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Abstract

Number restrictions are concept constructors that are available in almost all implemented Description
Logic systems. However, they are mostly available only in a rather weak form, which considerably
restricts their expressive power.

On the one hand, the roles that may occur in number restrictions are usually of a very restricted
type, namely atomic roles or complex roles built using either intersection or inversion. In the present
paper, we increase the expressive power of Description Logics by allowing for more complex roles
in number restrictions. As role constructors, we consider composition of roles (which will be present
in all our logics) and intersection, union, and inversion ofroles in different combinations. We will
present two decidability results (for the basic logic that extendsALC by number restrictions on roles
with composition, and for one extension of this logic), and three undecidability results for three other
extensions of the basic logic.

On the other hand, with the rather weak form of number restrictions available in implemented
systems, the number of role successors of an individual can only be restricted by a fixed non-negative
integer. To overcome this lack of expressiveness, we allow for variables ranging over the non-negative
integers in place of the fixed numbers in number restrictions. The expressive power of this constructor
is increased even further by introducing explicit quantifiers for the numerical variables. The Description
Logic obtained this way turns out to have an undecidable satisfiability problem. For a restricted logic
we show that concept satisfiability is decidable.

1 Introduction

Description Logics provideconstructorsthat can be used to build complex concepts and
roles from atomic concepts (unary predicates) and roles (binary predicates). The well-known
Description LogicALC [24] allows for propositionalconstructorsu;t;: on concepts as
well as foruniversalandexistential value restrictions. For example,1 the following concept
describes happy parents as humans having a nice child and whose children are happy and
have some nice friends:

Human u (9child:Nice) u (8child:(Happy u (9friend:Nice))):�To appear in:Journal of Logic and Computation, Vol. 9(3), 1999
1This investigation was motivated by a process engineering application. However, to present our results in a way

that is more intuitive for readers not familiar with processengineering, we give examples concerning families.
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The general idea underlying knowledge representation systems based on Description Logics
(DL-systems) is the following. First, theterminologyof an application domain is fixed. In the
terminology below,number restrictionsare used to describe parents as those humans having
at least one child, parents of many children as those having at least four children, etc. Number
restrictions allow one to restrict the number ofrole-successors, that is, the number of those
objects an object is related to via a role. In this example,(� 4 child) restricts the number
of child-successors to at least 4, whereas(� 2 child) restricts this number to at most 2.

Parent := Human u (� 1 child)
Parent of many := Parent u (� 4 child)
Parent of few := Parent u (� 2 child)
HappyParent := Human u (9child:Nice)u (8child:(Happy u (9friend:Nice)))

In the next modelling step, this terminology can be used to describe a concrete “world.” DL-
systems are designed toreasonabout both the terminology and the description of concrete
worlds. For example, they should be able to infer thatHappyParent, Parent of many,
andParent of few are subsumed byParent. Another relevant inference problem is
to decide whether a given concept is satisfiable, that is, whether its description is non-
contradictory.

To be useful in an application, theexpressive powerof a given Description Logic must
be adequate for the application (see [2, 15] for a formal definition of expressive power).
Intuitively, the Description Logic should allow one to describe the relevant properties of
objects of the application.

Number restrictions appear to provide expressive power required by manyapplications.
Moreover, humans also tend to describe objects by restricting the number of objects they
are related to. As a consequence, number restrictions are present in most implemented DL
systems [16, 20, 21, 3]. Unfortunately, they are usually found in their weakest form:

1. They arenot qualifying, that is, we may not restrict the number of role-successors of
a certain kind, but only the total number of role successors. For example, we cannot
restrict the number of childrenthat are girls, but we can only restrict the total number
of children.

2. Inside number restrictions, only atomic roles are allowed, that is,complexroles built
using some role-forming constructors are disallowed. Thus, one cannot restrict the
number of grandchildren using only the rolechild.

3. Finally, it is only possible to restrict the number of role-successors to at least or at mostn, for afixednon-negative integern. For example, it is not possible to describe persons
havingmorechildren than they have friends or persons havingthe same number of
children as their spouse or husband—without fixing a bound for thisnumber.

The first shortcoming has been overcome in [12], where so-calledqualifyingnumber restric-
tions were introduced. For example,(� 4 child Girl) is a qualifying number restriction
describing parents having at least four children that are girls. To overcome the second and
third shortcoming, we will introducecomplex roles in number restrictionsandsymbolic num-
ber restrictions.
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Complex roles in number restrictions

Complex roles are built using role constructors such as composition, union, intersection,
inversion (or converse), or the transitive closure of roles. It was shown that Description Logics
can be extended with complex roles in value restrictions without losing decidability of the
relevant inference problems [1, 22, 23, 7, 6, 8]. However, investigations of the computational
complexity of complex roles in number restrictions were restricted to intersection [9] and
inversion [5]. If both complex roles and number restrictions are present in a Description
Logic, one thus must distinguish between the roles allowed in value restrictions and those
allowed in number restrictions.

By restricting the use of complex roles to value restrictions, one loses expressiveness, as
illustrated by the following examples. For example, by usingcompositionof roles in number
restrictions one can describe persons having at least four grandchildren:

Human u (� 4 child�child):
To describe those persons whose children still live at home, additionally, theunionof roles
inside number restrictions is needed:

Human u (= 1 has-address t (child�has-address)):
To describe persons having at least five siblings,inversioncomes into play:

Human u (� 6 child�child�1):
Finally, usingintersectionof roles, we can describe persons having at least five friends in
common with their husband or spouse:

Human u (� 5 friend u (married-to�friend)):
Symbolic number restrictions

In traditional number restrictions, we always have to fix a non-negative integer by which the
number of role successors is restricted. Thus, we cannot describe, for example, parents whose
children like at least as many things as they dislike—without giving an upper bound on the
number of things their children may dislike. Symmetry-conditions like the one above (i.e.,
conditions of the form “having the same number ofxs as ofys) often occur in practice, but
they cannot be expressed using traditional number restrictions.

To overcome this lack of expressiveness, we introduce numerical variables�; �; : : : to be
used in number restrictions. Thus, the above example can be described by

Parent u 8child:((= � dislikes) u (> � likes));
where� is supposed to be interpreted by a non-negative integer. This example reveals a cer-
tain ambiguity: the exact meaning of the concept expression depends on whether the variable� must be interpreted by the same non-negative integer for all children,or whether it can
have different values for different children. To avoid this ambiguity, we will introduce ex-
plicit existential quantification of numerical variables (denoted by#�) to distinguish between
(1) parents all of whose children like more things than they dislike

Parent u (8child:(#�:(= � dislikes) u (> � likes))); (1)
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and (2) parents where all children dislike the same number of things, andlike more things
than they dislike:

Parent u (#�:(8child : (= � dislikes) u (> � likes))): (2)

Outline of this paper

In the following, these two ways of augmenting the expressive powerof number restrictions
are investigated in detail. It turns out that these extensions are of sucha high expressive
power that they lead, in many cases, to undecidability. To keep things as simple as possible,
we will restrict our attention to the basic inference problems subsumption and satisfiability
of concepts, and not mix both extensions. In Section 2, the basic Description Logics and the
relevant inference problems are introduced.

In Section 3, the extensions by complex roles in number restrictions are introduced, and
their computational properties are investigated. Extensions ofALC by different kinds of com-
plex roles in number restrictions are almost completely classified with respect to the decid-
ability of the satisfiability and subsumption problem. These results are obtained either as a
consequence of a general decidability result in [11], or they are explicitly proved in this paper.
The latter ones include the� decidability ofALC with composition in number restrictions,� undecidability ofALC with composition and intersection in number restrictions,� undecidability ofALC with composition, union, and inversion in number restrictions.

In addition, we also considerALC+(i.e., the extension ofALC by transitive closure of roles in
value restrictions), and show that its extension by number restrictions on roles with composi-
tion is undecidable.

In Section 4, symbolic number restrictions are introduced. It turns out that, for “full”
symbolic number restrictions, satisfiability and subsumption are undecidable, whereas a re-
striction to the kind of symbolic number restrictions used in all ofthe above examples leads
to decidability of satisfiability. Unfortunately, this restriction leads to a logic that is no longer
closed under negation, and it turns out that, for this logic, the subsumption problem is still
undecidable.

Finally, in Section 5, we mention related decidability and undecidability results from
Description Logics, Modal Logics, and Predicate Logic.

2 Preliminaries

All investigations in this work concern extensions of the Description LogicALCN [13, 9],
which is the extension ofALC [24] with (non-qualifying) number restrictions on atomic roles.
For these two Description Logics, both satisfiability and subsumption are decidable. More
precisely, these inference problems were shown to bePSpace-complete [13, 9].

Definition 1 Let NC be a set ofconcept names, andNR a set ofrole names. The set ofALC-conceptsis the smallest set such that� every concept name is a concept.
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� if C andD are concepts andR is a role name, then

– (C uD), (C tD), (:C), (Boolean operators)

– (8R:C), (9R:C) (value restrictions)

are concepts.

Starting with role names inNR, regular rolesare built using the role constructors composition(R�S), union(R t S), and transitive closure(R+).� ALCreg is obtained fromALC by allowing, additionally, for regular roles in value re-
strictions.� ALC+ is obtained fromALC by allowing, additionally, for the transitive closure of roles
in value restrictions.� ALCN (resp.ALCregN andALC+N ) is obtained fromALC (resp.ALCreg andALC+)
by allowing, additionally, for concepts of the form(� n R) and(� n R) (number
restrictions), for all role namesR and non-negative integersn.

In the next section, we will also consider the additional role constructors intersection(RuS)
and inversion(R�1).

The meaning of these constructors, and thus also of the Description Logics we have just
introduced, is defined using a Tarski-style model-theoretic semantics.

Definition 2 An interpretationI = (�I ; �I) consists of a set�I , called thedomainof I,
and an extension function�I that maps every concept to a subset of�I , and every (complex)
role to a subset of�I ��I such that the following equalities are satisfied:(C uD)I = CI \DI ;(C tD)I = CI [DI ;:CI = �I n CI ;(9R:C)I = fd 2 �I j 9e 2 �I : (d; e) 2 RI ^ e 2 CIg;(8R:C)I = fd 2 �I j 8e 2 �I : (d; e) 2 RI ) e 2 CIg;(� n R)I = fd 2 �I j #fe 2 �I j (d; e) 2 RIg � ng;(� n R)I = fd 2 �I j #fe 2 �I j (d; e) 2 RIg � ng;(R1 tR2)I = R1I [ R2I ;(R1 uR2)I = R1I \ R2I ;(R�1)I = f(d; e) 2 �I ��I j (e; d) 2 RIg;(R1�R2)I = f(d; f) 2 �I ��I j 9e 2 �I : (d; e) 2 RI1 ^ (e; f) 2 RI2 g;(R+)I = [i�1(RI)i:
where#X denotes the cardinality of a setX and(RI)i thei-times composition ofRI with
itself. If d 2 CI , we say thatd is aninstance ofC in I. If (d; e) 2 RI , we say thatd is anR-predecessor ofe, ande is anR-successor ofd in I.

A conceptC is calledsatisfiableiff there is some interpretationI such thatCI 6= ;.
We call such an interpretation amodel ofC. A conceptD subsumesa conceptC (writtenC v D) iff for all interpretationsI we haveCI � DI .
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Additional Boolean operators, such as implication, will be used as abbreviations: for
example,A) B stands for:AtB. Furthermore, we can express all relations inf=; <;>g
inside number restrictions, for example(> n R) � :(� n R) and(= n R) � ((� n R) u(� n R)).

If a Description Logic allows for negation and conjunction of concepts,subsumption and
(un)satisfiability can be reduced to each other:� C v D iff C u :D is unsatisfiable,� C is unsatisfiable iffC v A u :A (for a concept nameA).

Since all but one Description Logic considered here are in fact propositionally closed, this
connection between satisfiability and subsumption will be heavily exploited: we restrict our
attention to one of the two inference problems, namely satisfiability, both in the decidability
and in the undecidability proofs.

3 Number Restrictions on Complex Roles

In this section, we introduce extensions ofALCN , ALCregN , andALC+N with number re-
strictions on complex roles and investigate the complexity of the corresponding inference
problems. This investigation yields an almost complete classification ofthe extensions ofALCN by different kinds of complex roles in number restrictions. Furthermore, it turns out
that it suffices to extendALC+N with number restrictions on role chains (that is to allow for
number restrictions with composition) to obtain undecidability.

To simplify the presentation of our results, we start by giving a scheme of how to build
extensions ofALCN , ALCregN , andALC+N with number restrictions on complex roles. The
name of such an extension consists of the name of the base logic followed by the set of role
constructors that are allowed inside number restrictions.

Definition 3 For a setM � ft;u; �; �1g of role constructors and a complex roleR,
we call a number restriction of the form(� n R) or (� n R) an M -number restric-
tion iff R is built using only constructors fromM . The set ofALCN (M)-concepts(resp.ALC+N (M)-conceptsand ALCregN (M)-concepts) is obtained fromALC-concepts (resp.ALC+- andALCreg-concepts) by additionally allowing forM -number restrictions.

Composition is present in all extensions investigated in this paper for the following rea-
sons. On the one hand, composition in number restrictions strongly increases the expres-
sive power: it allows one to restrict the number of role-chain-successors. The expressive-
ness of this extension even leads to the loss of the tree-model property, a property satisfied
by most of the Description Logics considered in the literature. For example, the concept(� 2 R) u (8R:9S:A) u (� 1 R�S) is obviously satisfiable, but each of its instances has
two R-successors having a commonS-successor. Thus, models of this concept cannot be
tree-models. On the other hand, decidability of satisfiability and subsumption forALCN (M)
for setsM � ft;u; �1g follows immediately from a result in [11]; this result is discussed
in more detail in Section 5.

The examples introduced in Section 1 should provide an intuition of what can be ex-
pressed using complex roles inside number restrictions. To obtain a deeper insight into the
expressive power of Description Logics with complex number restriction, we first show the
undecidability results.
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3.1 Undecidable Extensions

We will use a reduction of the domino problem—a well-known undecidable problem [14, 4]
often used in undecidability proofs in logic—to show that concept satisfiability is undecidable
for the three extensionsALCN (�;t;�1 ),ALCN (�;u), andALC+N (�) of the decidable logicALCN (�) considered in the next subsection. For didactic reasons, we will also consider the
logicsALCregN (�;t) andALC+N (�;t), although their undecidability follows from the other
results.

Definition 4 A tiling systemD = (D;H; V ) is given by a non-empty setD =fD1; : : : ; Dmg of domino types, and by horizontal and verticalmatching pairsH � D�D,V � D �D. Thedomino problemasks for acompatible tilingof the first quadrantIN � IN
of the plane, i.e., a mappingt : IN� IN! D such that, for allm;n 2 IN,(t(m;n); t(m+ 1; n)) 2 H and(t(m;n); t(m;n+ 1)) 2 V:
The standard domino problem asks for a compatible tiling of the whole plane. However,
a compatible tiling of the first quadrant yields compatible tilings of arbitrarily large finite
rectangles, which in turn yield a compatible tiling of the plane [14]. Thus, the undecidability
result for the standard problem [4] carries over to this variant.

In order to reduce the domino problem to satisfiability of concepts, we must show how a
given tiling systemD can be translated into a conceptED (of the logic under consideration)
such thatED is satisfiable iffD allows for a compatible tiling. This task can be split into
three subtasks, which we will first explain on an intuitive level, before showing how they can
be achieved for the five Description Logics under consideration.

Task 1: It must be possible to represent a single “square” ofIN� IN, which consists of points(n;m); (n;m+1); (n+1;m), and(n+1;m+1). The idea is to introduce rolesX;Y ,
whereX goes one step into the horizontal (i.e.x-) direction, andY goes one step
into the vertical (i.e.y-) direction. The Description Logic must be expressive enough
to describe that an individual (a point(n;m)) has exactly oneX-successor (the point(n+1;m)), exactly oneY -successor (the point(n;m+1)), and that theX�Y -successor
coincides with theY �X-successor (the point(n+ 1;m+ 1)).

Task 2: It must be possible to express that a tiling is locally compatible, i.e., that theX- andY -successors of a point have an admissible domino type. The idea is to associate each
domino typeDi with an atomic conceptDi, and to express the horizontal and vertical
matching conditions via value restrictions on the rolesX;Y .

Task 3: It must be possible to impose the abovelocal conditions on all points inIN � IN.
This can be achieved by constructing a “universal” roleU and a “start” individual such
that every point is aU -successor of this start individual. The local conditions can then
be imposed on all points via value restrictions onU for the start individual.

Task 2 is rather easy, and can be realized using theALC-conceptCD given in Figure 1.
The first conjunct expresses that every point has exactly one domino type, and the value
restrictions in the second conjunct express the horizontal and vertical matching conditions.

Task 1 can be achieved in any extension ofALCN (�) with either union or intersection of
roles in number restrictions: see the conceptsCu andCt in Figure 1.
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CD := t1�i�m(Di u ( u1�j�mi6=j :Dj)) uu1�i�m(Di ) ((8X:( t(Di;Dj)2HDj)) u (8Y:( t(Di;Dj)2V Dj))))Ct := (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u (= 1 Y �X tX�Y )Cu := (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u (= 1 Y �X uX�Y )E(10)D := (= 1 R) u (8R+:(Ct u CD u (� 2 R) u (� 2 R tX t Y )))E(2)D := (� 1 U) u (8U: (Ct u CD u (= 1 X�U�1) u (= 1 Y �U�1) u(� 1 U�1 t Y �U�1 tX�U�1)))E(3)D := (= 1 R) u (= 1 R u R�T �R) u(8R:8T:8R: (Cu u CD u (� 1 T ) u (8Y:(� 1 T )) u (8X:(� 1 T )) u(= 1 T uX�T u Y �T )u(= 1 X uX�T �R) u (= 1 Y u Y �T �R)))
whereA) B is an abbreviation for:A t B and(= n R) is an abbreviation for(� n R) u (� n R).

Figure 1: Concepts used in the proof of Theorem 5

Task 3 is easy for logics that extendALC+, and more difficult for logics without transitive
closure. The general idea is that the start individuals is an instance of the conceptED to be
constructed. From this individual, one can reach viaU the origin(0; 0) of IN � IN and all
points that are connected with the origin via arbitraryX- andY -paths.

With this intuition in mind, the reduction concepts that achieve Task 3are now explained
in detail for each undecidable extension ofALC, ALC+, andALCreg by complex number
restrictions.ALCregN (�;t): We start with an extension ofALCreg since here it is rather easy to reach,

from the start individual, all individuals representing points in the plane. In fact, in
extensions ofALCreg, we can use the complex role(X t Y )+ to reach every point
accessible from the origin(0; 0) via arbitraryX- andY -paths. Thus, for each tiling
systemD, theALCregN (�;t)-conceptE(1)D := (= 1 R) u (8(R t (R�(X t Y )+)):(Ct u CD)):
can be constructed, which is obviously satisfiable if, and only if,D admits a compatible
tiling.ALC+N (�;t): The complex role in the value restriction can even be restricted to a simple
transitive closure of an atomic role. Intuitively, a starting pointoutside the plane is
used which is connected to each point in the plane via someR-path. To achieve this,

the conceptE(10)D in Figure 1 makes sure that theX- and theY -successors of each
point in the plane are alsoR-successors of this point. HenceR+ can be used in place

of (X t Y )+ as “universal” role, and thus the conceptE(10)D is inALC+N (�;t).
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ALCN (�;t;�1 ): In ALCN (�;t;�1 ), a role nameU for the “universal” role is explicitly in-
troduced, and number restrictions involving composition, union, and inversion of roles
are used to make sure that the start individual is directly connected viaU with every
point: see the conceptE(2)D in Figure 1 and the left diagram in Figure 2. The number
restrictions inside the value restriction make sure that every pointp that is reached viaU from the start individual satisfies the following: ItsX-successor and itsY -successor
each have exactly oneU -predecessor, which coincides with the (unique)U -predecessor
of p, i.e., the start individual. Thus, theX-successor and theY -successor ofp are alsoU -successors of the start individual.

Y

Y Y

Y

X

X X

X

s

Y

Y Y

Y

X

X X

X

s
U

R

TR

T
RT

T
R

R

T

R

R T

s’

Figure 2: The universal role forALCN (�;t;�1 ) andALCN (�;u)ALCN (�;u): ForALCN (�;u), a similar construction is possible. Since inversion of roles is
not allowed inALCN (�;u), two role namesR andT are needed for the construction
of the universal role. The intuition is thatT plays the rôle of the inverse ofR (except
for one individual), and the “universal” role corresponds to the compositionR�T �R;
see the right diagram in Figure 2. The start individuals (which is an instance ofE(3)D ),
has exactly oneR-successorp(0;0), which coincides with itsR�T �R-successor. The

individualp(0;0) corresponds to the origin ofIN � IN. The number restrictions ofE(3)D
make sure thatp(0;0) satisfies the following: It has exactly oneT -successor, call its0, which coincides with theR�T -successor ofs, and with the (unique)T -successors
of theX- andY -successors ofp(0;0). In addition, the (unique)X-successor ofp(0;0)
is also anX �T �R-successor ofp(0;0), which makes sure that theX-successor ofp(0;0) is anR-successor ofs0, and thus anR�T �R-successor ofs. The same holds
for theY -successor. One can now continue the argument with theX-successor (resp.Y -successor) ofp(0;0) in place ofp(0;0).

With the intuitions given above, it is not hard to show for alli; 1 � i � 3, that a tiling

systemD has a compatible tiling iffE(i)D is satisfiable, and that the same is true forE(10)D .

Theorem 5 Satisfiability (and thus also subsumption) of concepts is undecidable forALC+N (�;t),ALCN (�;t;�1 ), andALCN (�;u).
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u; ��1 ��1 tu;tt; ��1 t; �; ��1 u;t; �
� �; ��1u; �u; �; ��1u;t; �; ��1

t; � uALC N
u;t; ��1Grädel, Otto, and Rosen [11]

Figure 3: (Un)decidability results for extensions ofALCN .

This theorem does not explicitly mention the undecidability result for ALCregN (�;t), since it
is an immediate consequence of the result forALC+N (�;t).

Figure 3 gives an overview of the (un)decidability results for extensions ofALCN by
complex roles in number restrictions. Decidable extensions are light grey, whereas undecid-
able ones are dark grey. The overview shows the results from Theorem 5 together with the
decidability results that follow from [11] and the decidability resultthat will be shown in
the next section. The only problems that remain open for the extensions ofALCN concernALCN (�;�1 ) andALCN (�;t). Until now, neither a decision procedure for one of these
extensions nor a proof of their undecidability could be found.

To make the picture more complete, we will now focus on extensions ofALC+N . So far,
onlyALC+N (�;t) was shown to be undecidable. It will now be shown that, in extensions ofALC+N , it suffices to allow for composition in number restriction in order tolose decidability
(see Figure 6 for an overview of the (un)decidability results for extensions ofALC+N by
number restrictions on complex roles). Again, a reduction of the domino problem to concept
satisfiability is used to show undecidability ofALC+N (�). Since this reduction is rather
different from the ones above and more complicated, it is treated separately. The (redundant)
reduction forALC+N (�;t) was given since it served to give the intuition forALCN (�;t;�1 )
andALCN (�;u). The concepts used for the reduction of the domino problem toALC+N (�)-
concept satisfiability are given in Figure 4.

The conceptCprim makes sure that each point will be an instance of eitherA orB orC
(which are disjoint), and that with each point exactly one domino typeDi will be associated.

Task 1 is achieved via the conceptC�, which describes a square by using a single roleX .
Each instance ofC� has twoX-successors that in turn each have twoX-successors. The
conjunct(= 3 X �X) makes sure that theX-successors of an instance ofC� have one
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C� := (= 2 X) u (8X:(= 2 X)) u (= 3 X �X)Cprim := (A tB t C) u t1�i�m(Di u ( u1�j�mi6=j :Dj))Cdiag := (A) ((9X:B) u (9X:C))) u(B ) ((9X:A) u (9X:C))) u(C ) ((9X:A) u (9X:B)))CD :=u1�i�m �((A uDi)) (9X:(C u ( t(Di;Dj)2HDj)) u 9X:(B u ( t(Di;Dj)2V Dj)))) u((B uDi)) (9X:(A u ( t(Di;Dj)2HDj)) u 9X:(C u ( t(Di;Dj)2V Dj)))) u((C uDi)) (9X:(B u ( t(Di;Dj)2HDj)) u 9X:(A u ( t(Di;Dj)2V Dj))))�E(4)D := (= 1 X) u (9X:A) u (8X+:(C� u Cprim u Cdiag u CD))
whereA;B andC are disjoint concepts since they are abbreviations forA := A1; B := :A1 u A2 C := :A1 u :A2

Figure 4: Concepts used in the proof of Theorem 6

commonX-successor.

Task 3 is easy becauseALC+N (�) allows for the transitive closure of roles. Ifs is an instance

of E(4)D I
, thens has exactly oneX-successor, sayp(0;0), which is an instance ofA. Each

point in the grid is anXn-successor ofs. Thus, the local conditions on all points in the grid
are imposed by8X+(C� u Cprim u Cdiag u CD).
Task 2 is difficult because we must distinguish between the “horizontal” and the“vertical”X-successor of a point. For this purpose, the conceptsA,B, andC are used in the following
way (see Figure 5 for a better intuition).

BCBCA

B A C B A C

A

BC

BC

AB

AB

C

C

A

A

Figure 5: Visualisation of the grid as enforced by theALC+N (�) reduction concept.
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De Giacomo and Lenzerini [5]

u; ��1 u; � �; ��1�t; � utu;tt; ��1 u;t; � u; �; ��1t; �; ��1u;t; ��1 u;t; �; ��1
��1 ALC+N

Figure 6: (Un)decidability results for extensions ofALC+.

The conceptCdiag makes sure that each instance ofA has oneX-successor inB and one inC, and similar for instances ofB andC. Without loss of generality, we draw theX-successor
of p0;0 that is inC to its right and call itp1;0. The otherX-successor ofp0;0, which is inB,
is calledp0;1 and is drawn above it. Now, it is easy to see that the remaining parts of the grid
are determined in the sense that� for each diagonal in the grid there is anE 2 fA;B;Cg such that all points on this

diagonal are instances ofE,� horizontal successors of points inA are always inC, of points inC are always inB,
and of points inB are always inA,� vertical successors of points inA are always inB, of points inB are always inC, and
of points inC are always inA.

With the intuitions given above, it is not hard to show that a tilingsystemD has a com-
patible tiling iff E(4)D is satisfiable,2

Theorem 6 Satisfiability (and thus also subsumption) of concepts is undecidable forALC+N (�).
2To make the reduction more obvious, the conceptE(4)D is longer than necessary. In fact, the subconceptCdiag

could have been left out.
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3.2 ALCN (�) is decidable

We present a tableau-like algorithm for deciding satisfiability ofALCN (�)-concepts. The
algorithm and the proof of its correctness are very similar to existingalgorithms and proofs
for ALC with number restrictions on atomic roles [13, 12]. These proofs heavily employ
the fact that each satisfiableALCN -concept has a tree-model.3 It can easily be seen that, in
contrast toALCN , the logicALCN (�) does not have the tree-model property. For example,
the concept (� 2 R) u (8R:9S:A) u (� 1 R�S)
is obviously satisfiable, but each of its instances has anR�S successord that is reachable via
two different paths. In particular,d has two different role predecessors.

Nevertheless, the models that will be generated by our algorithm are very similar to tree-
models in that every element of the model can be reached from an initial (root) element via
role chains, the root does not have a role predecessor, and every role chain from the root to an
element has the same length (even though there may exist more than one suchchain). In the
proof of the termination of the algorithm, this fact will be used in the place of the tree-model
property.

As usual [24], we assume without loss of generality that all concepts are in negation
normal form (NNF), i.e., negation occurs only immediately in front ofatomic concepts. The
basic data structure our algorithm works on are constraints:

Definition 7 Let � = fx; y; z; : : :g be a countably infinite set of individual variables. A
constraintis either of the formxRy, whereR is a role name inNR andx; y 2 � ,x :D for someALCN (�)-conceptD in NNF and somex 2 � , orx 6= y for x; y 2 � .4

A constraint systemis a set of constraints. For a constraint systemS, let �S � � denote
the individual variables occurring inS.

An interpretationI is amodel of a constraint systemS iff there is a mapping� : �S ! �I
such thatI; � satisfy each constraint inS, i.e.,(�(x); �(y)) 2 RI for all xRy 2 S;�(x) 6= �(y) for all (x 6= y) 2 S;�(x) 2 DI for all x :D 2 S:

For a constraint systemS, individual variablesx; y, and role namesRi, we say thaty is anR1�: : :�Rm-successorof x in S iff there arey0; : : : ; ym 2 � such thatx = y0; y = ym, andfyiRi+1yi+1 j 0 � i � m� 1g � S. The systemS contains aclashiff fx :A; x ::Ag � S
for some concept nameA and some variablex 2 �S , or x :(� n R) 2 S andx has` > nR-successorsy1; : : : ; y` in S such that for alli 6= j we haveyi 6= yj 2 S. A constraint
systemS is calledcompleteiff none of the completion rules given in Figure 7 can be applied
to S.

3A tree-model is a model having the shape of a tree, i.e., it hasa root, which does not have role predecessors, and
every other element of the model has exactly one role predecessor. In particular, there are no cyclic role chains in
the model.

4We consider such inequalities as being symmetric, i.e., ifx 6= y belongs to a constraint system, theny 6= x
(implicitly) belongs to it as well.
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1. Conjunction: If x :(C1 u C2) 2 S andx :C1 62 S or x :C2 62 S, thenS ! S [ fx :C1; x :C2g
2. Disjunction: If x :(C1 t C2) 2 S andx :C1 62 S andx :C2 62 S, thenS ! S1 = S [ fx :C1gS ! S2 = S [ fx :C2g
3. Value restriction: If x :(8R:C) 2 S for a role nameR, y is anR-successor

of x in S andy :C 62 S, thenS ! S [ fy :Cg
4. Existential restriction: If x :(9R:C) 2 S for a role nameR and there is

noR-successory of x in S with y : C 2 S, thenS ! S [ fxRz; z : Cg for a new variablez 2 � n �S .

5. Number restriction: If x :(� n R1�: : :�Rm) 2 S for role namesR1; : : : ; Rm
andx has less thann R1�: : :�Rm-successors inS, thenS ! S [ fxR1y2; ymRmzg [ fyiRiyi+1 j 2 � i � m� 1g [fz 6= w j w is anR1�: : :�Rm-successor ofx in Sg
wherez; yi are new variables in� n �S .

6. Number restriction: If x :(� n R1�: : :�Rm) 2 S, x has more thannR1�: : :�Rm-successors inS, and there areR1�: : :�Rm-successorsy1; y2 of x in S with(y1 6= y2) 62 S, thenS ! Sy1;y2 = S[y2=y1]
for all pairsy1; y2 of R1�: : :�Rm-successors ofx with (y1 6= y2) 62 S.

Figure 7: The completion rules forALCN (�)
Figure 7 introduces thecompletion rulesthat are used to testALCN (�)-concepts for sat-

isfiability. In these rules, the constraint systemS[y2=y1] is obtained fromS by substituting
each occurrence ofy2 in S by y1.

Thecompletion algorithmworks on a tree where each node is labelled with a constraint
system. It starts with the tree consisting of a root labelled withS = fx0 :C0g, whereC0 is
theALCN (�)-concept in NNF to be tested for satisfiability. A rule can only be applied to a
leaf labelled with a clash-free constraint system. Applying a ruleS ! Si, for 1 � i � n,
to such a leaf leads to the creation ofn new successors of this node, each labelled with one
of the constraint systemsSi. The algorithm terminates if none of the rules can be applied to
any of the leaves. In this situation, it answers with “C0 is satisfiable” iff one of the leaves is
labelled with a clash-free constraint system.

Soundness and completeness of this algorithm is an immediate consequence ofthe fol-
lowing facts:

Lemma 8 LetC0 be anALCN (�)-concept in NNF, and letS be a constraint system obtained
by applying the completion rules tofx0 :C0g. Then
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1. For each completion ruleR that can be applied toS and for each interpretationI, the
following equivalence holds:I is a model ofS iff I is a model of one of the systemsSi obtained by applyingR.

2. If S is a complete and clash-free constraint system, thenS has a model.

3. If S contains a clash, thenS does not have a model.

4. The completion algorithm terminates when applied tofx0 :C0g.
Indeed, termination shows that after finitely many steps we obtain a tree such that all its leaf
nodes are labelled with complete constraint systems. IfC0 is satisfiable, thenfx0 :C0g is
also satisfiable, and thus one of the complete constraint systems is satisfiable by (1). By (3),
this system must be clash-free. Conversely, if one of the complete constraint systems is clash-
free, then it is satisfiable by (2), and because of (1) this implies thatfx0 :C0g is satisfiable.
Consequently, the algorithm is a decision procedure for satisfiability of ALCN (�)-concepts:

Theorem 9 Subsumption and satisfiability ofALCN (�)-concepts is decidable.

Proof of Part 1 of Lemma 8: We consider only the rules concerned with number restric-
tions, since the proof for Rules 1–4 is just as forALC.

5. Number restriction: Assume that the rule is applied to the constraintx :(� n R1� : : :�Rm), and that its application yieldsS0 = S [ fxR1y2; ymRmzg [ fyiRiyi+1 j 2 � i � m� 1g[ fz 6= w j w is anR1�: : :�Rm-successor ofx in Sg:
SinceS is a subset ofS0, any model ofS0 is also a model ofS.
Conversely, assume thatI is a model ofS, and let� : �S ! �I be the corresponding
mapping of individual variables to elements of�I . On the one hand, sinceI satisfiesx :(� n R1�: : :�Rm), �(x) has at leastn R1�: : :�Rm-successors inI. On the other
hand, since Rule 5 is applicable tox :(� n R1�: : :�Rm), x has less thann R1�: : :�Rm-
successors inS. Thus, there exists anR1�: : :�Rm-successorb of �(x) in I such thatb 6= �(w) for all R1� : : :�Rm-successorsw of x in S. Let b2; : : : ; bm 2 �I be such
that (�(x); b2) 2 RI1 ; (b2; b3) 2 RI2 ; : : : ; (bm; b) 2 RIm. We define�0 : �S0 ! �I
by �0(y) := �(y) for all y 2 �S , �0(yi) := bi for all i; 2 � i � m, and�0(z) := b.
Obviously,I; �0 satisfyS0.

6. Number restriction: Assume that the rule can be applied tox :(� n R1�: : :�Rm) 2 S,
and letI together with the valuation� : �S ! �I be a model ofS. On the one
hand, since the rule is applicable,x has more thann R1 � : : :�Rm-successors inS.
On the other hand,I; � satisfyx :(� m R1 � : : :�Rm) 2 S, and thus there are two
differentR1�: : :�Rm-successorsy1; y2 of x in S such that�(y1) = �(y2). Obviously,
this implies that(y1 6= y2) 62 S, which shows thatSy1;y2 = S[y2=y1] is one of the
constraint systems obtained by applying Rule 6 tox :(� n R1�: : :�Rm). In addition,
since�(y1) = �(y2), I; � satisfySy1;y2 .
Conversely, assume thatSy1;y2 = S[y2=y1] is obtained fromS by applying Rule 6, and
let I together with the valuation� be a model ofSy1;y2 . If we take a valuation�0 that
coincides with� on the variables in�Sy1;y2 and satisfies�0(y2) = �(y1), thenI; �0
obviously satisfyS.
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Proof of Part 2 of Lemma 8: Let S be a complete and clash-free constraint system that is
obtained by applying the completion rules tofx0 :C0g. We define a canonical modelI of S
as follows: �I := �S and

for all A 2 NC : x 2 AI iff x :A 2 S;
for all R 2 NR : (x; y) 2 RI iff xRy 2 S:

In addition, let� : �S ! �I be the identity on�S . We show thatI; � satisfy every constraint
in S.

By definition ofI, a role constraint of the formxRy is satisfied byI; � iff xRy 2 S.
More generally,y is anR1�: : :�Rm-successor ofx in S iff y is anR1�: : :�Rm-successor ofx in I. We show by induction on the structure of the conceptC that every concept constraintx :C 2 S is satisfied byI; �. Again, we restrict our attention to number restrictions since the
induction base and the treatment of the other constructors is just as forALC.� Considerx :(� n R1�: : :�Rm) 2 S. SinceS is complete, Rule 5 cannot be applied tox :(� n R1�: : :�Rm), and thusx has at leastn R1�: : :�Rm-successors inS, which are

alsoR1�: : :�Rm-successors ofx in I. This shows thatI; � satisfyx :(� n R1�: : :�Rm).� Constraints of the formx :(� n R1�: : :�Rm) 2 S are satisfied becauseS is clash-free
and complete. In fact, assume thatx has more thann R1 � : : :�Rm-successors inI.
Thenx also has more thann R1� : : :�Rm-successors inS. If S contained inequality
constraintsyi 6= yj for all these successors, then we would have a clash. Otherwise,
Rule 6 could be applied.

Proof of Part 3 of Lemma 8: Assume thatS contains a clash. Iffx :A; x ::Ag � S,
then it is clear that no interpretation can satisfy both constraints. Thus assume thatx :(�n R) 2 S andx has` > n R-successorsy1; : : : ; y` in S with (yi 6= yj) 2 S for all i 6= j.
Obviously, this implies that in any modelI; � of S, �(x) has` > n distinctR-successors�(y1); : : : ; �(y`) in I, which shows thatI; � cannot satisfyx :(� n R).
Proof of Part 4 of Lemma 8: The detailed proof can be found in the appendix. For this
proof, the following observations, which are an easy consequence of the definition of the
completion rules, are important:

Lemma 10 Let C0 be anALCN (�)-concept in NNF, and letS be a constraint system ob-
tained by applying the completion rules tofx0 :C0g.

1. Every variablex 6= x0 that occurs inS is anR1�: : :�Rm-successor ofx0 for some role
chain of lengthm � 1. In addition, every other role chain that connectsx0 with x has
the same length.

2. If x can be reached inS by a role chain of lengthm from x0, then for each constraintx :C in S, the maximal role depth5 of C is bounded by the maximal role depth ofC0
minusm. Consequently,m is bounded by the maximal role depth ofC0.

5The role depth is formally defined in the appendix. Intuitively, it is the depth of nested role “expressions” in
value restrictions and number restrictions.

16



Intuitively, these two facts are used as follows. Letm0 be the maximal role depth ofC0.
Because of the first fact, every individualx in a constraint systemS (reached fromfx0 :C0g
by applying completion rules) has a unique role levellevel(x), which is its distance from
the root nodex0, i.e., the unique length of the role chains that connectx0 with x. Because
of the second fact, the level of each individual is an integer between0 andm0. Both facts
together imply that the length of role chains is bounded bym0. Since the number of direct
role successors of a given individual can also be bounded by the size ofC0, this implies that
the size of the constraint systems that can be built by the completion algorithm is bounded. A
formal proof of termination based on an explicit termination ordering is given in the appendix.

Discussion of the result: For logics where number restrictions may contain—in addition
to composition—union or intersection of roles, an important property used in the above ter-
mination proof is no longer satisfied. It is not possible to associateeach individual generated
by a tableau-like procedure with a unique role level, which is its distance from the “root”
individualx0 (i.e., the instancex0 of C0 to be generated by the tableau algorithm). Indeed,
in the concept C0 := (9R:9R:A) u (� 1 R t R�R);
the number restriction enforces that anR-successor of an instance ofC0 is also anR�R-
successor of this instance. For this reason, anR-successor of the root individual must be both
on level1 and on level2, and thus the relatively simple termination argument that was used
above is not available for these larger logics. However, as we will showbelow, this termi-
nation argument can still be used if union and intersection are restricted torole chains of the
same length. Without this restriction, satisfiability may become undecidable: in Section 3.1
we have shown that satisfiability is in fact undecidable forALCN (�;u). ForALCN (�;t),
decidability of satisfiability is still an open problem.

3.3 An extension of the decidability result

The algorithm given in Section 3.2 will be extended such that it can also treat union and
intersection of role chains that have the same length. The proof of soundness, completeness
and termination of this extended algorithm is very similar to the one for the basic algorithm,
and will thus only be sketched.

In the remainder of this section, acomplex roleis� a role chainR = R1�: : :�Rn, or� an intersectionR = R1�: : :�Rn uS1�: : :�Sn of two role chains of the same length, or� a unionR = R1�: : :�Rn t S1�: : :�Sn of two role chains of the same length.

The satisfiability algorithm is extended by adding two new rules to handle number restrictions(� n R) for complex roles with union or intersection and by modifying the rule for number
restrictions such that it can handle the new types of complex roles. To formulate the new
rules, we must extend the notion of a role successor in a constraint system appropriately.
Building up on the notion of a role successor for a role chain, we define:� y is an(R1�: : :�RntS1�: : :�Sn)-successor ofx in S iff y is anR1�: : :�Rn-successor

or anS1�: : :�Sn-successor ofx in S, and
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5a. Number restriction: If x :(� n R1�: : :�Rm t S1�: : :�Sm) 2 S andx has less

thann (R1�: : :�Rm t S1�: : :�Sm)-successors inS, thenS ! S1 = S [ fxR1y2; ymRmzg [ fyiRiyi+1 j 2 � i � m� 1g [fz 6= w j w is an(R1�: : :�Rm t S1�: : :�Sm)-successor ofx in SgS ! S2 = S [ fxS1y2; ymSmzg [ fyiSiyi+1 j 2 � i � m� 1g [fz 6= w j w is an(R1�: : :�Rm t S1�: : :�Sm)-successor ofx in Sg
wherez; yi are new variables in� n �S .

5b. Number restriction: If x :(� n R1�: : :�Rm u S1�: : :�Sm) 2 S andx has less

thann (R1�: : :�Rm u S1�: : :�Sm)-successors inS, thenS ! S [ fxR1y2; xS1y02; ymRmz; y0mSmzg [fyiRiyi+1; y0iSiy0i+1 j 2 � i � m� 1g [fz 6= w j w is an(R1�: : :�Rm u S1�: : :�Sm)-successor ofx in Sg
wherez; y0i; yi are new variables in� n �S .

6’. Number restriction: If x :(� n R) 2 S for some complex roleR, x has more
thannR-successors inS, and there areR-successorsy1; y2 of x in S with (y1 6= y2) 62S, thenS ! Sy1;y2 = S[y2=y1]
for all pairsy1; y2 ofR-successors ofx with (y1 6= y2) 62 S.

Figure 8: The additional completion rules.� y is an(R1�: : :�RnuS1�: : :�Sn)-successor ofx in S iff y is anR1�: : :�Rn-successor
and anS1�: : :�Sn-successor ofx in S.

Obviously, this definition is such that role successors inS are also role successors in every
model ofS: if I; � satisfyS, andy is anR-successor ofx in S for a complex roleR, then�(y) is anR-successor of�(x) in I.

The new rules are described in Figure 8. The rules5a, 5b are added to the completion
rules, whereas rule60 substitutes rule6 in Figure 7. To show that the new algorithm obtained
this way decides satisfiability of concepts for the extended logic, we mustprove that all four
parts of Lemma 8 still hold.

1. Local correctnessof the rules5a; 5b and60 can be shown as in the proof of Part 1 of
Lemma 8 above.

2. Thecanonical modelinduced by a complete and clash-free constraint system is defined
as in the proof of Part 2 of Lemma 8. The proof that this canonical model really satisfies
the constraint system is also similar to the one given there. Note that our notion of
anR-successor of a complex roleR in a constraint system was defined such that it
coincides with the notion of anR-successor in the canonical modelI induced by the
constraint system.

3. The proof that a constraint system containing a clash is unsatisfiableis the same as the
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one given above. Note that this depends on the fact that role successors in aconstraint
system are also role successors in every model of the constraint system.

4. The proof ofterminationis also very similar to the one given above. The definition of
the depth of a concept (see the appendix) is extended in the obvious way toconcepts
with number restrictions on complex roles:

depth(� n R1�: : :�Rm u S1�: : :�Sm) := m;
depth(� n R1�: : :�Rm t S1�: : :�Sm) := m;
depth(� n R1�: : :�Rm u S1�: : :�Sm) := m;
depth(� n R1�: : :�Rm t S1�: : :�Sm) := m:

Because the role chains in complex roles are of the same length, it is easy tosee
that Lemma 10 still holds. Thus, we can define the same measure�(S) as in the ap-
pendix for all constraint systems obtained by applying the extended completion rules
to fx0 :C0g. It is easy to see that the proof thatS ! S0 implies�(S) � �(S0) can
be extended to the new rules. It should be noted that the proof given in the appendix
was already formulated in a more general way than necessary for the logic considered
there. Actually, we have only used the fact that all role chains connecting two individ-
uals have the same length (which is still satisfied for the extended logic), and not that
these role chains also have the same name (which is only satisfied forALCN (�)).

The following theorem is an immediate consequence of these observations:

Theorem 11 Subsumption and satisfiability is decidable for the logic that extendsALCN (�)
by number restrictions on union and intersection of role chains of the same length.

4 Symbolic Number Restrictions

In this section, we introduce the extension ofALCN by symbolic number restrictions and
investigate the complexity of satisfiability and subsumption of this extension. As motivated
by the examples in the introduction, we need a formalism that allows usto introduce ex-
plicitly existentially quantified numerical variables in number restrictions. If we want to
extendALCN such that it is still closed under negation, universal quantification of numerical
variables comes in as the dual of existential quantification. We will show that this propo-
sitionally closed extension is undecidable. However, if we restrict theuse of negation such
that universally quantified numerical variables do not occur, satisfiabilitybecomes decidable.
Unfortunately, subsumption of this restricted logic is still undecidable.

4.1 Syntax and Semantics

In order to introduce symbolic number restrictions, we must extendour vocabulary by vari-
ables that stand for non-negative integers.

Definition 12 LetNV be a set of numerical variables. ThenALCN S is obtained fromALCN
by additionally allowing for� symbolicnumber restrictions(� � R) and(� � R) for a role nameR and a numerical

variable�, and
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� the existential quantification(#�:C) of numerical variables� whereC is anALCN S-
concept.

As in the case of traditional number restrictions, we use additional relations=; <;> as
abbreviations. For example,(= � R) is an abbreviation for(� � R) u (� � R). To give an
intuitive understanding of the meaning of symbolic number restrictions, we first present two
examples: the concept

Human u (8child:#�:(= � vice) u (> � virtue))
describes persons whose children all have less vices than virtues, whereas the concept

Human u (#�:8child:(= � vice) u (> � virtue))
describes persons whose children all have the same number of vices, which is smaller than
the number of their virtues.

SinceALCN S allows for full negation of concepts, universal quantification of numerical
variables can be expressed: in the following, we us("�:C) as shorthand for:(#�::C).
Before giving the semantics ofALCN S-concepts, we define what it means for a numerical
variable to occur free in a concept.

Definition 13 The occurrence of a variable� 2 NV is said to bebound inC iff � occurs in
the scopeC 0 of a quantified subterm(#�:C 0) of C. Otherwise, the occurrence is said to be
free. The set free(C) � NV denotes the set of variables that occur free inC. The conceptC
is closediff free(C) = ;. For a non-negative integern, the conceptC[n� ] is obtained from
the conceptC by substituting all free occurrences of� by n.

Note that, as usual, a variable can occur both free and bound in a concept. For example,�
occurs both free and bound in((= � R) u (#�:(9R:(> � R)))) .

Using this notation, we can define the semantics ofALCN S-concepts.

Definition 14 An ALCN S-interpretation is anALCN -interpretation that, additionally, satis-
fies the equation (#�:C)I = [n2IN(C[n� ])I
for all closedALCN S-concepts(#�:C). If C is not closed and free(C) = f�1; : : : ; �ng forn � 1 then CI := (#�1: : : : #�n:C)I :
This definition reduces the semantics of symbolic number restrictions to the semantics of
traditional ones. Since("�:C) is an abbreviation for:(#�::C), we can give its semantics
directly by ("�:C)I = \n2IN(C[n� ])I :
Similar toALCN , it can be shown thatALCN S still has the tree-model property, but in contrast
toALCN , the logicALCN S does not have the finite-model property. For example, the concept("�:(� � R)) (3)
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is satisfiable, but each instance of (3) has infinitely manyR-successors. On the one hand, the
interpretationI where �I := fx; y0; y1; y2; : : :gRI := f(x; yi) j i 2 INg
is clearly a model of (3). On the other hand, each modelI of (3) satisfies\n2IN(� n R)I 6=;, hence each instance of (3) has infinitely manyR-successors.

To give a better insight into the expressive power of symbolic number restrictions we first
give the undecidability result.

4.2 ALCN S is undecidable

Similar to the undecidability proofs in Section 3.1, undecidability of satisfiability forALCN S
is shown by a reduction of the domino problem to concept satisfiability. ForALCN S , however,
the proof is easier if we take another variant of the domino problem: instead of asking for a
compatible tiling of the first quadrant of the plane, we now ask for a compatible tiling of the
“second eighth”(IN� IN)� := f(a; b) j a; b 2 IN anda � bg of the plane. Since such a tiling
yields compatible tilings of arbitrarily large finite rectangles, it also yields a compatible tiling
of the plane [14].

In contrast to the reduction given in Section 3.1, in this reduction, the individuals repre-
senting points in the grid are not related to each other by roles—there is no equivalent to the
“horizontal” and “vertical” rolesX andY . Instead, the reduction works as follows: First,
we define anALCN S-conceptCIN such that, for each model ofCIN with o 2 CIIN, there is
a natural relationship between tuples(a; b) 2 (IN � IN)� andS-successorsya;b of o. The
point(a; b) is represented by anS-successor ofo havinga L-successors andb R-successors.
Second, for a given tiling systemD, we construct a conceptCD that (1) is subsumed byCIN,
(2) ensures that everyya;b has exactly one domino type, and (3) encodes the compatibility
conditions of the matching pairs.

The formal definition ofCIN is given in Figure 9. Assume thatI is a model ofCIN witho 2 CIIN. Now,C1 makes sure that, for every non-negative integera, o has anS-successor
having exactlya L-successors. The precondition ofC2 makes sure thata is smaller thanb,
and thus the whole implication says that, for each paira � b of non-negative integers,o has
anS-successor having exactlya L-successors andb R-successors (there can be more than one
suchS-successor). Finally,C3 says that, whenever anS-successor ofo hasa L-successors
andb R-successors, we havea � b. Thus, there is an obvious correspondence betweenS-
successors ofo and points in the second eighth of the plane: everyS-successor corresponds to
a point in(IN�IN)� and vice versa. More formally, we will prove the following observations
concerningCIN where, for a role nameR and somex 2 �I , xRI denotes the number ofR-fillers of x in I, that is xRI := #fy 2 �I j (x; y) 2 RIg:
Lemma 15 LetCIN be the concept introduced in Figure 9.

1. CIN is satisfiable.

2. LetI be a model ofCIN with o 2 CIIN and letY = fy 2 �I j (o; y) 2 SIg.
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CIN := ("�:"�:(C1 u C2 u C3)) whereC1 := (9S:(= � L))C2 := ((9S:(= � L) u (� � L))) (9S:(= � L) u (= � R)))C3 := (8S:((= � L) u (= � R))) (� � L))
Given a tiling systemD = (fD1; : : : ; Dmg; H; V ) and the subconceptsC1; C2; C3 ofCIN as defined above, letCD := CIN u (8S:( t1�i�m(Di u ( u1�j�mi6=j :Dj)))) u("�:"�: u1�i�m(9S :((= � L) u (= � R) uDi)))((8S:((6= � L) t (6= � R) tDi)) u (1)("
:(<(�; �) u=(�+ 1; 
)))(8S:(((= 
 L) u (= � R))) t(Di;Dj)2HDj))) u (2)("
:(=(� + 1; 
))(8S:(((= � L) u (= 
 R))) t(Di;Dj)2V Dj)))))) (3)

Figure 9: Definition of the conceptsCIN andCD used for the reduction of the domino problem
to theALCN S satisfiability problem

(i) For each(a; b) 2 (IN � IN)� there existsya;b 2 Y with (ya;b)LI = a and(ya;b)RI = b.
(ii) If y 2 Y andyLI = a andyRI = b, thena � b.

3. If o 2 CINI , then there is an injective mapping�: (IN � IN)� ! Y from the second
eighth of the plane to the set ofS-successors ofo.

PROOF. 1. DefineI = (�I ; �I) ando as follows:�I = fog ] fya;b j (a; b) 2 (IN � IN)�g ] f`a; rb j a; b 2 INg;SI = f(o; ya;b) j (a; b) 2 (IN � IN)�g;LI = f(ya;b; `a0) j (a; b) 2 (IN � IN)� anda0 < ag;RI = f(ya;b; rb0 ) j (a; b) 2 (IN� IN)� andb0 < bg:I is a well-definedALCN S-interpretation and it is clear that, for all(a; b) 2 (IN � IN)�, we
have(ya;b)LI = a and(ya;b)RI = b. It remains to be shown thato 2 CINI :

We know thato 2 CINI iff for all a; b 2 IN: o 2 (C1[ a� ][ b� ])I , o 2 (C2[ a� ][ b� ])I , ando 2 (C3[ a� ][ b� ])I . Thus, leta; b 2 IN.� o 2 (C1[ a� ][ b� ])I since(o; ya;b0) 2 SI for someb0 � a.
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� o 2 (C2[ a� ][ b� ])I : If o 2 (9S:(= a L) u (� b L))I , thena � b and(o; ya;b) 2 SI ,

which implieso 2 (9S:(= a L) u (= b R))I .� o 2 (C3[ a� ][ b� ])I : Let (o; y) 2 SI . If y 2 ((= a L) u (= b R))I , theny = ya;b witha � b, which impliesy 2 (� b L)I .

2(i). The subconceptC1 ensures that, for eacha 2 IN, there exists someya 2 Y with(ya)LI = a. If a; b 2 IN satisfya � b, thenya obviously belongs to((= a L) u (� b L))I .
Thus, the subconceptC2 ensures that there also exists anS-successorya;b of o that hasaL-successors andb R-successors.

2(ii). The subconceptC3 ensures that, for ally 2 Y , yLI = a andyRI = b impliesyLI � b, and thusa � b.
3. This is a direct consequence of 2(i): we define�(a; b) := y wherey 2 Y is such thatyLI = a andyRI = b.
Please note that, fora; b 2 IN, there might be more than oney 2 Y with yLI = a andyRI = b.
The definition of the conceptCD associated with a tiling systemD is also given in Fig-

ure 9, where the following abbreviations are employed:<(�; �) := (9S:((= � L) u (= � R) u :(= � L)));=(�+ 1; �) := <(�; �) u (8S:((� � L) t (� � L))):
In the context of the conceptCIN, these abbreviations really express the relation< and the
successor relation on natural numbers: foro 2 CINI , we haveo 2 (<(�; �)[ a� ][ b� ])I iff a < b
as an immediate consequence of Lemma 15.2. Furthermore,o 2 (=(� + 1; �)[ a� ][ b� ])I iffa+ 1 = b sinceo has someS-successor havinga L-successors for eacha 2 IN.

The first line in the definition ofCD makes sure thatCIN subsumesCD, and that everyS-successor of an instanceo of CD has exactly one domino type. In the remainder of the def-
inition, we consider anS-successorya;b with domino typeDi anda L- andb R-successors.
Now, (1) ensures that everyS-successor with the same number ofL- andR-successors asya;b
has the same domino typeDi, (2) takes care of the horizontal matching condition, and (3)
of the vertical matching condition. Given this intuition, it is easy toshow that the following
lemma holds.

Lemma 16 CD is satisfiable iff there exists a compatible tiling of the second eighth of the
plane usingD.

The proof of this lemma can be found in the appendix.
Now, undecidability of the domino problem yields undecidability of the satisfiability

problem forALCN S-concepts. SinceC is unsatisfiable iffC v (A u :A), this implies
undecidability of subsumption.

Theorem 17 Satisfiability and subsumption ofALCN S-concepts are undecidable.

4.3 A decidable restriction ofALCN S
We have seen in the last section that, by using universally quantified numerical variables inALCN S , we can enforce infinite models. The undecidability proof also makes strong use of
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universal quantification. In order to obtain a decidable extension ofALCN with symbolic
number restrictions, which also has the finite-model property, we introduceALUEN S , a frag-
ment ofALCN S that is obtained by allowing only for existential quantification of numerical
variables. This is achieved by restricting the use of negation.

Definition 18 ALUEN S-concepts are thoseALCN S-concepts where negation occurs only in
front of concept names or number restrictions.

In the following, we will refer to concept names and number restrictions asatomicconcepts.
Since inALCN S universal quantification of numerical variables came in only as an abbrevi-
ation of negated existential quantification, all numerical variables inALUEN S are therefore
existentially quantified. Nevertheless, the logic is still an extension ofALCN sinceALCN -
concepts in NNF satisfy the above restriction. Furthermore, all examplesgiven in Section 1
to motivate the introduction of symbolic number restrictions areALUEN S-concepts.

In this section, it will be shown that satisfiability ofALUEN S-concepts is decidable. In
order to simplify our investigation of the satisfiability problem for ALUEN S-concepts, we
will restrict our attention to concepts where each numerical variable occurs either bound
or free, and where each variable is bound at most once by#. It is easy to see that eachALUEN S-concept can be transformed into an equivalent concept of this form by existentially
quantifying all free variables and by appropriately renaming bound variables.

Decidability of satisfiability ofALUEN S-concepts will be shown by presenting a tableau-
based algorithm and showing that, for eachALUEN S-conceptC, this algorithm is sound,
complete, and terminating. Similarly to the algorithm presented in Section 3.2, the algorithm
works on constraints, but forALUEN S-concepts we need additional variables�x: Suppose
we have the constrainty :(8R:(#�:C)). Then, for eachR-successorx of y, we need a variable�x that stand for� “in the context ofx”. Since there are further subtle differences between
the algorithm in Section 3.2 and the one forALUEN S , we provide a complete description of
the latter.

Definition 19 We assume that we have a countably infinite set� = fx; y; z; : : :g of individ-
ual variables, and for each pair(�; x) 2 NV � � a new numerical variable�x which may
occur free in concepts. Aconstraintis either of the formxRy, whereR is a role name inNR andx; y 2 � , orx :D for someALUEN S-conceptD and somex 2 � .

A constraint systemis a set of constraints.
An interpretationI is a model of a constraint systemS iff there is a mapping�: � ! �I

and a mapping�:NV � � ! IN such thatI; �; � satisfy each constraint inS, i.e., we have(�(x); �(y)) 2 RI for all xRy 2 S,�(x) 2 �(D)I for all x :D 2 S,

where�(D) is obtained fromD by replacing each variable�y by its�-image�(�; y).
A constraint systemS is said to contain aclashiff for some concept nameA and some

variablex 2 � we havefx :A; x ::Ag � S. A constraint systemS is said to benumerically
consistentiff the conjunction of all numerical constraints inS, i.e.,^x :(reln R) 2 Sx 2 �; R 2 NR; n 2 IN(xR reln) ^ ^x :(rel�y R) 2 Sx; y 2 �; R 2 NR; � 2 NV(xR rel�y);
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is satisfiable in(IN; <), wherexR; �y are interpreted as variables for non-negative integers
and rel stands for relations inf�;�; <;>;=g.

A constraint systemS is calledcompleteiff none of the completion rules of Figure 10 can
be applied toS.

Like the algorithm presented in the previous section, the algorithmfor ALUEN S works
on a tree where each node is labelled with a constraint system. It starts with a tree consisting
of a root labelled withS = fx0 :C0g for some closed conceptC0. A rule can only be applied
to a leaf labelled with a clash-free constraint system. Applying a ruleS ! Si, for 1 � i � n,
to such a leaf leads to the creation ofn new successors of this node, each labelled with the
constraint systemsSi. The algorithm terminates if none of the rules can be applied to any of
the leaves. The algorithm answers with “C0 is satisfiable” iff one of the leaves obtained this
way is a clash-free, numerically consistent, and complete constraint system.

Before showing that the completion algorithm described in Figure 10 yields a decision
procedure for satisfiability ofALUEN S-concepts, let us make some comments on the rules.
First, note that each of the completion rules adds constraints when appliedto a constraint
system, none of the rules removes constraints, and individual variablesare never identified
or substituted. With respect to this last property, the algorithm for ALUEN S differs from the
tableau-based algorithms forALCN described in [9] and forALCN (�) presented in the previ-
ous section. Unlike Rule 4 in Figure 10, these algorithms introduce, for each constraint of the
formx : 9R:C, a newR-successor ofx. If x also has a constraint of the formx :(� n R), and
more thannR-successors have been introduced, then some of these individuals are identified.
Rule 4 in Figure 10 avoids identification by “guessing” the number ofallowedR-successors
of x before introducing these successors. In fact, since we do not have explicit numbers,
and since restrictions on numerical variables�y in constraintsx :(� �y R) can derive from
different parts of the constraint system, an identification on demand is not possible here. The
second new feature is Rule 3. Given a constraintx :(#�:D), we substitute a new numerical
variable�x for � to make sure that the semantics of the existential quantifier#� is obeyed,
i.e., that the valuation for� depends onx. If we would just use�, the difference between#�:8R:D and8R:(#�:D) would not be captured.

Again, correctness of this algorithm is an easy consequence of the following lemma.

Lemma 20 LetC0 be a closedALUEN S-concept, and letS be a constraint system obtained
by applying the completion rules tofx0 :C0g. Then

1. The completion algorithm terminates when applied tofx0 :C0g.
2. For each completion ruleR that can be applied toS, and for each interpretationI we

have:I is a model ofS iff I is a model of one of the systemsSi obtained by applyingR.

3. If S is clash-free, numerically consistent, and complete, thenS has a model.

4. If S contains either a clash or is not numerically consistent, thenS does not have a
model.

PROOF. 1. The termination proof is similar to the one for the tableau-based algorithm forALCN [9].
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1. Conjunction: If x :(C1 u C2) 2 S andx :C1 62 S or x :C2 62 S, thenS !u S [ fx :C1; x :C2g
2. Disjunction: If x :(C1 t C2) 2 S andx :C1 62 S andx :C2 62 S, thenS !t S1 = S [ fx :C1gS !t S2 = S [ fx :C2g
3. Numerical Existential Quantification: If x :(#�:D) 2 S andx :D[�x� ] 62 S, thenS !# S [ fx :D[�x� ]g
4. New Objects:
If xRy 62 S for all y 2 � , andm > 0, k � 0 aremaximalsuch thatfx :(9R:E1); : : : ; x :(9R:Em); x :(8R:D1); : : : ; x :(8R:Dk)g � S
and Rules 1–3 cannot be applied toS, then for eachn with 1 � n � m and for eachn-PartitionP = ]1�i�nPi of f1; : : : ;mg, letSP be defined as follows:S !R SP = S [ fxRyi; j 1 � i � ng [ fx :(� n R)g [fyi :Ej j 1 � i � n; j 2 Pig [ fyi :Dj j 1 � i � n; 1 � j � kg
whereyi 2 � are new variables (i.e., variables not occurring inS).

5. Prophylactic new objects:
If xRy 62 S for all y 2 � andx :(� 0 R) 62 S andk maximal withx :(8R:Di) 2 S for1 � i � k, x :(relN R) 2 S for N 2 IN or N = �y for somey 2 �; � 2 NV and
Rules 1–4 cannot be applied toS, thenS1; S2 are defined as follows:S !n S1 = S [ fx :(� 0 R)gS !n S2 = S [ fxRyg [ fy :Di j 1 � i � kg [ fx :(> 0 R)g
wherey 2 � is a new variables (i.e., a variable not occurring inS).

Figure 10: Thecompletion algorithmforALUEN S-concepts

2. We consider only Rules 3, 4 and 5 since Rules 1 and 2 are obvious. IfS0 is generated
by the application of a completion rule toS, thenS � S0. Hence every model ofS0 is also a
model ofS. Thus we must consider only the other direction.

Numerical Existential Quantification:Application of this rule adds the constraintx :C[�x� ] to S, wherex : #�:C is contained inS. If I; �; � satisfyS, then we know that
there exists ann 2 IN such that�(x) 2 �(C[n� ])I . Since the variable�x does not occur inS (by our assumption that every variable is bound only once in the input concept), we can
assume without loss of generality that�(�x) = n, and thusI; �; � satisfyx :C[�x� ].

New Objects:Let x;R; k;m be as specified in the precondition of Rule 4 and letI sat-
isfy S. Sincefx :(9R:E1); : : : ; x :(9R:Em); x :(8R:D1); : : : ; x :(8R:Dk)g � S, there exist
somè � m and` distinct elementsd1; : : : ; d` 2 �I such that� (�(x); di) 2 RI for all i with 1 � i � `,
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� for all 1 � j � m there is somej0 2 f1; : : : ; `g with dj0 2 EjI , and� for all 1 � j � k and all1 � i � ` we havedi 2 DjI .

The second item above implies that there exists at least one functionf : f1; : : : ;mg !f1; : : : ; `g such thatdf(j) 2 EjI for all 1 � j � `. Let P be the`-partition off1; : : : ;mg
induced byf , i.e.,Pj0 := fj j f(j) = j0g. In the corresponding constraint systemSP , `
new variablesyi and the corresponding new constraints are introduced. Let�(yi) = di for1 � i � `. Then, by definition ofP and the three items from above,� (�(x); �(yi)) 2 RI for all 1 � i � `,� for each of the new constraintsyi :Ej in SP we have�(yi) 2 EjI sincej 2 Pi impliesf(j) = i, and thus�(yi) = df(j) 2 EjI ,� for each of the new constraintsyi :Dj in SP we have�(yi) = di 2 DjI , and� xRI � ` since�(x) has at least theR-successorsd1; : : : ; d`.
HenceI satisfiesSP .

Prophylactic New Objects:Let x;R; k be as specified in the precondition of Rule 5 and
assume thatI satisfiesS. Two cases are to be distinguished: IfxRI = 0, then clearlyI
satisfiesS1. Now letxRI > 0 with (�(x); d) 2 RI for somed 2 �I . If we define�(y) = d,
thenI satisfiesS2 = S [ fxRyg [ fx :(> 0 R)g [ fy :Di j 1 � i � kg.

3. As usual, we construct the canonical interpretationIS induced byS: �IS consists
of the individual variables occurring inS; (x; y) 2 RIS iff xRy 2 S; andx 2 AIS iffx :A 2 S. This yields a tree-like interpretation. However, this Interpretation need not be a
model ofS since some number restrictions may be violated for one of the following reasons.
Either (a) an individual does not have any role successors, but their existence is implied
by number restrictions, or (b) it has some, but not sufficiently many role successors. Note
that exact numerical restrictions on the number of role successors are givenby a solution in(IN; <) of the numerical constraints (which are satisfiable sinceS is numerically consistent).
In the first case,S does not contain any constraints on such role successors since Rule 5 is
not applicable. Thus, we can simply generate an appropriate number of them. In the second
case, the idea is to add sufficiently manycopiesof some already existing role successory.
More precisely, we need to copy the whole subtree that hasy as its root. Proceeding like this
from the leaves to the root, we end up with a model ofS. This can be shown by induction on
the structure of concepts in constraints.

4. This is obvious.

Theorem 21 Satisfiability ofALUEN S-concepts is decidable.

PROOF. Lemma 20 implies that the completion algorithm always terminates. In addition, the
second statement of the lemma shows that the original systemfx0 :C0g has a model iff one
of the leaves of the tree obtained by the algorithm has a model. Thus, ifnone of the leaves
is clash-free and numerically consistent, then the fourth statement of thelemma shows thatfx0 :C0g does not have a model. Otherwise, one of the leaves is a clash-free, numerically
consistent, and complete, and thus the third statement of the lemma showsthatfx0 :C0g has
a model. Obviously,fx0 :C0g has a model iffC0 is satisfiable. It remains to be shown that it
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is decidable whether a constraint system contains a clash and whether a constraint system is
numerically consistent. Detecting clashes is trivial.

Numerical consistency can be tested using a modified cycle detection algorithm running
in time polynomial in the size of the formula. To be more precise, a given formula is translated
into a graph whose nodes correspond to the numerical variables and non-negative integers oc-
curring in the formula. The edges are induced by the numerical constraintsof the formula.
For example,� � � yields an edge from the node corresponding to� to the node correspond-
ing to �, and this edge is labelled with�. Obviously, if there is a cyclic path in the graph
that is labelled with at least one strict inequality, then the formula is unsatisfiable. Because
of the presence of concrete numbers, testing for cycles is not sufficient, though. Given nodeskn; km corresponding to the numbersn;m, one must also check that a path fromkn to km
does not contain more thanm� n strict inequalities.

Unfortunately, sinceALUEN S is not propositionally closed, subsumption cannot be re-
duced to satisfiability. A closer look at the specific form of the conceptCD introduced in
Figure 9 reveals that it can be written asCD = D1u:D2 for twoALUEN S-conceptsD1; D2.
In fact,D1 is the first conjunct ofCD andD2 is the negation of the remainder ofCD. Note
thatD1 does not contain numerical variables. Furthermore, all numerical variables occurring
in the remainder ofCD are universally quantified, which shows thatD2 contains only exis-
tential quantification of numerical variables. SinceD1 u :D2 is unsatisfiable iffD1 v D2,
this implies:

Theorem 22 Subsumption ofALUEN S-concepts is undecidable.

5 Related work

Some Modal Logics and Description Logics can be translated into first-order logic such that
only two different variable names occur in the formulae obtained by this translation. Thus,
decidability of subsumption and other inference problems for these logics follows from the
known decidability result forL2, i.e., first-order logic with two variables and without function
symbols [18, 10]. Recently, this decidability result has been extended toC2, i.e., first-order
logic with 2 variables and counting quantifiers [11]. Independently, it has been proved in
[19] that satisfiability ofC2 formulae can be decided in nondeterministic doubly exponential
time. As an immediate consequence, satisfiability and subsumption forALCN (t;u;:;�1 ),
the extension ofALC by number restrictions with inversion and Boolean operators on roles, is
still decidable. It should be noted, however, that expressing composition of roles in predicate
logic requires more than two variables.

Using sophisticated techniques for translating Description Logic concepts into formulae
of Propositional Dynamic Logics, it has been shown in [5] that deciding satisfiability and
subsumption for a very expressive extension ofALCreg is ExpTime-complete. In particular,
this extension allows forqualifyingnumber restrictions on atomic and inverse roles, and thus
it is an extension of the logicALCregN (�1).

To the best of our knowledge, there are no (un)decidability or complexity results for logics
that are similar to our DL with symbolic number restrictions.
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6 Conclusion

The expressive power of traditional number restrictions is severely restricted for at least two
reasons: only fixed non-negative integers may occur in number restrictions, and it is not
possible to restrict the number of successors of a complex role. In this paper, we have tried
to overcome these two restrictions by introducing two separate approachesfor extending the
expressiveness of number restrictions: symbolic number restrictions and number restrictions
on complex roles. Although our goal was to obtain decidable DescriptionLogics, it turned
out that both types of extensions may easily cause undecidability.

For number restrictions on complex roles, we have considered extensions ofALCN andALC+N , and investigated decidability of the subsumption and the satisfiability problem. We
could provide an almost complete classification of extensions ofALCN with number restric-
tions on complex roles, and a rather strong undecidability result for extensions ofALC+N .
Another inference problem of the decidable extensionALCN (�), namely checking the con-
sistency of a concrete world description (“ABox-consistency”), was investigated in [17]. It
was shown that consistency of ABoxes of a restricted form is decidable—whereas decidabil-
ity of consistency of generalALCN (�)-ABoxes is still an open problem.

To overcome the need to fix a non-negative integer in number restrictions, we introduced
numerical variables to be used in number restrictions, where these variablescan be exis-
tentially quantified. The propositionally closed extension (namely, the one that allows for
full negation, and thus implicitly introduces universal quantification of numerical variables)
turned out to be undecidable, whereas a restriction of this “full” extension to atomic nega-
tion turned out to have a decidable satisfiability problem. Unfortunately, the subsumption
problem for this logic is still undecidable. The undecidability proof is also interesting from
a theoretical point of view because symbolic number restrictions have the expressive power
to enforce infinitely branching models, whereas the undecidability of other logics is usually
due to the fact that infinite paths can be enforced.

Summing up, this paper almost completely answers the question how far the expressive
power of number restrictions can be increased without losing decidabilityof the important
inference problems. The decidable extensions, namely composition of roles in number re-
strictions and the decidable form of symbolic number restrictions, provide an expressive
power that is useful in many applications, not only in the process engineering application
that motivated this research.
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Appendix

Proof of Part 4 of Lemma 8 We must show that the tableau algorithm that tests satisfia-
bility of ALCN (�)-concepts always terminates. In the following, we consider only constraint
systemsS that are obtained by applying the completion rules tofx0 :C0g. For a conceptC,
we define its and/or-sizejCju;t as the number of occurrences of conjunction and disjunction
constructors inC. The maximal role depthdepth(C) of C is defined as follows:

depth(A) := depth(:A) := 0 for A 2 NC ;
depth(C1 u C2) := maxfdepth(C1); depth(C2)g;
depth(C1 t C2) := maxfdepth(C1); depth(C2)g;
depth(8R1:C1) := depth(9R1:C1) := 1 + depth(C1);
depth(� n R1�: : :�Rm) := m;
depth(� n R1�: : :�Rm) := m:

The following observations were made in Lemma 10:

1. Every variablex 6= x0 that occurs inS is anR1� : : :�Rm-successor ofx0 for some
role chain of lengthm � 1. In addition, every other role chain that connectsx0 with x
has the same length.

2. If x can be reached inS by a role chain of lengthm fromx0, then for each constraintx :C in S, the maximal role depth ofC is bounded by the maximal role depth ofC0
minusm. Consequently,m is bounded by the maximal role depth ofC0.
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Let m0 be the maximal role depth ofC0. Because of the first fact in Lemma 10, every
individualx in a constraint systemS (reached fromfx0 :C0g by applying completion rules)
has a unique role levellevel(x), which is its distance from the root nodex0, i.e., the unique
length of the role chains that connectx0 with x. Because of the second fact, the level of each
individual is an integer between0 andm0.

In the following, we define a mapping� of constraint systemsS to 5(m0 + 1)-tuples of
non-negative integers such thatS ! S0 implies�(S) � �(S0), where� denotes the lexico-
graphic ordering on5(m0+1)-tuples. Since this lexicographic ordering is well-founded, this
implies termination of our algorithm. In fact, if the algorithm did not terminate, then there
would exist an infinite sequenceS0 ! S1 ! : : :, and this would yield an infinite descending�-chain of tuples.

Thus, letS be a constraint system that can be reached fromfx0 :C0g by applying com-
pletion rules. We define �(S) := (�0; �1; : : : ; �m0�1; �m0);
where�` := (k`;1; k`;2; k`;3; k`;4; k`;5) and the componentsk`;i are obtained as follows:� k`;1 is the number of individual variablesx in S with level(x) = `.� k`;2 is the sum of the and/or-sizesjCju;t of all constraintsx :C 2 S such that

level(x) = ` and the conjunction or disjunction rule is applicable tox :C in S.� For a constraintx :(� n R1�: : :�Rm), let k be the maximal cardinality of all setsM
of R1�: : :�Rm-successors ofx for whichyi 6= yj 2 S for all pairs of distinct elementsyi; yj of M . We associate withx :(� n R1�: : :�Rm) the numberr := n� k, if n � k,
andr := 0 otherwise. The componentk`;3 sums up all the numbersr associated with
constraints of the formx :(� n R1�: : :�Rm) for variablesx with level(x) = `.� k`;4 is the number of all constraintsx :(9R:C) 2 S such thatlevel(x) = ` and the
existential restriction rule is applicable tox :(9R:C) in S.� k`;5 is the number of all pairs of constraintsx :(8R:C),xRy 2 S such thatlevel(x) = `
and the value restriction rule is applicable tox :(8R:C), xRy in S.

In the following, we show for each of the rules of Figure 7 thatS ! S0 implies�(S) � �(S0).
1. Conjunction: Assume that the rule is applied to the constraintx :C1 u C2, and letS0 be

the system obtained fromS by its application. Let̀ := level(x).
First, we compare�` and�0̀ , the tuples respectively associated with level` in S andS0.
Obviously, thefirst componentsof �` and�0̀ agree since the number of individuals and
their levels are not changed. Thesecond componentof �0̀ is smallerthan the second
component of�`: jC1 u C2ju;t is removed from the sum, and replaced by a number
that is not larger thanjC1ju;t + jC2ju;t (depending on whether the top constructor ofC1 andC2 is disjunction or conjunction, or some other constructor). Since tuples are
compared with the lexicographic ordering, a decrease in this component makes sure
that it is irrelevant what happens in later components.
For the same reason, we need not consider tuples�m for m > `. Thus, assume thatm < `. In such a tuple, the first three components are not changed by application of
the rule, whereas the remaining two components remain unchanged or decrease. Such
a decrease can happen iflevel(y) = m andS contains constraintsyRx, y :(8R:Ci) (ory :(9R:Ci)).
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2. Disjunction: This rule can be treated like the conjunction rule.

3. Value restriction: Assume that the rule is applied to the constraintsx :(8R:C); xRy, and
let S0 be the system obtained fromS by its application. Let̀ := level(x). Obviously,
this implies thatlevel(y) = level(x) + 1 > `.
On level `, the first three components of�` remain unchanged; the fourth remains
the same, or decreases (ifS contains constraintszSy andz :(9S:C) for an individ-
ual z with level(z) = `); and the fifth decreases by at least one since the constraintsx :(8R:C); xRy are no longer counted. It may decrease by more than one ifS contains
constraintszSy andz :(8S:C) for an individualz with level(z) = `.
Because of this decrease at level`, the tuples at larger levels (in particular, the one for
level level(x) + 1, where there might be an increase), need not be considered.
The tuples of levels smaller than` are not changed by application of the rule. In partic-
ular, the third component of such a tuple does not change since no role constraints or
inequality constraints are added or removed.

4. Existential restriction: Assume that the rule is applied to the constraintx :(9R:C), and
let S0 = S [ fxRy; y :Cg be the system obtained fromS by its application. Let` := level(x). Obviously, this implies thatlevel(y) = level(x) + 1 > `.
The first two components of�` obviously remain unchanged. The third component
may decrease (ify is the first successor for an at-least restriction) or it stays the same.
Since the fourth component decreases, the possible increase of the fifth component is
irrelevant.
For the same reason, the increase of the first component of�`+1 is irrelevant.
Tuples of levels smaller thaǹare not increased by application of the rule. All com-
ponents of such a tuple remain unchanged, with the possible exception of the third
component, which may decrease.

5. Number restriction: Assume that the rule is applied to the constraintx :(� n R1� : : :�Rm) 2 S, letS0 be the system obtained by rule application, and let` = level(x).
Similar to Rule 4, the first two components of�` remain the same. In addition, there is
a decrease in the third component of�`, since the new individualz can now be added
to the maximal sets of explicitly distinctR1�: : :�Rm-successors ofx. Note that these
sets were previously smaller thann (because even the set of allR1�: : :�Rm-successors
of x was smaller thann).
For this reason, the possible increase in the fifth component of�` and in the first com-
ponents of tuples of levels larger than` are irrelevant.Tuples of levels smaller than`
are either unchanged by application of the rule, or their third component decreases.

6. Number restriction: Assume that the rule is applied to the constraintx :(� n R1 �: : :�Rm) 2 S, let S0 = Sy1;y2 be the system obtained by rule application, and let` = level(x).
On level` +m, the first component of the tuple�`+m decreases. Thus, possible in-
creases in the other components of this tuple are irrelevant.
Tuples associated with smaller levels remain unchanged or decrease. In fact, sincey1
in S0 has all its old constraints and the constraints ofy2 in S, some value restrictions or
existential restrictions for individuals of the level immediately above level`+m may
become satisfied (in the sense that the corresponding rule no longer applies). Since
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no constraints are removed, previously satisfied value restrictions orexistential restric-
tions remain satisfied. The third component of tuples of smaller level cannot increase
since the individualsy1; y2 that have been identified were not related by inequality con-
straints.

Proof of Lemma 16 We must show thatCD is satisfiable iff there exists a compatible tiling
of the second eighth of the plane usingD. Note that the definition ofCD obviously implies
thatCD is subsumed byCIN, and thus Lemma 15 applies to instances ofCD.

“)” Given a modelI of CD with o 2 CDI , we define the mappingt: (IN � IN)� ! D as
follows: t(a; b) = Di iff o 2 (9S:((= a L) u (= b R) uDi))I :
First, we show thatt is well-defined. Thus, leta; b 2 IN. Sinceo 2 (8S:( t1�i�m(Di u ( u1�j�mi6=j :Dj))))I ;
eachS-successor ofo is an instance of exactly oneDi 2 D. For each(a; b) 2 (IN �IN)� and eachDi 2 Do 2 ((9S:((= a L) u (= b R) uDi))) (8S:((6= a L) t (6= b R) tDi)))I ;
which implies that allS-successors ofo having the same number ofL-successors and
the same number ofR-successors are instances of the sameDi 2 D. Thust is well-
defined, and it remains to be shown thatt is indeed a compatible tiling.

Let a; b 2 IN, a < b and t(a; b) = Di. From Lemma 15.2.(i) it follows thato 2(9S:((= a L) u (= b R)))I and we have already seen that eachS-successor ofo is an
instance of exactly oneDi 2 D; henceo 2 (9S:((= a L)u (= b R)uDi))I for someDi. Now o 2 CDI implies thato 2 ("
:((<(a; b) u=(a+ 1; 
))) (9S:((= 
 L) u (= � R) uDj))))I
for someDj with (Di; Dj) 2 H . Henceo 2 (9S:((= a + 1 L) u (= b R) uDj))I ,
which implies thatt(a+ 1; b) = Dj and(Di; Dj) 2 H .

Now let a; b 2 IN with a � b andt(a; b) = Di. Then againo 2 (9S:((= a L) u (=b R) uDi))I , ando 2 CDI implies thato 2 ("
:((= (b+ 1; 
))) (9S:((= a L) u (= 
 R) uDj))))I
for someDj with (Di; Dj) 2 V . Henceo 2 (9S:((= a L) u (= b + 1 R) u Dj))I ,
which implies thatt(a; b + 1) = Dj and(Di; Dj) 2 V . To sum up, we have shown
thatt is a tiling.

“(” Given a tilingt, we define a modelI = (�I ; �I) of CD as follows:�I := fog ] fya;b j a; b 2 IN anda � bg ] f`a; rb j a; b 2 INg;SI := f(o; ya;b) j a; b 2 IN anda � bg;LI := f(ya;b; `a0) j a; a0; b 2 IN anda0 < a � bg;RI := f(ya;b; rb0) j a; b; b0 2 IN anda � b andb0 < bg;DIi := fya;b j t(a; b) = Dig
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By definition ofDIi , eachS-successor ofo is an instance of exactly oneDi 2 D, and
hence o 2 (8S:( t1�i�m(Di u ( u1�j�mi6=j :Dj))))I :
The interpretationI defined above just extends the one constructed in the proof of
Lemma 15.1 by the interpretation of the atomic conceptsDi. Thus, Lemma 15.1 yieldso 2 ("�:"�:(C1 u C2 u C3))I .

Now leta; b 2 IN. Theno 2 ((9S:((= � L) u (= � R) uDi))[ a� ][ b� ])I iff a � b andt(a; b) = Di.
For all a; b such thato 2 ((9S:((= � L) u (= � R) u Di))[ a� ][ b� ])I , we must show
thato also belongs to the concepts on the right-hand side of the implication(see lines
(1), (2), (3) in Figure 4).� o 2 (8S:((6= � L)t (6= � R)tDi)[ a� ][ b� ])I sinceo has exactly oneS-successorya;b 2 �I havinga L-successors andb R-successors, and for thisS-successorya;b we knowya;b 2 DIi by assumption.� If o 2 ((<(�; �) u =(� + 1; 
))[ a� ][ b� ][ g
 ])I for someg 2 IN, thena < b anda+1 = g. The definition ofI and the fact thatt is a compatible tiling entail thato 2 (9S:((= 
 L) u (= � R) uDj)[ b� ][ g
 ])I for someDj with (Di; Dj) 2 H ,

and henceo 2 ((< (�; �) u = (� + 1; 
)) ) (9S:((= 
 L) u (= � R) utj2H(Di)Dj))[ a� ][ b� ][ g
 ])I .� If o 2 (=(� + 1; 
))[ b� ][ g
 ])I for someg 2 IN, thenb + 1 = g. Again, the
definition ofI and the fact thatt is a compatible tiling entail thato 2 (9S:((=� L) u (= 
 R) u Dj)[ a� ][ g
 ])I for someDj with (Di; Dj) 2 V , and henceo 2 ((=(� + 1; 
))) (9S:((= � L) u (= 
 R) u tj2V (Di)Dj))[ a� ][ b� ][ g
 ])I .

To sum up, we have shown thato 2 CDI , and thusCD is satisfiable.
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