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Abstract. Description Logics are knowledge representation formalisms
which have been used in a wide range of application domains. Owing to
their appealing expressiveness, we consider in this paper extensions of the
well-known concept language ALC allowing for number restrictions on
complex role expressions. These have been first introduced by Baader and
Sattler as ALCN (M) languages, with the adoption of role constructors
M ⊆ {◦,− ,t,u}.
In particular, as far as languages equipped with role composition are
concerned, they showed in 1999 that, although ALCN (◦) is decidable,
the addition of other operators may easily lead to undecidability: in fact,
ALCN (◦,u) and ALCN (◦,− ,t) were proved undecidable.
In this work, we further investigate the computational properties of the
ALCN family, aiming at narrowing the decidability gap left open by
Baader and Sattler’s results. In particular, we will show that ALCN (◦)
extended with inverse roles both in number and in value restrictions
becomes undecidable, whereas it can be safely extended with qualified
number restrictions without losing decidability of reasoning.

1 Introduction

Description Logics are a family of first-order formalisms that have been found
useful for domain knowledge representation in several application fields, from
database design —including conceptual, object-oriented, temporal, multimedia
and semistructured data modeling— to software engineering and ontology man-
agement (e.g. [1, 7, 8, 11, 12, 15, 16, 22] and [2, Part 3]). Different Description Log-
ics provide for constructors which can be used to combine atomic concepts (unary
predicates) and roles (binary predicates) to build complex concepts and roles.
The available constructors characterize the description language as to expres-
siveness and computational behaviour (decidability and complexity) of the basic
reasoning tasks like concept satisfiability and subsumption.

Well-known Description Logics areALC [25], which allows for Boolean propo-
sitional constructors on concepts and (universal and existential) value restric-
tions on atomic roles, and its extensionALCN [14, 21] introducing (non-qualified)
number restrictions on atomic roles. Basic inference problems for both these



C,D→ A | AI ⊆ ∆I atomic concept
> | >I = ∆I

⊥ | ⊥I = ∅
¬C | (¬C)I = ∆I \ CI

C uD | (C uD)I = CI ∩DI

C tD | (C tD)I = CI ∪DI

∀R.C | (∀R.C)I = {i ∈ ∆I | ∀j. RI(i, j)⇒ CI(j)}
∃R.C | (∃R.C)I = {i ∈ ∆I | ∃j. RI(i, j) ∧ CI(j)}
∃≥nR | (∃≥nR)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j)} ≥ n}
∃≤nR | (∃≤nR)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j)} ≤ n}

∗ ∃≥nR.C | (∃≥nR.C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≥ n}
∗ ∃≤nR.C | (∃≤nR.C)I = {i ∈ ∆I | ]{j ∈ ∆I | RI(i, j) ∧ CI(j)} ≤ n}

R,S→ P | P I ⊆ ∆I ×∆I atomic role
∗ R− | (R−)I = {(i, j) ∈ ∆I ×∆I | RI(j, i)}
∗ R ◦ S | (R ◦ S)I = {(i, j) ∈ ∆I ×∆I | ∃k. RI(i, k) ∧ SI(k, j)}

Fig. 1. Syntax and model-theoretic semantics of ALCN and its extensions (marked
with ∗) considered in this paper.

Description Logics are PSpace-complete [14, 21]. However, in order to better
fulfil requirements of real-world application domains, more expressive exten-
sions of the basic concept languages have been investigated. One direction along
which useful extensions have been sought is the introduction of complex roles
under number restrictions. In fact, considering role composition (◦), inversion
(−), union (t) and intersection (u), expressive extensions of ALCN can be de-
fined as ALCN (M) with the adoption of role constructors M ⊆ {◦,− ,t,u}
[3]. By allowing (different kinds of) complex roles also in value restrictions,
other families of logics can also be defined: for example ALC+N (or ALCregN )
allows the transitive closure of atomic roles (or regular roles) under value re-
strictions [3, 10]. Also logics ALCN̄ (M), allowing for the same types of role
constructors both in value and in number restrictions, can be considered [18].
Further extensions involve the introduction of qualified number restrictions [20]
on complex roles, giving rise to ALCQ(M) logics. Since qualified number re-
strictions also allow us to express value restrictions, we have the inclusions
ALCN (M) ⊆ ALCN̄ (M) ⊆ ALCQ(M) as far as expressiveness (and complex-
ity) are concerned. Therefore, for instance, undecidability of ALCN (M) directly
extends to ALCN̄ (M) and ALCQ(M), whereas decidability of ALCQ(M) im-
plies decidability of ALCN (M) and ALCN̄ (M).

Our present investigation is aimed at improving the (un)decidability results
presented by Baader and Sattler in [3] for ALCN extensions including com-
position of roles (◦). In particular, they proved that concept satisfiability in
ALCN (◦,u) and ALCN (◦,− ,t) is undecidable via reduction of a domino prob-
lem, and provided a sound and complete Tableau algorithm for deciding satisfi-
ability of ALCN (◦)-concepts. They also observed that ALCN (−,t,u) is decid-
able since ALCN (−,t,u)-concepts can easily be translated into a formula in C2

[6], that is the two-variable FOL fragment with counting quantifiers, which has



proved to be decidable [17]. In fact, satisfiability of C2 formulae can be decided
in NExpTime [23] if unary coding of numbers is used (which is a common as-
sumption in the field of Description Logics; if binary coding is adopted we have
a 2-NExpTime upper bound). We can further observe that a similar translation
is still possible when qualified number restrictions are considered and, thus, also
ALCQ(−,t,u) and ALCN̄ (−,t,u) are decidable.

In this paper, we consider extensions of ALCN (◦) with role inversion (I) or
qualified number restrictions (Q), whose decidability status, to the best of our
knowledge, is still unknown. In particular, we will show in Sec. 2 (via reduction
of a domino problem) undecidability of ALCN (◦) extended with inverse roles
both in value and in number restrictions (which we can call ALCN (◦)I, but we
also show in Sec. 2 that it is a syntactic variant of ALCN̄ (◦,− )) is undecidable.
This result implies undecidability of ALCQ(◦,− ), whereas decidability of “pure”
ALCN (◦,− ) remains an open question. On the other hand, we will show how
the decidability results of [3] lift up to ALCQ(◦). In particular, we will show in
Sec. 3 that ALCQ(◦)-concept satisfiability is decidable and provide an effective
decision procedure in the form of a tableau-based algorithm, which extends the
ALCN (◦) Tableau proposed by Baader and Sattler [3].

Due to space limitations, the proofs have not been included but can be found
in an extended version of this paper which is available online [19].

Preliminaries on Description Logics

The expressiveness of a Description Logic (DL) is based on the definition of
complex concepts and roles, which can be built with the help of available con-
structors, starting from a set of (atomic) concept names NC and a set of (atomic)
role names NR. A DL system, enabling concept descriptions to be interrelated,
allows the derivation of implicit knowledge from explicitly represented knowl-
edge by means of inference services. For a full account of Description Logics, the
reader is referred, for example, to [2, 10]. An introductory overview of DLs as
foundations for class-based knowledge representation is also [9].

In the DL ALC [25], concept descriptions are formed using the construc-
tors negation, conjunction and disjunction, value (and existential) restrictions.
The DL ALCN [14, 21] additionally allows for unqualified (at-least and at-most)
number restrictions on atomic roles. The syntax rules at the left hand side of
Fig. 1 inductively define valid concept and role expressions for ALCN and its
extensions considered in this paper. As far as semantics is concerned, concepts
are interpreted as sets of individuals and roles as sets of pairs of individuals.
Formally, an interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty
set of individuals (the domain of I) and I is a function (the interpretation
function) which maps each concept to a subset of ∆I and each role to a sub-
set of ∆I × ∆I , such that the equations at the right hand side of Fig. 1 are
satisfied. One of the most important inference services of DL systems used in
knowledge-representation and conceptual modeling applications is computing
the subsumption hierarchy of a given finite set of concept descriptions.



Definition 1. The concept description C is satisfiable iff there exist an inter-
pretation I such that CI 6= ∅; in this case, we say that I is a model for C. The
concept description D subsumes the concept description C (written C v D) iff
CI ⊆ DI for all interpretations I; concept descriptions C and D are equivalent
iff C v D and D v C.

Since ALC is propositionally complete, subsumption can be reduced to concept
satisfiability and vice versa: C v D iff Cu¬D is unsatisfiable and C is satisfiable
iff not C v A u ¬A, where A is an arbitrary concept name.

In ALCN , number restrictions are used to restrict the cardinality of the set
of fillers of roles (role successors). For instance, the concept description:

∃≤3child u ∀child.Female

defines individuals who have at most three daughters and no sons. Moreover,
ALCN (◦) [3] allows counting successors of role chains, which can be used to ex-
press interesting cardinality constraints on the interrelationships some individu-
als hold with other objects of the domain. For example, the ALCN (◦)-concept:

Man u ∃≥50(friend ◦ tel number)

allows us to define men for which the count of different telephone numbers of
their friends amounts at least to fifty. Notice that such description does not
impose further constraints (disregarding obvious ones) either on the number of
friends one may have, or on the number of telephone numbers each friend may
have (e.g. some friends might have no telephone at all), or even on the fact that
some numbers may be shared by more than one friends (e.g. if husband and wife).
It only gives, for example, a constraint on the minimum size of a phonebook such
men need. Number restrictions on composition of roles can be used, for instance,
to express cardinality constraints on property paths in conceptual modeling of
object-oriented, nested relational or semistructured data.

The additional role constructs we consider in this paper further improve the
expressiveness of the resulting DLs and, thus, make them very appealing from
an application viewpoint. For instance, we may use the ALCN̄ (◦,− )-concept:

Person u ∃child− u ∃≤1(child− ◦ child)

to define persons who are a only child, or the ALCQ(◦) concept:

Woman u ∃≥3(husband ◦ brother). Lawyer

to describe women having at least three lawyers as brother-in-law.

2 Undecidability of ALCN (◦) with Inverse Roles

We consider in this Section the extension ofALCN (◦) by inverse roles (I). Notice
that allowing the use of role inversion both in number and in value restrictions,



we obtain a DL ALCN (◦)I which is a syntactic variant of ALCN̄ (◦,− ). Ob-
viously, ALCN (◦)I concept descriptions are also ALCN̄ (◦,− ) concept descrip-
tions. Conversely, by recursively applying rules (R ◦ S)− = S− ◦ R− (pushing
inverses inwards and eliminating parentheses) and (R−)− = R, we can put any
ALCN̄ (◦,− ) complex role expression in the form R̄1◦R̄2◦· · ·◦R̄n, where each R̄i

is either an atomic role or the inverse of an atomic role (R̄i ∈ {Ri, R
−
i }). Then

we can get rid of role composition in value restrictions thanks to the following
equivalences:

∃(R̄1 ◦ R̄2 ◦ · · · ◦ R̄n).C ≡ ∃R̄1.∃R̄2. · · · ∃R̄n.C

∀(R̄1 ◦ R̄2 ◦ · · · ◦ R̄n).C ≡ ∀R̄1.∀R̄2. · · · ∀R̄n.C

These rules give a translation procedure of concept descriptions fromALCN̄ (◦,− )
into ALCN (◦)I.

To show undecidability of ALCN̄ (◦,− ), borrowing the proof procedure from
[3], we will use a reduction of the well-known undecidable domino problem [5].

Definition 2. A tiling system D = (D,H, V ) is given by a non-empty set D =
{D1, . . . , Dm} of domino types, and by horizontal and vertical matching pairs
H ⊆ D×D, V ⊆ D×D. The (unrestricted) domino problem asks for a compatible
tiling of the plane, i.e. a mapping t : Z× Z → D such that, for all m,n ∈ Z,

〈 t(m,n), t(m+ 1, n) 〉 ∈ H and 〈 t(m,n), t(m,n+ 1) 〉 ∈ V

We will show reducibility of the domino problem to concept satisfiability
in ALCN̄ (◦,− ). In particular, we show how a given tiling system D can be
translated into a concept ED which is satisfiable iff D allows for a compatible
tiling. Following the same lines of undecidability proofs in [3], such translation
can be split into three subtasks which can be described as follows:

Grid Specification It must be possible to represent a “square” of Z×Z, which
consists of points (m,n), (m+1, n), (m,n+1) and (m+1, n+1), in order to
yield a complete covering of the plane via a repeating regular grid structure.
The idea is to introduce concepts to represent the grid points and roles to
represent the x- and y-successor relations between points.

Local Compatibility It must be possible to express that a tiling is locally
compatible, that is that the x-successor and the y-successor of a point have
an admissible domino type. The idea is to associate each domino typeDi with
an atomic concept Di, and to express the horizontal and vertical matching
conditions via value restrictions.

Total Reachability It must be possible to impose the above local conditions
on all points in Z × Z. This can be achieved by constructing a “universal”
role and a “start” individual such that every grid point can be reached from
the start individual. The local compatibility conditions can then be globally
imposed via value restrictions.

The grid structure that we will use to tile the plane is shown in Fig. 2. In
particular, in addition to grid points, we also consider “centers” of grid squares,
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Fig. 2. The grid structure used in the ALCN̄ (◦,− ) undecidability proof.

which are connected to grid square vertices by means of a role named R. All grid
cell centers are instances of the C concept, whereas grid points are instances of
the A concept. We introduce nine different (disjoint) types of grid centers via
the concepts Cij (0 ≤ i, j ≤ 2) and nine different types of (disjoint) grid points
via the concepts Aij (0 ≤ i, j ≤ 2), as follows:

C := t
0≤i,j≤2

(

Cij u ( u
0≤k,`≤2

(i,j)6=(k,`)

¬Ck`)

)

A := t
0≤i,j≤2

(

Aij u ( u
0≤k,`≤2

(i,j)6=(k,`)

¬Ak`)

)

u ¬C



Grid Specification can then be accomplished by means of the C¢ and A¢
concepts which follow:

C¢ := C u ∃≤4R u ∀R.A¢ u ∃
≤9R ◦R− u

u
0≤i,j≤2

(

Cij ⇒ (∃R.Aij u ∃R.Ai⊕1,j u ∃R.Ai,j⊕1 u ∃R.Ai⊕1,j⊕1)
)

A¢ := A u u
0≤i,j≤2

(

Aij ⇒ (∃R−.Cij u ∃R
−.Ci⊕2,j u ∃R

−.Ci,j⊕2 u ∃R
−.Ci⊕2,j⊕2)

)

where a⊕ b = (a+ b) mod 3 and A⇒ B is a shorthand for ¬A tB.
Some relevant constraints that are imposed by these concept descriptions on

their models are studied in the Lemma which follows.

Lemma 1. Let c be an instance of C¢ and a an instance of A¢. Then:

1. c has at most one R-successor in each of the nine Ak` concept extensions.
2. c has exactly one (R ◦R−)-successor in each of the nine Ck` concept exten-

sions.
3. a has only (R−)-successors which are instances of C¢.
4. a has at most one (R−)-successor in each of the nine Ck` concept extensions.
5. a has exactly one (R− ◦R)-successor in each of the nine Ak` concept exten-

sions.

Hence, we will interpret instances of C¢ as grid centers and instances of A¢
as grid points. In particular, nine different types of grid cells can be defined ac-
cording to the type of their center: an (i, j)-type grid cell has a Cij-type center,
while its lower left, lower right, upper left and upper right vertices can be defined,
respectively, as the instances of the Aij , Ai⊕1,j , Ai,j⊕1 and Ai⊕1,j⊕1 concepts
which are connected to the center via R (according to the C¢ definition). There-
fore, the x- and y-successor relations on the grid can be defined by means of
the (R− ◦ R)-paths connecting an Aij-type grid point with an Ai⊕1,j-type and
an Ai,j⊕1-type grid points, respectively. Such successors always exist and are
uniquely defined, owing to Lemma 1. In a similar way, Lemma 1 also allows us
to uniquely define the x- and y-predecessors relations on the grid, by means of
the (R− ◦ R)-paths connecting an Aij-type grid point with an Ai⊕2,j-type and
an Ai,j⊕2-type grid points, respectively (cf. (a+ 2) mod 3 = (a− 1) mod 3).

Furthermore, an easy consequence of Lemma 1 is the following:

Proposition 1 (Grid Closure). For each grid point, the (x ◦ y)- and (y ◦ x)-
successors are uniquely defined and coincide.

Local Compatibility is easily achieved by enforcing grid centers to be instances
of a CD concept defined as follows:

CD := ∀R.

(

t
1≤k≤m

(

Dk u ( u
1≤`≤m

k 6=`

¬D`)
)

)

u u
0≤i,j≤2

(

Cij ⇒ u
1≤k≤m

(

∃R.(Aij uDk)

⇒
(

∃R.(Ai⊕1,j u ( t
(Dk,D`)∈H

D`)) u ∃R.(Ai,j⊕1 u ( t
(Dk,D`)∈V

D`))
)

))



Each domino type Dk is associated to an atomic concept with the same name.
The value restriction in the first conjunct of CD forces grid points to have a
domino type. The second conjunct uses the definition of the x- and y-successors
for the bottom left vertex of an (i, j)-type cell to enforce horizontal and vertical
matching conditions via value restrictions.

Total Reachability will be achieved by constructing a “start” individual (s)
and two “universal” roles: the former (U) which connects s to every grid center
and the latter (U ◦ R) which connects s to every grid point (see Fig. 2). The
Lemma which follows justifies the correctness of our construction.

Lemma 2. Let s be an instance of

D := ∃U ◦R u ∃≤1(U ◦R) ◦ (U ◦R)− u ∀U.∀R.∀R−.∃U−

in a given interpretation I. Then:

1. Any (U ◦R)-successor of s in I (D ensures that there is at least one) has s
as its unique (U ◦R)-predecessor.

2. Any U -successor of s in I has s as its unique U -predecessor.
3. Any (U ◦R ◦R−)-successor of s in I (D ensures that there is at least one)

is a U -successor of s in I and has s as its unique U -predecessor.

As a consequence, we have the following result:

Proposition 2 (Plane Covering and Compatible Tiling). Let s be an in-
stance of

ED := ∃U ◦R u ∃≤1(U ◦R) ◦ (U ◦R)− u ∀U.∀R.∀R−.∃U− u ∀U.(C¢ u CD)

in a given interpretation I. Then, for the grid1 that tiles the plane Z × Z, any
grid center can be reached from s via U , any grid point can be reached from s

via U ◦ R and local tiling conditions are imposed on all grid points (yielding a
compatible tiling of the plane).

Thanks to Proposition 2, it is easy to see that a tiling system D has a com-
patible tiling iff concept ED is satisfiable (i.e. there is an interpretation I such
that (ED)

I 6= ∅).

Theorem 1. Satisfiability (and, thus, subsumption) of concepts is undecidable
for ALCN̄ (◦,− ) (and ALCQ(◦,− )).

3 Decidability of ALCQ(◦)

We will show in this Section how an effective decision procedure for ALCQ(◦)-
concept satisfiability can be provided as a tableau-based algorithm [4]. To this

1 In order to prevent s, as in Fig. 2, from being a grid center or grid point, further
conjuncts can be added to ED (e.g. ¬(∃R− t ∃U−) or ¬(A t C)).



end, we consider ALCQ(◦)-concept descriptions in Negation Normal Form (NNF
[25]), where the negation sign is allowed to appear before atomic concepts only.
In fact, ALCQ(◦)-concept descriptions can be transformed into NNF in linear
time via application of the same rules which can be used for ALCQ (pushing
negations inwards):

¬∃≤nR.C = ∃≥n+1R.C ¬∃≥nR.C = ∃≤n−1R.C (⊥ if n = 0)
¬∃R.C = ∀R.¬C ¬∀R.C = ∃R.¬C

in addition to the absorption rule for double negations and De Morgan’s laws
for u and t. Obviously, unqualified number restrictions are treated as particular
cases of qualified restrictions (with C = >). We can further make use of the
rules:

∃R.C = ∃≥1R.C ∀R.C = ∃≤0R.¬C

to get rid of (existential and) value restrictions. We define the concept descrip-
tions obtained in this way as in NNFon and denote the NNFon of the ALCQ(◦)-
concept description ¬C as ∼ C. We will use the symbol on in number restrictions
∃onnR.C as a placeholder for either ≥ or ≤.

The Tableau algorithm we are going to introduce manipulates, as basic data
structures, ABox assertions involving domain individuals. In fact, our algorithm
is a simple extension of the tableau-based algorithm to decide ALCN (◦)-concept
satisfiability presented by Baader and Sattler in [3] (also the proofs given in [19]
are very similar to the proofs provided in [3] for the ALCN (◦) Tableau). The
extension is based on the modification of the transformation rules for number
restrictions (≥- and ≤-rules) to take into account the “qualifying” conditions
and on the introduction of a so-called choose rule (called -rule here), which
ensures that all “relevant” concepts that are implicitly satisfied by an individual
are made explicit in the ABox. Basically, the proposed extension is similar to
the one which extends the tableau-based ALCN satisfiability algorithm [14, 21]
to an ALCQ satisfiability algorithm [4, 20].

Definition 3. Let NI be a set of individual names. An ABox A is a finite set
of assertions of the form C(a) –concept assertion– or R(a, b) –role assertion–
where C is a concept description, R a role name, and a, b are individual names.
An interpretation I, which additionally assigns elements aI ∈ ∆I to individual
names a, is a model of an ABox A iff aI ∈ CI (resp. (aI , bI) ∈ RI) for all
assertions C(a) (resp. R(a, b)) in A. The ABox A is consistent iff it has a model.
The individual a is an instance of the description C w.r.t. A iff aI ∈ CI holds
for all models I of A. We also consider in a ABox inequality assertions of the
form a 6= b, with the obvious semantics that an interpretation I satisfies a 6= b,
iff aI 6= bI . Inequality assertions are assumed to be symmetric, that is saying
that a 6= b ∈ A is the same as saying b 6= a ∈ A.

Sometimes in the DL field, a unique name assumption is made in works concern-
ing reasoning with individuals, that is the mapping π : NI → ∆I from individual



names to domain elements is required to be injective. We dispense from this
requirement as it has no effect for the ALC extensions studied here and the
explicitly introduced inequality assertions can be used anyway to enforce the
uniqueness of names if necessary.

Definition 4. The individual y is a (R1 ◦ R2 ◦ · · · ◦ Rm)-successor of x in A
iff ∃y2y3 . . . ym variables in A such that {Rk(yk, yk+1) | 2 ≤ k ≤ m − 1} ∪
{R1(x, y2), Rm(ym, y)} ⊆ A.

Definition 5. An ABox A contains a clash iff, for an individual name x ∈ NI,
one of the two situations below occurs:

– {A(x),¬A(x)} ⊆ A, for a concept name A ∈ NC;
– (∃≤nR1◦· · ·◦Rm.C)(x) ∈ A and x has p (R1◦· · ·◦Rm)-successors y1, . . . , yp

with p > n such that {C(yi) | 1 ≤ i ≤ p} ∪ {yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A,
for role names {R1, . . . , Rm} ⊆ NR, a concept description C and an integer
n ≥ 0.

To test the satisfiability of an ALCQ(◦) concept C0 in NNFon, the proposed
ALCQ(◦)-algorithm works as follows. Starting from the initial ABox {C0(x0)}, it
applies the completion rules in Fig. 3, which modify the ABox. It stops when no
rule is applicable (when a clash is generated, the algorithm does not immediately
stops but it always generate a complete ABox). An ABox A is called complete
iff none of the completion rules is any longer applicable. The algorithm answers
“C is satisfiable” iff a complete and clash-free ABox has been generated. The
ALCQ(◦)-algorithm is non-deterministic, due to the t-, ≤- and -rules (for
instance, the t-rule non-deterministically chooses which disjunct to add for a
disjunctive concept).

Lemma 3. Let C0 be an ALCQ(◦)-concept in NNFon, and let A be an ABox
obtained by applying the completion rules to {C0(x0)}. Then:

1. For each completion rule R that can be applied to A and for each interpre-
tation I, the following equivalence holds: I is a model of A iff I is a model
of the ABox A′ obtained by applying R.

2. If A is a complete and clash-free ABox, then A has a model.
3. If A is complete but contains a clash, then A does not have a model.
4. The completion algorithm terminates when applied to {C0(x0)}.

As a matter of fact, termination (4) yields that after finitely many steps we
obtain a complete ABox. If C0 is satisfiable, then {C0(x0)} is also satisfiable
and, thus, at least one of the complete ABoxes that the algorithm can generate
is satisfiable by (1). Hence, such an ABox must be clash-free by (3). Conversely,
if the application of the algorithm produces a complete and clash-free ABox
A, then it is satisfiable by (2) and, owing to (1), this implies that {C0(x0)} is
satisfiable. Consequently, the algorithm is a decision procedure for satisfiability
of ALCQ(◦)-concepts.

Theorem 2. Concept satisfiability (and subsumption) for ALCQ(◦) is decid-
able, and the Tableau algorithm based on the completion rules in Fig. 3 is an
effective decision procedure.



u-rule: if 1. (C1 u C2)(x) ∈ A and

2. {C1(x), C2(x)} 6⊆ A

then A′ := A ∪ {C1(x), C2(x)}

t-rule: if 1. (C1 t C2)(x) ∈ A and

2. {C1(x), C2(x)} ∩ A = ∅

then A′ := A ∪ {D(x)} for some D ∈ {C1, C2}

≥ -rule: if 1. (∃≥nR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. x has exactly p (R1 ◦ · · · ◦Rm)-successors y1, . . . , yp with p < n

such that {C(yi) | 1 ≤ i ≤ p} ∪ {yi 6= yj | 1 ≤ i < j ≤ p} ⊆ A

then A′ := A ∪ {R1(x, zi2), R2(zi2, zi3), . . . , Rm(zim, zi), C(zi) | 1 ≤ i ≤ n− p}

∪{zi 6= zj | 1 ≤ i < j ≤ n− p} ∪ {yi 6= zj | 1 ≤ i ≤ p, 1 ≤ j ≤ n− p}

where zik, zi (for 1 ≤ i ≤ n− p, 2 ≤ k ≤ m) are m(n− p) fresh variables

≤ -rule: if 1. (∃≤nR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. x has more than n (R1 ◦ · · · ◦Rm)-successors y1, . . . , yp such that

{C(yi) | 1 ≤ i ≤ p} ⊆ A and {yi 6= yj} ∩ A = ∅ for some i, j (1 ≤ i < j ≤ p),

then for some pair yi, yj (1 ≤ i < j ≤ p) such that {yi 6= yj} ∩ A = ∅

A′ := [yi/yj ]A (i.e. A′ is obtained by replacing each occurrence of yi by yj)

-rule: if 1. (∃onnR1 ◦ · · · ◦Rm.C)(x) ∈ A and

2. y is an (R1 ◦ · · · ◦Rm)-successor of x such that {C(y),∼ C(y)} ∩ A = ∅

then A′ := A ∪ {D(y)} for some D ∈ {C,∼ C}

Fig. 3. The Completion Rules for ALCQ(◦)

3.1 Complexity issues

The tableau-based satisfiability algorithm proposed above for ALCQ(◦) may
require exponential time and space. The strategies leading to optimized algo-
rithms for ALCN and ALCQ [4, 26] do not seem to be applicable to ALCN (◦)
and ALCQ(◦). As a matter of fact, such strategies rely on the fact that the
underlying logics have the tree model property, and, for the sake of satisfia-
bility testing, the individuality of different role-successors of a given domain
object is not relevant. Only the number of such successors counts (for ≥- and
≤-rule applicability and clash testing) and, thus, a single successor at a time
can be used as “representative” also for its siblings, when continuing the algo-
rithm for its further role-successors. In such a way, only one branch of the tree
model at a time can be generated and investigated by the algorithm, giving rise
to a non-deterministic procedure consuming only polynomial space and, thus,
to PSpace complexity (since NPSpace =PSpace, owing to Savitch’s Theo-
rem [24]). In our case, such an optimization does not seem to be possible, since
ALCN (◦) and ALCQ(◦) do not have the tree model property, as number restric-



tions ∃≥pR1◦· · ·◦Rm−1u∃
≤qR1◦· · ·◦Rm−1◦Rm (with p > q) make some separate

(R1◦· · ·◦Rm−1) role chains merge into confluent (R1◦· · ·◦Rm−1◦Rm) chains to
respect both kinds of number restrictions. In fact, if the level of x is the unique
length of the role chains that connect x0 with x, the identifications of successors
effected by the ≤-rule (say at level `) may involve individuals generated by pre-
vious executions of the ≥-rule for different (∃≥nR1 ◦ · · · ◦Rm.C)(x) constraints,
with possibly different values of level(x) and role chain lengths (with the proviso
that level(x) + 1 ≤ ` ≤ level(x) + m). The enforcement of mutual constraints
between possibly “intersecting” role chains strictly relies on the individuation
of single successors, and cannot be surrogated, in general, via representatives.
As a result, the algorithm in Fig. 3 is a non-deterministic procedure possibly
producing complete ABoxes of exponential size in the length of the input con-
cept description (also if binary coding of numbers is assumed), as stated by the
following Lemma.

Lemma 4. Given a complete ABox A generated by the algorithm in Fig. 3, the
size of A is exponential in the input size s, thanks to the following facts:

1. The number a of individuals in A is O(2p(s)), where p is a polynomial func-
tion.

2. The number of constraints in A is a polynomial function of a.

Hence, by the given algorithm, deciding satisfiability (subsumption) of ALCQ(◦)
concepts is in the NExpTime ( co-NExpTime) complexity class.

4 Conclusions

In this paper we studied expressive Description Logics allowing for number re-
strictions on complex roles built with the composition operator (◦), extended
with inverse roles and qualified number restrictions.

In this framework, we improved the (un)decidability results by Baader and
Sattler on logics of the ALCN family [3] by showing that ALCN̄ (◦,− ) is unde-
cidable via reduction of a domino problem, whereas the introduction of quali-
fied number restrictions in ALCQ(◦) does not hinder decidability of reasoning.
For ALCQ(◦), a tableau-based satisfiability algorithm with a NExpTime upper
bound has been proposed.

As we observed in the Introduction that known decidability results also lift
up to ALCQ(−,t,u), we shed some new light on the whole decidability scenario
ranging from ALCN to ALCQ(◦,− ,t,u). In this picture, a big unanswered ques-
tion concerns decidability of ALCN (◦,t), whereas a small gap left open concerns
decidability of “pure” ALCN (◦,− ) (around the narrow borders of this gap, we
proved in this work that the language with inverses in value restrictions and
inverses and composition of roles under unqualified number restrictions is un-
decidable, whereas the language with inverses and role composition under value
restrictions and inverses under qualified number restrictions is decidable, as it is
a sublanguage of CIQ [13]). Another open question is the exact characterization
of ALCQ(◦) (and ALCN (◦)) complexity, as the NExpTime bound we derived
may be far from being tight. Future work will also consider such issues.
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