always], 15, 83^ , 9, 45aw, 49Ax, 82[Ax], 84BF (t), 46, 50BFc(t), 50�, 22�-rule, 23, 59�1, 22�2, 22?, 119B(P ), 119

�, 98C, 84C, 49;, 45;, 53�, 16[t; t0], 54C�, 84DEFC, 82�, 90�, 50�0(c), 50derG, 39`, 11)Ax, 85�)Ax , 84derive=4, 98)�G, 34)G, 34D, 46, 126DH , 128Ds, 82[Ds], 86", 53, 81;, 119["], 54�, 40hti, 109, 45[export], 106F, 10, 21FL('), 40153



154 Index of Symbols[fool], 14FOR, 9, 46, 548, 45frame, 10, 47FL, 10FAL , 16FLFO , 47FALFO , 49FGL , 57FUNCn, 45G, 55G, 86G, 33G-incestual frame, 57G-satis�able, 57G-valid, 57G-downward satured, 66G-mapping, 65G-satis�able, 65G-satis�able under, 65Ga;b;c;d, 12, 55�, 82
, 50�b, 86�h, 86
0(c), 50[�]Ax, 85Gk;l;m;n, 12, 55GOAL, 81Gtr, 101(V; T; P; S), 33G, 89�b(G � �hA), 86I, 54i : Ds, 91i : G, 91IL, 10IAL , 12IALFO , 49IGL , 55� , 9, 45

INC, 82j=A;H, 128i, 21=, 119I, 119(=;v=), 119v=, 119IPAL , 16IPALFO , 49IP GL , 57I(t; t0), 12J , 46, 126JH, 128t, 119K, 12K(t), 11K4, 12K4n, 12Kn, 12Kripke A-interpretation, 16�rst-order, 49Kripke G-interpretation, 57Kripke interpretation, 10�rst-order, 46KT4, 12LABELS, 53L ^ , 90L, 9, 54L(G), 35L9, 90LFO, 45LFO, 49L8, 90L �, 90L �0, 92L[t], 90L:, 90M , 10ML, 10MFL('), 40



Index of Symbols 155I, 28, 65maximal SAL -consistent, 17MAc , 17, 30, 51MAxc , 126MGc , 67u, 119[mi], 105MOD, 9[:], 9, 45MAL , 16MLFO , 47MALFO , 49MGL, 57NemoLOG, 81[next], 83:, 9, 45�-rule, 23, 59�, 22�t0, 22!, 58, 121`o, 86_, 9, 45P (t; t0), 12P , 33p(t1; : : : ; tn), 46Pw, 49(, 9, 45), 9, 45�(w0; wn), 34�(w0; wn), 35�-rule, 23, 59�t, 22�t0, 22PREDn, 45w : Z, 21�! �, 33P , 82hDs;Axi, 82P tr, 98Q, 128

R, 47, 126RFL(')t , 40R, 54R ^ , 90!, 81R9, 90R8, 90�-derives, 34(�(a))�, 58�-rule, 23, 59, 90��-rule, 59��-rule, 59!AG , 90!A; , 91R �, 90R[t], 90R:, 90Rt, 10Rt-idealizable, 28, 65S4, 12j=, 10j=A , 16j=V , 47satis�able, 10j=G , 57satis�able in, 11, 48satis�able with respect to, 11, 48S, 28, 65SL, 11SL-provable, 11SAL , 12SAL -consistent, 17SAL -provable, 17`SLD, 101S4n, 12�, 58S, 33'[t=x], 46�, 16SGL , 55T , 12



156 Index of SymbolsT (t), 12T, 10, 21T , 33T AL -provable, 24TERM, 45�, 90T ALFO -provability, 50T GL -provable, 61Tn, 12T !P , 122T !P (?), 122TP , 120T , 81, 89[, 53[t [ t0], 54[t], 10, 81[t]', 12UP , 120, 128V , 47, 126VH , 128V FL('), 40V , 33valid in, 11, 48valid with respect to, 11, 48V , 10VAR, 9, 45'T (q), 35`A, 91`uA, 94w, 40, 59W FL('), 40w-available, 50w-parameter, 49WC , 21jj=Ax, 120W , 10, 46, 126wt, 17(wt)s, 18Z, 21
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