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Abstract

We describe an extension of the description logic underlying OWL-
DL, SHOIN , with a number of expressive means that we believe
will make it more useful in practise. Roughly speaking, we extend
SHOIN with all expressive means that were suggested to us by ontol-
ogy developers as useful additions to OWL-DL, and which, addition-
ally, do not affect its decidability. We consider complex role inclusion
axioms of the form R ◦ S v̇ R or S ◦ R v̇ R to express propagation
of one property along another one, which have proven useful in med-
ical terminologies. Furthermore, we extend SHOIN with reflexive,
symmetric, transitive, and irreflexive roles, disjoint roles, a universal
role, and constructs ∃R.Self, allowing, for instance, the definition of
concepts such as a “narcist”. Finally, we consider negated role asser-
tions in Aboxes and qualified number restrictions. The resulting logic
is called SROIQ.

We present a rather elegant tableau-based reasoning algorithm: it
combines the use of automata to keep track of universal value restric-
tions with the techniques developed for SHOIQ. We believe that
SROIQ could serve as a logical basis for possible future extensions
of OWL-DL.
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1 Introduction

We describe an extension, called SROIQ, of the description logic (DL)
SHOIN (14) underlying OWL-DL (9).1 SHOIN can be said to provide
most expressive means that one could reasonably expect from the logical
basis of an ontology language, and to constitute a good compromise between
expressive power and computational complexity/practicability of reasoning.
However, it lacks e.g. qualified number restrictions which are present in the
DL considered here since they are required in various applications (19) and
do not pose problems (13). That is, we extend SHOIQ—which is SHOIN
with qualified number restrictions—and extend the work begun in (7).

Since OWL-DL is becoming more widely used, it turns out that it lacks
a number of expressive means which—when considered carefully—can be
added without causing too much difficulties for automated reasoning. We
will extend SHOIQ with these expressive means and, although they are not
completely independent in that some of them can be expressed using others,
first present them together with some examples. Recall that, in SHOIQ,
we can already state that a role is transitive or the subrole or the inverse of
another one. In addition, SROIQ allows for the following:

1. disjoint roles. Most DLs can be said to be “unbalanced” since they al-
low to express disjointness on concepts but not on roles, despite the fact
that role disjointness is quite natural and can generate new subsump-
tions or inconsistencies in the presence of role hierarchies and number
restrictions. E.g., the roles sister and mother or partOf and hasPart

should be declared as being disjoint.

2. reflexive and irreflexive roles. These features are of minor interest
when considering TBoxes only, yet they add some useful constraints on
ABoxes, especially in the presence of number restrictions. E.g., the role
knows should be declared as being reflexive, and the role hasSibling

should be declared as being irreflexive.

3. negated role assertions. Most Abox formalisms only allow for positive
role assertions (with few exceptions (1; 5)), whereas SROIQ also al-
lows for statements such as (John, Mary) : ¬likes. In the presence of
complex role inclusions, negated role assertions can be quite useful and,
like disjoint roles, they overcome a certain asymmetry in expressivity.

1OWL also includes datatypes, a simple form of concrete domain (4). These can, how-
ever, be treated exactly as in SHOQ(D)/SHOQ(Dn) (10; 16), so we will not complicate
our presentation by considering them here.
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4. SROIQ provides complex role inclusion axioms of the form R◦S v̇ R
and S ◦ R v̇ R that were first introduced in RIQ (12). For exam-
ple, w.r.t. the axiom owns ◦ hasPart v̇ owns, and the fact that each
car contains an engine Car v̇ ∃hasPart.Engine, an owner of a car is
also an owner of an engine, i.e., the following subsumption is implied:
∃owns.Car v ∃owns.Engine.

5. SROIQ provides the universal role U . Together with nominals (which
are also provided by SHOIQ), this role is a prominent feature of hy-
brid logics (6). Nominals can also be viewed as a powerful generalisa-
tion of ABox individuals (17; 10). They occur naturally in ontologies,
e.g., when describing a class such as EUCountries by enumerating its
members.

6. Finally, SROIQ allows for concepts of the form ∃R.Self which can be
used to express “local reflexivity” of a role R, e.g., to define the concept
“narcist” as ∃likes.Self.

Besides a Tbox and an Abox, SROIQ provides a so-called Rbox to gather
all statements concerning roles.

SROIQ is designed to be of similar practicability as SHIQ. The tableau
algorithm for SROIQ presented here is essentially a combination of the
algorithms for RIQ and SHOIQ. Even though the additional expressive
means require certain adjustments, these adjustments do not add new sources
of non-determinism, and, subject to empirical verification, are believed to be
“harmless” in the sense of not significantly degrading typical performance as
compared with the SHOIQ algorithm.

More precisely, we employ the same technique using finite automata as
in (12) to handle role inclusions R ◦ S v̇ R and S ◦ R v̇ R. This involves a
pre-processing step which takes an Rbox and builds, for each role R, a finite
automaton that accepts exactly those words R1 . . . Rn such that, in each
model of the Rbox, 〈x, y〉 ∈ (R1 . . . Rn)I implies 〈x, y〉 ∈ RI . These automata
are then used in the tableau expansion rules to check, for a node x with
∀R.C ∈ L(x) and an R1 . . . Rn-neighbour y of x, whether to add C to L(y).
Even though the pre-processing step might appear a little cumbersome, the
usage of the automata in the algorithm makes it quite elegant and compact.

Moreover, the algorithm for SROIQ has, similar to the one for SHOIQ,
excellent “pay as you go” characteristics. For instance, in case only expres-
sive means of SHIQ are used, the new algorithm will behave just like the
algorithm for SHIQ.

We believe that the combination of properties described above makes
SROIQ a very useful basis for future extensions of OWL DL.
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2 The Logic SROIQ
In this section, we introduce the DL SROIQ. This includes the definition
of syntax, semantics, and inference problems.

2.1 Roles, Role Hierarchies, and Role Assertions

Definition 1 Let C be a set of concept names including a subset N of
nominals, R a set of role names including the universal role U , and
I = {a, b, c . . .} a set of individual names. The set of roles is R ∪ {R− |
R ∈ R}, where a role R− is called the inverse role of R.

As usual, an interpretation I = (∆I , ·I) consists of a set ∆I, called
the domain of I, and a valuation ·I which associates, with each role name
R a binary relation RI ⊆ ∆I ×∆I, with the universal role U the universal
relation ∆I × ∆I, with each concept name C a subset CI ⊆ ∆I, where CI

is a singleton subset if C ∈ N, and with each individual name a an element
aI ∈ ∆I. Inverse roles are interpreted as usual, i.e., for each role R ∈ R,
we have

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

Note that, unlike in the cases of SHIQ or SHOIQ, we did not introduce
transitive role names. This is because, as will become apparent below, role
box assertions can be used to force roles to be transitive.

To avoid considering roles such as R−−, we define a function Inv on roles
such that Inv(R) = R− if R ∈ R is a role name, and Inv(R) = S ∈ R if
R = S−.

Since we will often work with a string of roles, it is convenient to extend
both ·I and Inv(·) to such strings: if w = R1 . . . Rn for Ri roles, then we
set wI = RI

1 ◦ . . . ◦ RI
n and Inv(w) = Inv(Rn) . . . Inv(R1), where ◦ denotes

composition of binary relations.
A role box R consists of two components. The first component is a

role hierarchy Rh which consists of (generalised) role inclusion axioms, i.e.,
statements of the form R v̇ S, RS v̇ S, and SR v̇ S. The second component
is a set Ra of role assertions stating, for example, that a role R is reflexive
or symmetric.

We start with the definition of a role hierarchy, whose definition involves
a strict partial order ≺ on roles, i.e., an irreflexive and transitive relation on
R ∪ {R− | R ∈ R}.
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Definition 2 ((Regular) Role Inclusion Axioms) Let ≺ be a strict par-
tial order on roles. A role inclusion axiom (RIA for short) is an expres-
sion w v̇ R, where w is a finite string of roles not containing the universal
role U , and R is a role name. A role hierarchy Rh is a finite set of RIAs.

An interpretation I satisfies a role inclusion axiom S1 . . . Sn v̇ R, if

SI
1 ◦ . . . ◦ SI

n ⊆ RI ,

where ◦ stands for the composition of binary relations. An interpretation is a
model of a role hierarchy Rh, if it satisfies all RIAs in Rh, written I |= Rh.
A RIA w v̇ R is ≺-regular if

• R is a role name, and
• w = RR, or
• w = R−, or
• w = S1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
• w = RS1 . . . Sn and Si ≺ R, for all 1 ≤ i ≤ n, or
• w = S1 . . . SnR and Si ≺ R, for all 1 ≤ i ≤ n.

Finally, a role hierarchy Rh is said to be regular if there exists a strict
partial order ≺ on roles such that each RIA in Rh is ≺-regular.

Regularity prevents a role hierarchy from containing cyclic dependencies.
For instance, the role hierarchy

{RS v̇ S, RT v̇ R, V T v̇ T, V S v̇ V }

is not regular because it would require ≺ to satisfy S ≺ V ≺ T ≺ R ≺
S, which would imply S ≺ S, thus contradicting irreflexivity. Such cyclic
dependencies are known to lead to undecidability (12).

From the definition of the semantics of inverse roles, it follows immedi-
ately that

〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .

Hence, each model satisfying w v̇ S also satisfies Inv(w) v̇ Inv(S) (and vice
versa), and thus the restriction to those RIAs with role names on their right
hand side does not have any effect on expressivity.

Given a role hierarchy Rh, we define the relation v* to be the transitive-
reflexive closure of v̇ over {R v̇ S, Inv(R) v̇ Inv(S) | R v̇ S ∈ Rh}. A role
R is called a sub-role (resp. super-role) of a role S if R v* S (resp. S v* R).
Two roles R and S are equivalent (R ≡ S) if R v* S and S v* R.
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Note that, due to the fourth restriction in the definition of ≺-regularity,
we also restrict v* to be acyclic, and thus regular role hierarchies never
contain two equivalent roles.2

Next, let us turn to the second component of Rboxes, the role assertions.
For an interpretation I, we define DiagI to be the set {〈x, x〉 | x ∈ ∆I}.
Note that, since the interpretation is fixed in any given model, we disallow
the universal role to appear in role assertions.

Definition 3 (Role Assertions) For roles R,S 6= U , we call the asser-
tions Ref(R), Irr(R), Sym(R), Tra(R), and Dis(R,S), role assertions,
where, for each interpretation I and all x, y, z ∈ ∆I, we have:

I |= Sym(R) if 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI ;
I |= Tra(R) if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI imply 〈x, z〉 ∈ RI ;
I |= Ref(R) if DiagI ⊆ RI ;
I |= Irr(R) if RI ∩DiagI = ∅;
I |= Dis(R,S) if RI ∩ SI = ∅.

Adding symmetric and transitive role assertions is a trivial move since
both of these expressive means can be replaced by complex role inclusion
axioms as follows: for the role assertion Sym(R) we can add to the Rbox,
equivalently, the role inclusion axiom R− v̇ R, and, for the role assertion
Tra(R), we can add to the Rbox, equivalently, RR v̇ R. Thus, as far as
expressivity is concerned, we can assume w.l.o.g. that no role assertions of the
form Tra(R) or Sym(R) appear in Ra, but that transitive and/or symmetric
roles will be handled through RIAs alone.

The situation is different, however, for the other Rbox assertions. Neither
reflexivity nor irreflexivity nor disjointness of roles can be enforced by role
inclusion axioms. However, as we shall see later, reflexivity and irreflexivity
of roles are closely related to the new concept ∃R.Self.

In SHIQ (and SHOIQ), the application of qualified number restrictions
has to be restricted to certain roles, called simple roles, in order to preserve
decidability (14). In the context of SROIQ, the definition of simple role has
to be slightly modified, and simple roles figure not only in qualified number
restrictions, but in several other constructs as well. Intuitively, non-simple
roles are those that are implied by the composition of roles.

2This is not a serious restriction for, if R contains v* cycles, we can simply choose one
role R from each cycle and replace all other roles in this cycle with R in the input Rbox,
Tbox and Abox (see below).
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Given a role hierarchy Rh and a set of role assertions Ra (without tran-
sitivity or symmetry assertions), the set of roles that are called simple in
R = Rh ∪Ra is inductively defined as follows:

• a role name R is simple if there is no w v̇ R in Rh,
• an inverse role R− is simple if R is, and
• if R occurs on the right hand side of a RIA in Rh, then R is simple if,

for each w v̇ R ∈ Rh, w = S for a simple role S.

A set of role assertions Ra is called simple if all roles R,S appearing in role
assertions of the form Irr(R) or Dis(R,S) are simple in R.

Definition 4 (Role Box) A SROIQ-role box (Rbox for short) is a set
R = Rh∪Ra, where Rh is a regular role hierarchy and Ra is a finite, simple
set of role assertions. An interpretation satisfies a role box R (written
I |= R) if I |= Rh and I |= φ for all role assertions φ ∈ Ra. Such an
interpretation is called a model of R.

2.2 Concepts and Inference Problems for SROIQ
We are now ready to define the syntax and semantics of SROIQ-concepts.

Definition 5 (SROIQ Concepts, Tboxes, and Aboxes)
The set of SROIQ-concepts is the smallest set such that

• every concept name (including nominals) and >,⊥ are concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is a simple role
(possibly inverse), and n is a non-negative integer, then C uD, C tD,
¬C, ∀R.C, ∃R.C, ∃S.Self, (>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form
C v̇ D for two SROIQ-concepts C and D. A Tbox T is a finite set of
GCIs. An individual assertion is of one of the following forms: a : C,
(a, b) : R, (a, b) : ¬S, or a 6 .= b, for a, b ∈ I (the set of individual names), a
(possibly inverse) role R, a (possibly inverse) simple role S, and a SROIQ-
concept C. A SROIQ-Abox A is a finite set of individual assertions.

Note that number restrictions (>nS.C) and (6nS.C), as well as the
concept ∃S.Self and the disjointness and irreflexivity assertions for roles,
Dis(R,S) and Irr(R), are all restricted to simple roles. In the case of number
restrictions we mentioned the reason for this restriction above: without it,
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the satisfiability problem of SHIQ-concepts is undecidable (14), even for a
logic without inverse roles and with only unqualifying number restrictions
(these are number restrictions of the form (>nR.>) and (6nR.>)). For
SROIQ and the remaining restrictions to simple roles in concept expres-
sions as well as role assertions, it is part of future work to determine which of
these restrictions to simple roles is strictly necessary in order to preserve de-
cidability or practicability. This restriction, however, allows a rather smooth
integration of the new constructs into existing algorithms.

Definition 6 (Semantics and Inference Problems) Given an interpre-
tation I = (∆I , ·I), concepts C, D, roles R, S, and non-negative integers n,
the extension of complex concepts is defined inductively by the following
equations, where ]M denotes the cardinality of a set M , and concept names,
roles, and nominals are interpreted as in Definition 1:

>I = ∆I, ⊥I = ∅, (¬C)I = ∆I \ CI (Booleans)
(C uD)I = CI ∩DI, (C tD)I = CI ∪DI (Booleans)
(∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI and y ∈ CI} (exists restriction)

(∃R.Self)I = {x | 〈x, x〉 ∈ RI} (∃R.Self-concepts)
(∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI implies y ∈ CI} (value restriction)

(>nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} > n} (atleast restriction)
(6nR.C)I = {x | ]{y.〈x, y〉 ∈ RI and y ∈ CI} 6 n} (atmost restriction)

An interpretation I is a model of a Tbox T (written I |= T ) if CI ⊆
DI for each GCI C v̇ D in T .

A concept C is called satisfiable if there is an interpretation I with
CI 6= ∅. A concept D subsumes a concept C (written C v D) if CI ⊆ DI

holds for each interpretation. Two concepts are equivalent (written C ≡
D) if they are mutually subsuming. The above inference problems can be
defined w.r.t. a general role box R and/or a Tbox T in the usual way, i.e.,
by replacing interpretation with model of R and/or T .

An element x ∈ ∆I is called an instance of a concept C if x ∈ CI. An
interpretation I satisfies (is a model of) an Abox A (I |= A) if for all
individual assertions φ ∈ A we have I |= φ, where

I |= a :C if aI ∈ CI ; I |= a 6 .= b if aI 6= bI ;
I |= (a, b) :R if 〈aI , bI〉 ∈ RI ; I |= (a, b) :¬R if 〈aI , bI〉 /∈ RI .

An Abox A is consistent with respect to an Rbox R and a Tbox T if
there is a model I for R and T such that I |= A.

For DLs that are closed under negation, subsumption and (un)satisfiability
of concepts can be mutually reduced: C v D iff C u¬D is unsatisfiable, and
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C is unsatisfiable iff C v ⊥. Furthermore, a concept C is satisfiable iff the
Abox {a :C} is consistent.

It is straightforward to extend these reductions to Rboxes and Tboxes. In
contrast, the reduction of inference problems w.r.t. a Tbox to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care: in
(2; 18; 3), the internalisation of GCIs is introduced, a technique that realises
exactly this reduction. For SROIQ, this technique can be modified accord-
ingly. In particular, the expressivity of Rboxes in SROIQ and the presence
of nominals allow to reduce SROIQ concept satisfiability of a concept C
with respect to a triple 〈A,R, T 〉 of, respectively, a SROIQ Abox, Rbox,
and Tbox, to concept satisfiability of a concept C ′ with respect to an Rbox
R′, where the Rbox R′ only contains role assertions of the form Dis(R,S)
and Ref(R), and where the universal role U does not appear in C ′.

For instance, to eliminate a role assertion Irr(R) ∈ Ra, we can add, equiv-
alently, the GCI > v̇ ¬∃R.Self to T , which can in turn be internalised.
Likewise, instead of asserting Ref(R), we can, equivalently, add the GCI
> v̇ ∃R.Self to T . However, in the case of Ref(R) this replacement is only
admissible for simple roles R and thus not possible (syntactically) in general.
While nominals can be used to ‘internalise’ the Abox, in order to eliminate
the universal role, we use a ‘simulated’ universal role U ′, i.e., a reflexive,
symmetric, and transitive super-role of all roles and their inverses appearing
in 〈A,R, T 〉, and which, additionally, connects all nominals appearing in the
input. For more details, refer to (8).

Theorem 7 (Reduction)

1. The satisfiability and subsumption problems of SROIQ-concepts w.r.t.
Tboxes, Aboxes, and Rboxes, are polynomially reducible to (un)satisfi-
ability of SROIQ-concepts w.r.t. Rboxes.

2. W.l.o.g., we can assume that Rboxes do not contain role assertions of
the form Irr(R), Tra(R), or Sym(R), and that the universal role is not
used.

With Theorem 7, all standard inference problems for SROIQ can be re-
duced to the problem of determining the consistency of a SROIQ-concept
w.r.t. to an Rbox (both not containing the universal role), where we can
assume w.l.o.g. that all role assertions in the Rbox are of the form Ref(R) or
Dis(R,S)—we call such an Rbox reduced.
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3 SROIQ is Decidable

In this section, we show that SROIQ is decidable. We have extended the
tableau algorithms for RIQ and SHOIQ to SROIQ, and will spend the
remainder of this paper on its description.

In a first step, the tableau algorithm takes a reduced Rbox R and a
concept C0 and builds, for each (possibly inverse) role R occurring in R or
C0, a non-deterministic finite automaton BR.

Intuitively, such an automaton is used to memorise the path between an
object x that has to satisfy a concept of the form ∀R.C and other objects,
and then to determine which of these objects must satisfy C.3

The following proposition states that BR indeed captures all implications
between (paths of) roles and R that are consequences of the role hierarchy
Rh, where L(BR) denotes the language (a set of strings of roles) accepted by
BR. The proof can be found in (8) or (12).

Proposition 8 (Automata) I is a model of Rh if and only if, for each
(possibly inverse) role R occurring in Rh, each word w ∈ L(BR), and each
〈x, y〉 ∈ wI, we have 〈x, y〉 ∈ RI.

As usual, we first prove that concept satisfiability w.r.t. a reduced Rbox is
equivalent to the existence of a tableau for C0 and R, that is, an abstraction
of a model of C0 and R—for definitions and proofs, refer to (8).

Theorem 9 (Tableau) A SROIQ-concept C0 is satisfiable w.r.t. a reduced
R iff there exists a tableau for C0 w.r.t. R.

The algorithm generates a completion graph, a structure that, if complete
and clash-free, can be unravelled to an (infinite) tableau for the input concept
and Rbox. Moreover, it is shown that the algorithm returns a complete and
clash-free completion graph for C0 and R if and only if there exists a tableau
for C0 and R, and thus with Lemma 9, if and only if the concept C0 is
satisfiable w.r.t. R. Similar as for RIQ, we define a set fclos(C0,R) of
“relevant sub-concepts” of those concepts occurring in C0. Furthermore, all
concepts are assumed to be given in negation normal form (NNF for short),
i.e., negation occurs only in front of concept names or ∃R.Self; see (8).

3This technique together with the relationship between automata and regular languages
is the reason why we called these role hierarchies “regular”.
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Definition 10 (Completion Graph) Let R be a reduced Rbox, C0 a con-
cept in NNF not using the universal role, and N the set of nominals. A com-
pletion graph for C0 with respect to R is a directed graph G = (V, E, L, 6 .=)
where each node x ∈ V is labelled with a set

L(x) ⊆ fclos(C0,R)∪N∪ {(6mR.C) | (6nR.C) ∈ fclos(C0,R) and m ≤ n}

and each edge 〈x, y〉 ∈ E is labelled with a set of role names L(〈x, y〉) contain-
ing (possibly inverse) roles occurring in C0 or R. Additionally, we keep track
of inequalities between nodes of the graph with a symmetric binary relation
6 .= between the nodes of G.

If 〈x, y〉 ∈ E, then y is called a successor of x and x is called a pre-
decessor of y. Ancestor is the transitive closure of predecessor, and de-
scendant is the transitive closure of successor. A node y is called an R-
successor of a node x if, for some R′ with R′ v* R, R′ ∈ L(〈x, y〉). A node
y is called a neighbour (R-neighbour) of a node x if y is a successor (R-
successor) of x or if x is a successor (Inv(R)-successor) of y.

For a role S and a node x in G, we define the set of x’s S-neighbours
with C in their label, SG(x, C), as follows:

SG(x, C) := {y | y is an S-neighbour of x and C ∈ L(y)}.

G is said to contain a clash if there are nodes x and y such that

1. ⊥ ∈ L(x), or
2. for some concept name A, {A,¬A} ⊆ L(x), or
3. x is an S-neighbour of x and ¬∃S.Self ∈ L(x), or
4. for some Dis(R,S) ∈ Ra, y is an R- and an S-neighbour of x, or
5. there is some concept (6nS.C) ∈ L(x) and {y0, . . . , yn} ⊆ SG(x, C),

with yi 6
.
= yj for all 0 ≤ i < j ≤ n, or

6. for some o ∈ N, x 6 .= y and o ∈ L(x) ∩ L(y).

If o1, . . . , o` are all the nominals occurring in C0, then the tableau algo-
rithm starts with the completion graph G = ({r0, r1 . . . , r`}, ∅, L, ∅) with
L(r0) = {C0} and L(ri) = {oi} for 1 ≤ i ≤ `. G is then expanded by re-
peatedly applying the expansion rules given in Figure 1, stopping if a clash
occurs.

As usual, in the presence of transitive roles, blocking is employed to ensure
termination of the algorithm. In the additional presence of inverse roles,
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blocking is dynamic, i.e., blocked nodes (and their sub-branches) can be
un-blocked and blocked again later. In the further, additional presence of
number restrictions, pairs of nodes are blocked rather than single nodes (15).
Furthermore, to ensure termination, we need to apply similar strategies of
rule application as were introduced for SHOIQ, e.g., the o-rule is applied
with highest priority.

For detailed definitions of the blocking technique and the terms and oper-
ations used in the (application of the) expansion rules, please consult (13; 8).

A completion graph is complete if it contains a clash, or when none of
the rules is applicable. If the expansion rules can be applied to C0 and R in
such a way that they yield a complete, clash-free completion graph, then the
algorithm returns “C0 is satisfiable w.r.t. R”, and “C0 is unsatisfiable w.r.t.
R” otherwise.

All but the Self–Ref-rule have been used before for fragments of SROIQ,
see (14; 11; 12), and the three ∀i-rules are the obvious counterparts to the
tableau conditions (P4a), (P4b), and (P6) of (12).

Theorem 11 (Termination, Soundness, and Completeness) Let C0 be
a SROIQ-concept in NNF and R a reduced Rbox.

• The tableau algorithm terminates when started with C0 and R.

• The expansion rules can be applied to C0 and R such that they yield a
complete and clash-free completion graph if and only if there is a tableau for
C0 w.r.t. R.

From Theorems 7, 9 and 11, we thus arrive at the following theorem:

Theorem 12 (Decidability) The tableau algorithm decides satisfiability
and subsumption of SROIQ-concepts with respect to Aboxes, Rboxes, and
Tboxes.

Conclusion

We introduced a description logic, called SROIQ, that overcomes certain
shortcomings in expressiveness of other DLs. We have used SHOIQ and
RIQ as a starting point, extended them with some “useful-yet-harmless”
expressive means, and also extended the tableau algorithm accordingly. The
logic SROIQ is intended to be a basis for future extensions of OWL DL.
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u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} 6⊆ L(x),
then L(x) −→ L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked, and
{C1, C2} ∩ L(x) = ∅

then L(x) −→ L(x) ∪ {E} for some E ∈ {C1, C2}
∃-rule: if ∃S.C ∈ L(x), x is not blocked, and

x has no S-neighbour y with C ∈ L(y)
then create a new node y with

L(〈x, y〉) := {S} and L(y) := {C}
Self–Ref-rule: if ∃S.Self ∈ L(x) or Ref(S) ∈ Ra, x is not blocked, and S /∈ L(〈x, x〉)

then add an edge 〈x, x〉 if it does not yet exist, and
set L(〈x, x〉) −→ L(〈x, x〉) ∪ {S}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and
∀BS .C 6∈ L(x)

then L(x) −→ L(x) ∪ {∀BS .C}
∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p

S→ q in B(p),
and there is an S-neighbour y of x with ∀B(q).C /∈ L(y),

then L(y) −→ L(y) ∪ {∀B(q).C}
∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B), and C 6∈ L(x)

then L(x) −→ L(x) ∪ {C}
choose-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y) −→ L(y) ∪ {E} for some E ∈ {C, ¬̇C}

>-rule: if 1. (>nS.C) ∈ L(x), x is not blocked, and
2. there are not n safe S-neighbours y1, . . . , yn of x with

C ∈ L(yi) and yi 6
.= yj for 1 ≤ i < j ≤ n

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S},
L(yi) = {C}, and yi 6

.= yj for 1 ≤ i < j ≤ n.
6-rule: if 1. (6nS.C) ∈ L(z), z is not indirectly blocked, and

2. ]SG(z, C) > n and there are two S-neighbours x, y of z with
C ∈ L(x) ∩ L(y), and not x 6 .= y

then 1. if x is a nominal node, then Merge(y, x)
2. else if y is a nominal node or an ancestor of x, then Merge(x, y)
3. else Merge(y, x)

o-rule: if for some o ∈ NI there are 2 nodes x, y with o ∈ L(x) ∩ L(y)
and not x 6 .= y

then Merge(x, y)
NN -rule: if 1. (6nS.C) ∈ L(x), x is a nominal node, and there is a blockable

S-neighbour y of x such that C ∈ L(y) and
x is a successor of y,

2. there is no m such that 1 6 m 6 n, (6mS.C) ∈ L(x),
and there exist m nominal S-neighbours z1, . . . , zm of x
with C ∈ L(zi) and zi 6

.= zj for all 1 ≤ i < j ≤ m.
then 1. guess m with 1 6 m 6 n and set L(x) = L(x) ∪ {(6mS.C)}

2. create m new nodes y1, . . . , ym with L(〈x, yi〉) = {S},
L(yi) = {C, oi} for each oi ∈ NI new in G,
and yi 6

.= yj for 1 ≤ i < j ≤ m,

Figure 1: The Expansion Rules for the SROIQ Tableau Algorithm.
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