
Universit�a degli Studi di Roma \La Sapienza"Dipartimento di Informatica e Sistemistica
Decidability of Class-Based Knowledge Representation FormalismsGiuseppe De Giacomo

PhD Thesis1995



Author's Address:Giuseppe De GiacomoDipartimento di Informatica e SistemisticaUniversit�a degli Studi di Roma \La Sapienza"Via Salaria 113, I-00198 Roma, ItaliaE-mail: degiacomo@dis.uniroma1.it
2



ContentsPreface 51 Introduction 71.1 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71.2 Medical Terminology Servers : : : : : : : : : : : : : : : : : : : : : : : 81.3 Goals and main results of the thesis : : : : : : : : : : : : : : : : : : : 121.4 Structure of the thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : 172 Preliminaries 212.1 Description logics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 212.2 Propositional dynamic logics : : : : : : : : : : : : : : : : : : : : : : : 222.3 The correspondence between DLs and PDLs : : : : : : : : : : : : : : : 242.4 Other preliminary notions : : : : : : : : : : : : : : : : : : : : : : : : : 253 Functional Restrictions 333.1 The logics CIF and DIF : : : : : : : : : : : : : : : : : : : : : : : : : 333.2 Reasoning in CIF and DIF : : : : : : : : : : : : : : : : : : : : : : : : 343.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 494 Quali�ed Number Restrictions 514.1 The logics CIN and DIN : : : : : : : : : : : : : : : : : : : : : : : : : 514.2 Reasoning in CN and DN : : : : : : : : : : : : : : : : : : : : : : : : : 524.3 Reasoning in CIN and DIN : : : : : : : : : : : : : : : : : : : : : : : 544.3.1 Rei�cation of binary relations : : : : : : : : : : : : : : : : : : : 554.3.2 Reducing DIN to DIF : : : : : : : : : : : : : : : : : : : : : : 584.4 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 615 Boolean Properties and Assertions on Atomic Roles 655.1 The logics CINB and DINB : : : : : : : : : : : : : : : : : : : : : : : 655.2 Reasoning in CINB and DINB : : : : : : : : : : : : : : : : : : : : : 685.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 746 N-ary Relations 776.1 The logic CINBR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 776.2 Reasoning in CINBR : : : : : : : : : : : : : : : : : : : : : : : : : : : 803



7 Individuals 877.1 Knowledge bases in CN : : : : : : : : : : : : : : : : : : : : : : : : : : 877.2 Knowledge bases in CI : : : : : : : : : : : : : : : : : : : : : : : : : : : 947.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 988 Recursive De�nitions: Fixpoints 1018.1 Fixpoints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1018.2 Concept de�nitions as equations : : : : : : : : : : : : : : : : : : : : : 1028.3 The description logic �ALC : : : : : : : : : : : : : : : : : : : : : : : : 1058.4 Properties of the �xpoint constructs : : : : : : : : : : : : : : : : : : : 1078.5 Reasoning in �ALC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1098.6 The description logic �ALCN : : : : : : : : : : : : : : : : : : : : : : : 1138.7 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 114Appendix: Eliminating I from DI 117A.1 Reducing DI to D : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 117A.2 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 122Bibliography 125

4



PrefaceThis document is the English version of my doctoral thesis [35]. It presents theresearch work I have done, mostly at the Dipartimento di Informatica e Sistemistica,Universit�a di Roma \La Sapienza", from 1992 to the beginning of 1995, under thesupervision of Maurizio Lenzerini.The thesis is concerned with logic-based knowledge representation formalisms inthe tradition of kl-one, called Description Logics. The description logics investi-gated are distinguished by being much more expressive than the usual ones, but stilldecidable. High expressivity makes it possible to represent all relevant knowledgeof complex domains, as those managed by Medical Terminology Servers studied inMedical Informatics. Decidability makes it possible to implement sound and completereasoning algorithms for such description logics. A great variety of expressive descrip-tion logics is considered, and for each of them, reasoning procedures are developedand EXPTIME-decidability is proved. This complexity bound is the best one canachieve since the simplest logics considered are already EXPTIME-hard.The key idea in establishing these results it that, rather then trying to constructa new algorithm for each extended logic, the decision problems for the extendedlogics are polynomially reduced to decision problems of already known logics in anincremental fashion. Several of these reductions are quite sophisticated, and the proofof correctness is, in many cases, rather involved. Certain reductions are somewhatsurprising since the extended logics have logical properties that are quite di�erentfrom those from which they derive. For instance the basic logics have the �nite modelproperty while some of the extended ones don't. Overall this \reduction-based" wayof proceeding has proved to be very e�ective.The thesis heavily exploits the correspondence that exists between description log-ics and certain modal logics of programs, called Propositional Dynamic Logics. Thiscorrespondence has already allowed other researchers to obtain decidability and com-plexity characterization for various description logics from well-known results aboutpropositional dynamic logics. However, a signi�cant step further is made in this thesis:instead of just using results for known propositional dynamic logics, new propositionaldynamic logics, corresponding to description logics of interest, are introduced, andtheir decidability and complexity characterization is established.For the sake of brevity and homogeneity, the work concerning applications toMedical Terminology Servers, which was documented in the original thesis, has beenlargely sacri�ced in the present version, I brie
y discuss the main issues in the �rstchapter. 5



I have preferred to concentrate on the theoretical results, which are reported in ev-ery detail, including full-
edged proofs, in the following chapters. I have also includedan appendix concerning a further reduction that I devised just after the original thesiswas completed.Many of the results presented in this thesis were obtained in collaboration withMaurizio Lenzerini, and some of them have already appeared in [34, 36, 41, 37, 38,40, 39, 43, 45].It is a pleasure to acknowledge the people that have helped me most during thiswork. I wish to thank the thesis committee, particularly Paolo Atzeni, Carlo Batini,Paolo Ercoli, and the external reviewers Franz Baader, Piero Torasso, and AngeloRossi Mori. I am specially indebted to Franz Baader for the numerous suggestionsthat allowed me to reformulate more rigorously some of the results, and to improvethe overall quality of the thesis. I wish to thank all the people of the Dipartimento diInformatica e Sistemistica, in particular the people working in Arti�cial Intelligencethat have always been ready to talk about issues related to the thesis: Luigia CarlucciAiello, Marco Cadoli, Diego Calvanese, Amedeo Cesta, Francesco Donini, DanieleNardi, Eugenio Omodeo, Fiora Pirri, Marco Schaerf, Andrea Schaerf. I am especiallygrateful to Diego Calvanese with whom I discussed in detail many technical points.I express my gratitude to Fabrizio Consorti (Istituto di IV Clinica Chirurgica,Universit�a di Roma \La Sapienza"), Angelo Rossi Mori and Aldo Gangemi (IstitutoTecnologie Biomediche { CNR), for introducing me to Medical Terminology Servers;to Enrico Franconi, for references to the work done at the German Heart Center, Uni-versity of Berlin; to Rocco De Nicola, for exposing me to logics for reactive processes,including modal mu-calculus; to Eugenio Omodeo, for a conversation that helped meto �nally set right the proof of Lemma 18; to Konstantinos Georgatos, with whom Idiscussed some aspects of the proof of Lemma 9.I also would like to thank Yoav Shoham for his hospitality at the Computer ScienceDepartment of Stanford University, where part of this research was carried out, andJohan van Benthem for a quite inspiring chat we had in the courtyard of the Centerfor the Study of Language and Information at Stanford University.Finally my deepest debt of gratitude goes to Maurizio Lenzerini, who has been afantastic advisor, co-worker, and friend. He strongly supported and encouraged methroughout the ful�llment of this work.Special thanks to my loving wife, Claudia, for putting up with many evenings andweekends that I have spent working at this thesis. Giuseppe De Giacomo6



Chapter 1Introduction1.1 BackgroundThe research in Arti�cial Intelligence and Computer Science has always paid specialattention to formalisms for the structured representation of information. In Arti�cialIntelligence, the investigation of such formalisms began with semantic networks andframes, which have been in
uential for many formalisms proposed in the areas ofknowledge representation, databases, and programming languages, and developed to-wards formal logic-based languages, that will be called here description logics1. Basi-cally, description logics represent knowledge in terms of objects (individuals) groupedinto classes (concepts) and pairs of objects grouped into relations (roles). Classes aredenoted by using appropriate constructs. Interdependencies between classes (such asinclusion, disjointness, etc.) are established by means of assertions.Two main advantages in using structured formalisms for knowledge representationhave been advocated, namely, epistemological adequacy, and computational e�ective-ness. In the last decade, many e�orts have been devoted to an analysis of these twoaspects. In particular, starting with [14], the research on the computational complex-ity of the reasoning tasks associated with description logics has shown that in orderto ensure decidability and/or e�ciency of reasoning in all cases, one must renouncesome of the expressive power [76, 81, 83, 82, 47, 48, 49]. These results have led toa debate on the trade-o� between expressive power of representation formalisms andworst-case e�ciency of the associated reasoning tasks. Recently, this issue has beenone of the main themes in the area of description logics, and has led to at least fourdi�erent approaches to the design of knowledge representation systems.� In the �rst approach, the main goal of a description logic is to o�er powerfulmechanisms for structuring knowledge, as well as sound and complete (butpossibly non terminating) reasoning procedures. Little attention is paid toboth decidability and computational complexity of the reasoning procedures.Systems like OMEGA [1] can be considered as following this approach.1Terminological logics, and concept languages are other possible names.7



CHAPTER 1� The second approach advocates a careful design of the description logics so asto o�er as much expressive power as possible while retaining the possibility ofsound, complete, and e�cient (often polynomial in the worst case) inferenceprocedures. Much of the research on CLASSIC [15] follows this approach.� The third approach, similarly to the �rst one, advocates very expressive lan-guages, but, in order to achieve e�ciency, accepts incomplete reasoning pro-cedures. LOOM [78] and KL-ONE [16] are representatives of this approach.No general consensus exists on what kind of incompleteness is acceptable. Per-haps, the most interesting attempts are those which resort to a non-standardsemantics for characterizing the form of incompleteness [91, 13, 49].� Finally, the fourth approach is based on what we can call \the expressivenessand decidability thesis", and aims at de�ning description logics that are bothvery expressive and decidable, i.e. designed in such a way that sound, complete,and terminating procedures exist for the associated reasoning tasks. Greatattention is given in this approach to the complexity analysis for the varioussublogics, so as to devise suitable optimization techniques and to single outtractable subcases. This approach is the one followed in the design of KRIS [4].The work presented in this thesis adheres to the fourth approach. It aims at both iden-tifying very expressive description logics with decidable associated decision problems,and characterizing the computational complexity of reasoning in such description log-ics.1.2 Medical Terminology ServersIn investigating description logics of this type, we have in mind a particular applicationof Medical Informatics, namely Medical Terminology Servers. It is a common opinionin Medical Informatics that the quality and the e�ectiveness of automatic informationand record keeping in health-care depends, to a large extent, on the e�cient processingand interpreting of medical terminologies and concepts [12, 116, 29, 103]. This has ledto the proposal of isolating a special subsystem of health-care information systems towhich are delegated services involving the representation and reasoning about medicalconcepts [100, 53, 19, 111]. We call such a subsystem Medical Terminology Server,borrowing this name from GALEN, one of the main research projects in the area.A Medical Terminology Server is a knowledge representation system in whichknowledge about a given medical domain (ranging from very speci�c to very general)is represented in terms of concepts (classes) and links between concepts. Only partof such knowledge is represented explicitly, and reasoning services are provided toextract implicit knowledge from the explicit one.Typical reasoning services of a Medical Terminology Server are: subsumptionchecking, i.e. checking, taking in account the knowledge possessed by the server, ifa concept is a specialization of another one, or if two concepts are equivalent; andconsistency checking, i.e. checking if a piece of information (e.g. a concept, or an as-sertion of inclusion or equivalence between concepts) is consistent with the knowledgein the server.8



Medical Terminology ServersBy exploiting the basic reasoning services above, additional services may be pro-vided. For example a Medical Terminology Server may generate \canonical forms" ofconcepts wrt certain parameters, or it may translate the inner representation of con-cepts in various target languages understandable by humans or by other informationsystems.Applications of Medical Terminology Servers span a broad spectrum of Medi-cal Informatics. They include decision support tools, literature retrieval systems,outcome research (extracting information from medical records), structured data en-try, predictive data entry, intelligent medical records, patient record systems, patientrecord retrieval, interlingua, expert systems, hospital departmental information sys-tems [101, 85, 53, 57, 25, 111, 24, 20, 6, 79, 116]. Below we show some exampleswhich clarify the role Medical Terminology Servers may have in di�erent applicationdomains. The examples are taken from [53, 85].Example 1. A hospital has installed decision-support tools. The hospital informationsystem will check the new orders entered into the system for con
icts. One of suchtarget alert may be warning to the ordering clinician whenever a nonsteroidal anti-in
ammatory agent is ordered for a patient diagnosed as having peptic ulcer disease.The designers must ensure that the system will recognize every existing nonsteroidalanti-in
ammatory drug by name, as well as every possible reference to acid pepticdisease.We can delegate to the Medical Terminology Server the task of recognizing if agiven kind of drug is a nonsteroidal anti-in
ammatory one or not, and recognizing ifthe disease diagnosed in a patient is an acid-peptic disease or if it induces an acid-peptic condition. Note that the reasoning service involved is subsumption wrt theknowledge in the server.Example 2. A literature-retrieval system is built that will attempt to recognize con-cepts that are synonymous. A query is entered about calcium-channel blockers andtheir use in stroke. The system must deal with the fact that writers of articles usemany synonymous terms for calcium-channel blockers, such as \calcium blockers",\calcium antagonist", and the individual name of di�erent agents. Likewise, strokehas many synonyms, such as \cerebrovascular accident" or \CVA", and may be re-ferred to generally as \cerebrovascular disease".We can delegate to the Medical Terminology Server (possibly assisted by a naturallanguage recognition system) the task of recognizing whether di�erent terms denotethe same entity (calcium-channel blockers, stroke), and recognizing entities that arespecializations of those requested. Note that again the reasoning service involved issubsumption wrt the knowledge in the server.Example 3. A group is responsible for outcomes research. It is desirable to trackall patient data, including symptoms, yet not have to process charts manually. Acomputer program is designed to extract information from patient records, but thee�ectiveness of the program depends on the its ability to deal with variations in thedescriptions of patients' symptoms. For example, what is written as \post-prandialstomach pain" in one chart is described as \abdominal pain after meals" in another.We can delegate to the Medical Terminology Server the task of recognizing thatthe concept denoted by \post-prandial stomach pain" is actually the same one denoted9



CHAPTER 1by \abdominal pain after meals". In general, the Medical Terminology Server can beused to recognize if two symptoms reported on di�erent patient records are the sameor one a specialization of the other, in order to aggregate data correctly for statistics.Note that again we make use of subsumption wrt the knowledge in the server.Example 4. A renal dialysis center wants to develop a medical record that will supportobservation and controlled trials as part of routine patient care. Much of the patientinformation will be collected by nurses and physicians through structure data entryto ensure that study parameters are rigorously assessed. The designers require astandard source of possible concepts, symptoms, and corresponding values in orderto integrate di�erent trials with overlapping data elements and share their data withother participating centers.We can use the Medical Terminology Server as the standard source of conceptsrequired above. The server will have to use its reasoning services for accomplishingthis task.Example 5. A clinician is visiting a patient using a predictive data entry device.He discovers that the patient has a fracture, and enters \fracture" into the system.The system automatically displays \has location" among others modi�ers, possiblysuggesting some of the most common alternatives as \humerus", \ulna", \radius", etc.The clinician answers \humerus", the system accordingly displays other modi�ers.Meanwhile the system on-line checks for the consistency of the data entered. Forexample it does not allow one to specify that the patient has a fracture of the eyebrowbecause eyebrow is not a bone and fractures may only be located in bones.We can designate the Medical Terminology Server as the provider of a canonicaldescription of the concept given in input (\fracture") so to exploit its structure toask for more data (the quali�cation of the modi�er \has location"). In producing thecanonical description of a concept, the server must reason on the knowledge aboutthe domain it has. In addition the server can be used to check for the consistency ofthe data entered wrt its knowledge (refuting \fracture that has location in eyebrow").From what has been said so far it should be apparent that there are strong con-nections between the notion of Medical Terminology Server and many knowledgerepresentation systems proposed in Arti�cial Intelligence and in Computer Science(indeed, the formalisms adopted by the various Medical Terminology Server propos-als come from these �elds.) However it must be stressed that the notion of MedicalTerminology Server has deep roots, speci�c to Medicine, in the so called medical con-cept classi�cation systems, and systematized medical nomenclatures [102, 104, 103].Roughly, we may divide these systems into three categories according to their repre-senting and reasoning capabilities.The �rst category is that of the so called coding systems. Coding systems (e.g.ICD9-CM [124], CMIT [61], SNOMED-III [30], MeSH [80]) are based on the enu-merative classi�cation of medical concepts in a given domain. They are composedby experts systematically enumerating all possible concepts in the domain. Conceptsare organized in hierarchies (sometimes a single hierarchy, sometimes multiple hi-erarchies), which are also represented by explicit enumeration. To each concept is10



Medical Terminology Serversassigned a standard code (usually, an alphanumeric string) according to such hierar-chies. For example in ICD9-CM under \chronic obstructive pulmonary disease andallied conditions (490-496)" we �nd \asthma" coded as 493, \extrinsic asthma" as493.0, \intrinsic asthma" as 493.1, \asthma, unspeci�ed" as 493.9. Originally codingsystems were developed for a paper-based support (indeed, usually they are containedin books) and their primary purpose is to discipline the use of medical terms by pro-viding a controlled vocabulary in which each concept has a precise connotation, itscode. Given their nature, coding systems do not provide for reasoning procedures.Coding systems have recently evolved in concept systems that allow for a struc-tured representation of medical concepts, though they do not provide reasoning proce-dures. An example is the semantic network developed within UMLS [77]. UMLS (Uni-�ed Medical Language System) is a project of the National Library of Medicine thataims at providing an integration of existing controlled medical vocabularies to facili-tate access and transformation between computer-based information sources. UMLSorganizes the more general concepts (\concept types") by means of a semantic net-work, while more speci�c concepts are supplied by the so called source vocabularieswhich are again hierarchical. Another example is MED (Medical Entity Dictionary)[27]. MED is a structured knowledge representation language developed by the Centerfor Medical Informatics of ColumbiaUniversity at the Columbia-Presbyterian MedicalCenter. Concepts, in MED, are represented by means of a frame-based language sim-ilar to those developed in Arti�cial Intelligence. No reasoning services are provided.There have also been proposals of systems for describing medical concepts based onsemantical data models for databases, as the Entity-Relationship Model. The mostattractive aspects of such semantical data models are their high descriptive power,and the ease with which they interface actual databases [105, 69, 70].The third category of concept systems is the one that directly led to the notionof Medical Terminological Server. It includes systems that allow for a structuredrepresentation of knowledge and provide reasoning procedures to extract implicitknowledge from the knowledge explicitly represented. Several proposals have beenmade. Such proposals are based on di�erent formalisms, and aim at somewhat dif-ferent goals, but they all share the notion of Medical Terminology Server. One of themajor proposals is the one developed within the GALEN project [98, 101, 99, 100].GALEN (Generalized Architecture for Language Encyclopedias and Nomenclature inMedicine) is a project funded by the European Community, having the purpose of de-veloping language-independent concept representation systems as the foundations forthe next generation of multilingual coding systems. A speci�c concept representationformalism, GRAIL (GALEN Representation and Integration Language), has beendeveloped within GALEN. Such a formalism is a logic-based language resembling adescription logic. Similar proposals have been formulated within the CANON Group[26, 23, 53, 52, 19, 57]. The CANON Group was founded in United States by MedicalInformatics researchers having the goal of establishing a basis for the \canonical" rep-resentation of medical concepts. They are analyzing di�erent formalisms to approachthe problem, based on frame-based languages, semantic networks, and conceptualgraphs. Conceptual graphs have been proposed as a formalism for concept-based rep-resentation systems by others researchers as well, e.g. in [9, 97]. Another research11



CHAPTER 1direction is that of the project group Medicine-Informatics at the German HearthCenter in Berlin [112, 111, 113]. This group is exploring the possible application ofthe system BACK [92] (a general-purpose knowledge representation system based ona description logic) for modeling medical and patient-related information, in order toexploit its representing and reasoning capabilities as the core of a Medical TerminologyServer.Observe that though di�erent formalisms have been proposed as basic represent-ing and reasoning paradigms for Medical Terminology Servers { i.e. semantic net-works, frame-based languages, conceptual graphs, semantic data models, logic-basedlanguages { all these formalisms belong to the same family, that of class-based repre-sentation formalisms.1.3 Goals and main results of the thesisDescription logics o�er a clean, formal and e�ective framework for analyzing severalimportant issues related to class-based representation formalisms, such as expres-sive power, deduction algorithms, and computational complexity of reasoning. Note,however, that in order to address these issues, description logics should be su�cientlygeneral, but, at the same time, su�ciently simple so as to not fall into undecidabilityof reasoning.Currently those description logics that have been studied from a formal point ofview su�er from several limitations that prevent them form being able to capture asu�ciently broad family of class-based representation formalisms. In particular theyare too weak to meet the requirements imposed by modeling complex domains asthose often involved in Medical Terminology Servers. Several papers (e.g. [100, 112,62, 18, 115, 50, 68]) have pointed out that in real applications, the following featuresare often called for.1. The availability of assertions for imposing mutual dependencies between classes.The basic mechanism for this feature is the so-called inclusion assertion, statingthat every instance of a class is also an instance of another class. Much of thework done in description logics assumes that all the knowledge on classes isexpressed through the use of class descriptions, and rules out the possibility ofusing this kind of assertion (note that the power of assertions vanishes with theusual assumption of acyclicity of class de�nitions).2. The availability of a full range of constructs in order to form concept and roledescriptions. Besides the constructs corresponding to the usual boolean connec-tives (union, intersection, complement), and existential and universal quali�ca-tions, two important types of constructs must be mentioned: those for buildingcomplex role descriptions, in particular inverse roles (e.g. \has-direct-part" isthe inverse of \direct-part-of") and re
exive transitive closure (e.g. \part-of"is the re
exive transitive closure of \direct-part-of"); and those for expressingcardinality constraints ranging from functional restrictions (i.e. that a role isfunctional for the instances of a given class) to quali�ed number restrictions (a12



Goals and main results of the thesisgeneralization of functional restrictions, stating the minimumand the maximumnumber of links an instance of a class has with instances of another class).3. The availability of boolean constructs on roles, and the possibility to state as-sertions on roles, expressing inclusion, disjointness, etc.4. The possibility of aggregating individuals in tuples, and then of grouping tuplesinto n-ary relations as opposed to binary relations only (roles).5. The possibility of asserting properties of individuals. Usually this is done interms of the so-called membership assertions. Two kinds of membership asser-tions are taken into account, one for stating that an object is an instance of agiven class, and another one for stating that two objects are related to by meansof a given role.6. The possibility of de�ning classes recursively. In this way it is possible to model,for example, terminating sequences, non-terminating sequences, as well as manyother data structures of Computer Science.The main goal of this thesis is to introduce description logics with the above fea-tures, studying their properties, and to devise reasoning procedures for them, investi-gating decidability and characterizing their computational complexity.To this end, we resort to the work by Schild [108], which singled out a tight cor-respondence between description logics and propositional dynamic logics, which aremodal logics speci�cally designed for reasoning about program schemes. The cor-respondence is based on the similarity between the interpretation structures of thetwo kinds of logics: at the extensional level, objects in description logics correspondto states in propositional dynamic logics, whereas connections between two objectscorrespond to state transitions. At the intensional level, classes correspond to propo-sitions, and roles corresponds to programs. This correspondence is extremely usefulfor two reasons. On the one hand, it makes it clear that reasoning about assertions onclasses is equivalent to reasoning about single dynamic logic formula. On the otherhand, the large body of research on decision procedures in propositional dynamiclogics (see, for example, [74]) can be exploited in the context of description logics,and, inversely, the various works on tractability/intractability of description logics(see for example [48]) can be used in the context of propositional dynamic logics. Wesustain that the work on propositional dynamic logics is a good starting point for ourinvestigation, because it provides a general method for reasoning with:� assertion on classes;� inverses of roles (indeed, several propositional dynamic logics proposed in theliterature include a construct that exactly corresponds to the inverse of roles).The reasoning tasks we focus on are the usual ones.� Satis�ability of concepts, i.e. checking if a concept expression C admits a non-empty interpretation (has some instances). 13



CHAPTER 1� Satis�ability of TBoxes, i.e. checking if a TBox is consistent, where a TBox isthe collection of inclusion assertions that makes up the knowledge the systemis provided with. We assume inclusion assertions to have the form C1 v C2,where C1 and C2 can be any concept expressions (this is the most general formof assertions on classes).� Logical implication in TBoxes, i.e. checking if a concept C1 is subsumed by aconcept C2 wrt the knowledge in the TBox K, written K j= C1 v C2.2We also consider assertional reasoning, i.e. reasoning taking into account knowl-edge about single individuals. However such knowledge will be expressed not onlythrough the usual membership assertions (ABox), but also through inclusion asser-tions involving special atomic concepts denoting exactly a single individual. Thisallows us not to include assertional reasoning among the basic reasoning tasks.The basic reasoning tasks above are not independent. In particular we can easilyreformulate both satis�ability of single concepts and satis�ability of TBoxes in termsof logical implications. Indeed logical implication seems to be the most general rea-soning task. However we will see that for most of the logics we will introduce, logicalimplication can be reformulated as satis�ability of a single concept (it is essentiallythe ability of expressing re
exive transitive closure of roles that allows us to capturethe knowledge in the TBox within a single concept).Next to each description logic we will introduce a corresponding propositionaldynamic logic3. Most of these propositional dynamic logics have not been studiedyet, and decidability and computational characterization (of both satis�ability andlogical implication) are established within this thesis.Figure 1.1 depicts the description logics studied in the thesis. The weaker logicsare at the bottom of the �gure while the stronger ones are at the top.A line (either thin or thick) between two logics denotes that the logic above is anextension (in the sense that it has more constructs) of the logic below. If the line isa thick line then it means that, a (non trivial) reduction, from (the reasoning tasksof) the logic above to (the reasoning tasks of) the logic below, is exhibited in thethesis. The dashed thick line between CI and C denotes a reduction from CI to Cwhich was not contained in the original version of the thesis and it is included hereas an appendix.The logics in the closed area have already been studied, and the decidability andcomputational complexity characterization of the basic reasoning tasks is alreadyknown.Figure 1.2 is the analogue of Figure 1.1 for the corresponding propositional dy-namic logics. The meaning of the various lines and of the closed area is the same asbefore.Let us brie
y introduce the logics in the pictures.2Note that checking if a new piece of information is consistent with the knowledge of the system,is expressible as checking that the TBox does not logically imply the negation of the new piece ofinformation.3We use the term propositional dynamic logic in a slightly more general sense then usual, so asto include the basic multimodal logic Ki, and modal mu-calculus.14



Goals and main results of the thesis
CIO CIF �ALCNCNOCINBRCINBCIN �ALC�ALCFCFOCNCFCI CALCFigure 1.1: Description logics studied in the thesisALC is a very well known description logic [110]. It includes boolean constructs(union, intersection, and complement), existential quali�cation and universal quali�-cation for building complex concept expressions, while role can only be atomic. ALCcorresponds to the well-known modal logic Ki [108], which is the basic normal mul-timodal logic [60, 63, 22, 66]. Satis�ability of an ALC concept (satis�ability of a Kiformula) is known to be PSPACE-complete while logical implication for ALC (for Ki)is EXPTIME-complete.C is the description logic obtained from ALC by adding the following role con-structs: union, chaining, re
exive transitive closure, and identity role over a concept(see [108, 3]). C corresponds to the propositional dynamic logic D, which is the origi-nal propositional dynamic logic introduced in [56]. All the basic reasoning tasks in C(D) are known to be EXPTIME-complete.�ALC is obtained from ALC by adding two concept constructs denoting the least�xpoint and the greatest �xpoint of concept expressions (see Chapter 8 for details).Notabily, the �xpoint constructs allow for recursive concept de�nitions within theusual descriptive semantics. Observe that even if no role constructs are present, �ALCis actually an extension of C, since all concept denotable in C are also denotable in�ALC. Indeed using �xpoints we can emulate all role expressions occurring in a Cconcept. The correspondent propositional dynamic logic �Ki is the modalmu-calculus[71], which is known to be decidable and EXPTIME-complete. The correspondencewas derived independently by both Schild and the author in [109] and [38] respectively.The description logics (propositional dynamic logics) introduced in this thesis are15



CHAPTER 1
DIO DIF �KiNDNODINBRDINBDIN �Ki�KiFDFODNDFDI DKiFigure 1.2: Propositional dynamic logics studied in the thesisobtained from C and �ALC (D and �Ki) by adding constructs either on concepts(formulae) or roles (programs). The presence of such constructs is re
ected in thename of the logics.I in the name of a logic indicated the presence of inverse roles (converse programsin propositional dynamic logic). In all description logics introduced that includeinverse roles, there is a perfect symmetry between atomic roles and inverse of atomicroles, in the sense that all constructs dealing with atomic roles, deal with inverse ofatomic roles as well, similarly for the corresponding propositional dynamic logics.F in the name of a logic indicates the presence of functional restrictions. In de-scription logics, a functional restriction forces a speci�ed atomic role or its inverseto be functional wrt the individuals that satisfy it. Similarly for the correspondingpropositional dynamic logics. Observe the di�erence between functional restrictionson atomic programs and the assumption that atomic programs are deterministic, char-acterizing the so called deterministic propositional dynamic logics. The �rst imposethe functionality of a given program locally (i.e. wrt states that are forced to satisfythe restriction), while the other assumes the functionality of each atomic programonce and for all (i.e. for all possible states).N in the name of a logic indicates the presence of quali�ed number restrictions.Quali�ed number restrictions have a correspondent notion in modal logic, the gradedmodalities. Though, to our knowledge we are the �rst to study full-
edged proposi-tional dynamic logics that include graded modalities.B in the name of a logic indicates the presence of boolean constructs for atomic roles(programs), together with the ability of stating assertions on boolean combinationsof atomic roles (programs). Although negation of a role is allowed, it is de�ned so asnot to introduce, as a side e�ect, the ability to denote the universal role, by means of16



Structure of the thesisa boolean expression of atomic roles (see the discussion in Chapter 5).R in the name of a description logic indicates the presence of n-ary relations inplace of atomic roles, with suitable constructs to build complex relations, roles, andconcepts, similarly for the corresponding propositional dynamic logics.Finally, O in the name of a logic indicates the presence of special atomic concepts(formulae) called names denoting exactly a single individual. Note that by meansof names, ABoxes (collections of membership assertions), and constructs involvingsingle individuals as ONE-OF or FILLS can be represented. Names corresponds tothe notion of nominals in modal logics. Propositional dynamic logics with nominalsare often called combinatory propositional dynamic logics. The results on names inthis thesis close some open problems related to combinatory propositional dynamiclogics, by characterizing the computational complexity of deterministic combinatorypropositional dynamic logic (which is easily reduced to DFO), and establishing thedecidability and characterizing the computational complexity of converse combinatorypropositional dynamic logic (which is easily reduced to DIO).The main results of the thesis can be summarized as follows:� We have de�ned and studied the new logics shown in Figure 1.1 and Figure 1.2.� We have established the decidability of their reasoning tasks.� We have characterized the computational complexity of their reasoning tasks asEXPTIME-complete, by reducing them to reasoning tasks of known propositionaldynamic logics (either D, DI, or �Ki).Research on description logics has systematically investigated concept satis�abil-ity and concept subsumption for a wide range of constructs (e.g. [47]). The workreported in this thesis can be seen as the analogue of that study, when TBoxes ofthe most general form (no restrictions on cycles) are taken into account. Indeed, wesystematically investigate satis�ability and concept subsumption wrt to TBoxes (bothexpressible in terms of logical implication in TBoxes) for a wide variety of constructs.Note, however, that emphasis is put on extending the set of constructs, instead ofcutting it down. This is because, as mentioned above, even for the simple descriptionlogic ALC, reasoning tasks that take into account TBoxes are EXPTIME-complete.1.4 Structure of the thesisThe thesis is organized in nine chapters plus an appendix. The contents of eachchapter is reported below.Chapter 1 is the present introduction.Chapter 2 introduces the relevant background on both description logics andpropositional dynamic logics, the correspondence between description logics andpropositional dynamic logics [108], and some convenient notions used later.Chapter 3 introduces the description logic CIF (C plus inverse roles and functionalrestrictions) and the corresponding propositional dynamic logic DIF . The decidabil-ity and the computational characterization as EXPTIME-complete of the reasoning17



CHAPTER 1tasks in CIF and DIF , is established by exhibiting a polynomial reduction from sat-is�ability in DIF to satis�ability in DI (i.e. converse propositional dynamic logic).The reduction is based on adding special \constraints" so as to represent functionalrestrictions within DI. A discussion on the results ends the chapter.Chapter 4 introduces the description logic CIN (C plus inverse roles and quali�ednumber restrictions) and the corresponding propositional dynamic logic DIN . Thedecidability and computational characterization as EXPTIME-complete of the rea-soning tasks in CIN and DIN is established by showing a polynomial reduction fromsatis�ability in DIN to satis�ability in DIF . The reduction is de�ned in two steps:�rst every atomic role is rei�ed; then quali�ed number restrictions are reduced toexpressions involving only functional restrictions as cardinality constraints. A muchsimpler technique to reduce CN and DN to deterministic propositional dynamic logicis also presented. A discussion on the results ends the chapter.Chapter 5 introduces the description logic CINB (CIN plus boolean expressionsof roles and inclusion assertions on atomic roles) and the corresponding propositionaldynamic logic DINB. The decidability and the computational characterization asEXPTIME-complete of the reasoning tasks, is established by exhibiting a polynomialreduction from logical implication in DINB to logical implication in DIN . Suchreduction makes use of the rei�cation technique introduced in Chapter 4. Note thatfor such logics, logical implication cannot be readily reduced to satis�ability as in theprevious cases, because of the presence of inclusion assertions on atomic roles (axiomson atomic programs). A discussion on the results ends the chapter.Chapter 6 introduces the description logic CINBR (CINB plus boolean expres-sion on atomic n-ary relations and inclusion assertions on atomic n-ary relations).The corresponding propositional dynamic logic DINBR is not explicitly presentedin this case. The decidability and the computational characterization as EXPTIME-complete of the reasoning tasks, is established by exhibiting a polynomial reductionfrom logical implication in CINBR to logical implication in DIN . Such a reductionis in line with the one shown in Chapter 5.Chapter 7 deals with individuals. It shows how to reduce reasoning with bothABox and TBox to reasoning with only a TBox for the description logics CN andCI. This is done by showing a polynomial reduction from satis�ability of CN (CI)ABoxes and TBoxes to satis�ability of a single DN (DI) formula. A discussion on theresults ends the chapter, showing that the reductions presented are general enoughto allow for polynomially reducing reasoning tasks in CNO and CIO to reasoningtasks in CN and CI, respectively. Thus decidability and computational characteriza-tion as EXPTIME-complete is established for CNO and CIO and the correspondingpropositional dynamic logics.Chapter 8 starts with a discussion on the various semantics for recursive de�nitionsof concepts, arguing for an unifying approach that allows for the various semanticsto coexist in the same formalism. To this end, �xpoints of concept expressions areintroduced, and a correspondence is devised with modal mu-calculus. Speci�callythe reasoning tasks in the description logics �ALC are shown to be reducible tosatis�ability of modal mu-calculus, thus establishing their decidability and computa-tional characterization as EXPTIME-complete. Next, quali�ed number restrictionsare taken into account, getting the description logic �ALCN and the corresponding18



Structure of the thesisextended modal mu-calculus �KiN . Decidability and computational characterizationas EXPTIME-complete are established for these logics as well, by showing a reduc-tion from satis�ability in �ALCN to satis�ability in modal mu-calculus interpretedover deterministic structures. Other interesting properties of description logics with�xpoints are discussed in the chapter.Finally the appendix contains the details of a polynomial reduction from DI (CI)to D (C), which was not included in the original version of the thesis.

19



CHAPTER 1

20



Chapter 2PreliminariesIn this chapter we present the basic notions regarding both description logics andpropositional dynamic logics. We refer the reader to [82] and [74] for an introductionto the subjects. We also prove some propositions to be used in the following chapters.2.1 Description logicsDescription logics allow one to represent a domain of interest in terms of concepts androles. Concepts model classes of individuals, while roles model relationships betweenclasses. Starting with atomic concepts and atomic roles, which are concepts and rolesdescribed simply by a name, complex concepts and roles can be built by means ofsuitable constructs.In the following, we focus on the description logic CI which has been studied in[108].1 The formation rules of CI are speci�ed by the following abstract syntax:C ::= > j ? j A j C1 u C2 j C1 t C2 j C1 ) C2 j :C j 9R.C j 8R.CR ::= P j R1 tR2 j R1 �R2 j R� j R� j id(C)where A denotes an atomic concept, C (possibly with a subscript) denotes a concept,P denotes an atomic role, and R (possibly with a subscript) denotes a role.Note that CI is a very expressive language, comprising all usual concept constructs,and a rich set of role constructs, namely: union of roles R1 t R2, chaining of rolesR1 �R2, re
exive-transitive closure of roles R�, inverse roles R�, and the identity roleid(C) projected on C.Concepts are interpreted as subsets of a domain, while roles are interpreted asbinary relations over such a domain. Formally, an interpretation I = (�I; �I) consistsof a domain of interpretation �I, and an interpretation function �I mapping every1The description logics C and ALC are obtained from CI by dropping inverse roles and all roleconstructs respectively. 21



CHAPTER 2concepts to a subset of �I and every role to a subset of �I ��I as follows2:AI � �I>I = �I?I = ;(:C)I = �I � CI(C1 u C2)I = CI1 \ CI2(C1 t C2)I = CI1 [ CI2(C1 ) C2)I = (:C1)I [ CI2(9R.C)I = fd 2 �I j 9d0:(d; d0) 2 RI and d0 2 CIg(8R.C)I = fd 2 �I j 8d0:(d; d0) 2 RI implies d0 2 CIgP I � �I ��I(R1 tR2)I = RI1 [RI2(R1 �R2)I = RI1 �RI2(R�)I = (RI)� = Si�0(RI)i(R�)I = f(d1; d2) 2 �I ��I j (d2; d1) 2 RIgid(C)I = f(d; d) 2 �I ��I j d 2 CIg:A concept is satis�able if there exists an interpretation I such that CI 6= ;,otherwise the concept is unsatis�able. An interpretation I is a model of a concept Cif I satis�es C.A TBox K (i.e. intensional knowledge base) is a �nite set on inclusion assertionsof the form C1 v C2, where C1 and C2 are general concepts. An interpretation Iis a model of an inclusion assertion C1 v C2 if CI1 � CI2 . An interpretation I isa model of a TBox K if I is a model of each inclusion assertion in K. A TBox Kis satis�able if it has a model. A TBox K logically implies an assertion C1 v C2,written K j= C1 v C2, if C1 v C2 is satis�ed by every model of K. Observe thatK j= C1 v C2 expresses that the concept C1 is subsumed by C2 wrt the TBox K.3Note that each basic reasoning task can be (linearly) reformulated as logical im-plication in a TBox. Namely satis�ability of a concept C can be reformulated as; 6j= C v ?, satis�ability of a TBox K as K 6j= > v ?.2.2 Propositional dynamic logicsWe focus on the propositional dynamic logic DI (Converse PDL [56]) which as itturns out corresponds to CI.4 The abstract syntax of DI is as follows:� ::= > j ? j A j �1 ^ �2 j �1 _ �2 j �1 ) �2 j :� j < r > � j [r]�r ::= P j r1 [ r2 j r1; r2 j r� j r� j �?2The notation (RI)i stands for i repetitions of RI { i.e., (RI)1 = RI, and (RI)i = RI �(RI)i�1.3Accordingly, a concept C1 is subsumed by a concept C2, if ; j= C1 v C2, i.e. if for everyinterpretation I, CI1 � CI2 .4The propositionaldynamic logicD (PDL [56]) is obtained fromD by dropping converse programsr�, while Ki is obtained by allowing only atomic programs.22



Propositional dynamic logicswhere A denotes a propositional letter, � (possibly with a subscript) denotes a for-mula, P denotes an atomic program, and r (possibly with a subscript) denotes aprogram.The semantics of propositional dynamic logics (see [74]) is based on the notion of(Kripke) structure, which is de�ned as a triple M = (S; fRP g;�), where S denotesa non-empty set of states, fRPg is a family of binary relations over S such that eachatomic program P is given a meaning through RP , and � is a mapping from S topropositional letters such that �(s) determines the letters that are true in the states. The basic semantical relation is \a formula � holds at a state s of a structure M",which is written M; s j= � and is de�ned by induction on the formation of �:M; s j= A i� A 2 �(s)M; s j= > alwaysM; s j= ? neverM; s j= �1 ^ �2 i� M; s j= �1 and M; s j= �2M; s j= �1 _ �2 i� M; s j= �1 or M; s j= �2M; s j= �1 ) �2 i� M; s j= �1 impliesM; s j= �2M; s j= :� i� M; s 6j= �M; s j=< r > � i� 9s0:(s; s0) 2 Rr and M; s0 j= �M; s j= [r]� i� 8s0:(s; s0) 2 Rr impliesM; s0 j= �where the family fRP g is systematically extended so as to include, for every programr, the corresponding relation Rr de�ned by induction on the formation of r:RP � S � SRr1[r2 = Rr1 [Rr2RR1 ;R2 = Rr1 � Rr2 (seq. comp. of Rr1 and Rr2 )Rr� = (Rr)� (re
. trans. closure of Rr)Rr� = f(s1; s2) 2 S � S j (s2; s1) 2 RrgR�? = f(s; s) 2 S � S jM; s j= �g:We often denote a structure M = (S; fRP g;�) by (S; fRrg;�), where fRrg includesa binary relation for every program (atomic or non-atomic).A structure M = (S; fRPg;�) is called a model of a formula � if there exists astate s 2 S such that M; s j= �. A formula � is satis�able if there exists a model of �,otherwise the formula is unsatis�able. A formula � is valid in structure M , if for alls 2 S, M; s j= �. We call axioms, formulae that are assumed to be valid. Formally, astructure M is a model of an axiom �, if � is valid in M . An axiom is satis�able, ifit has a model. A structure M is a model of a �nite set of axioms �, ifM is a modelof all axioms in �. A �nite set of axioms is satis�able if it has a model. We say thata �nite set � of axioms logically implies a formula �, written � j= �, if � is valid inevery model of �.Observe that satis�ability of a formula � as well as satis�ability of a �nite set ofaxioms � can be reformulated by means of logical implication, as ; 6j= :� and � 6j= ?respectively. In turn logical implication can be reformulated in terms of satis�ability,by making use of the following theorem (see [74]). 23



CHAPTER 2Theorem 1 Let � be a �nite set of DI axioms, and � a DI formula. Then � j= �if and only if the DI formula[(P1 [ : : :[ Pm [ P�1 [ : : :[ P�m)�]�0 ^ :�is unsatis�able, where P1; : : : ; Pm are all atomic programs occurring in � [ f�g and�0 is the conjunction of all axioms in �.An analogous result holds for most propositional dynamic logics.5 Observe that sucha result exploits the power of program constructs (union, re
exive transitive closure)and the \connected model property"6 of propositional dynamic logics in order torepresent axioms (valid formulae).Theorem 1 (and its analogues) is one of the main reasons to exploit the correspon-dence between description logics and propositional dynamic logics.2.3 The correspondence between DLs and PDLsThe correspondence between CI and DI, �rst pointed out by Schild [108], is basedon the similarity between the interpretation structures of the two logics: at the ex-tensional level, individuals (members of �I) in description logics correspond to statesin propositional dynamic logics, whereas connections between two individuals corre-spond to state transitions. At the intensional level, classes correspond to propositions,and roles corresponds to programs. The correspondence is realized through a (one-to-one and onto) mapping � from CI concepts to DI formulae, and from CI roles toDI programs. The mapping � is de�ned inductively as follows (we assume t;) tobe expressed by means of u;:):�(A) = A �(P ) = P�(C1 u C2) = �(C1) ^ �(C2) �(:C) = :�(C)�(9R.C) =< �(R) > �(C) �(8R.C) = [�(R)]�(C)�(R1 tR2) = �(R1) [ �(R2) �(R1 �R2) = �(R1); �(R2)�(R�) = �(R)� �(id(C)) = �(C)?�(R�) = �(R)�:The mapping � can be extended to a mapping �+ from CI TBoxes to DI formulae.Namely, if K = fk1; � � � ; kng is a TBox in CI, and P1; : : : ; Pm are all atomic rolesappearing in K, then�+(K) = [(P1 [ � � � [ Pm [P�1 � � � [ P�m )�] �+(fk1g) ^ � � � ^ �+(fkng);�+(fC1 v C2g) = (�(C1)) �(C2)):Making use of Theorem 1, we can state the following: if K is a TBox, then K j= C1 vC2 (where atomic concepts and roles in C1; C2 are also in K) if and only if the DIformula �+(K) ^ �(C1) ^ �(:C2)5In the analogue of Theorem 1 for D the formula to check for unsatis�ability is [(P1 [ : : : [Pm)�]�0 ^ :�.6That is, if a formula has a model, it has a model which is connected.24



Other preliminary notionsis unsatis�able. Note that the size of the above formula is polynomial with respect tothe size of K; C1 and C2.By virtue of � and �+, respectively, both satis�ability of CI concepts, and logi-cal implication for CI TBoxes, can be (polynomially) reduced to satis�ability of DIformulae. Since satis�ability for DI an EXPTIME-complete problem, so are satis�-ability of CI concepts and logical implication for CI TBoxes. It is straightforward toextend the correspondence, and hence both � and �+, to other description logics andpropositional dynamic logics.2.4 Other preliminary notionsIn this section, we introduce several notions, propositions, and notations that will beused in the chapters which follow. We assume, without loss of generality, _;); [�]to be expressed by means of :;^; < � >, and the converse operator to be applied toatomic programs only7.Fisher-Ladner closureThe Fisher-Ladner closure ([56]) of a DI formula �, denoted CL(�), is the least setF such that � 2 F and such that:�1 ^ �2 2 F ) �1; �2 2 F:� 2 F ) � 2 F� 2 F ) :� 2 F (if � is not of the form :�0)< r > � 2 F ) � 2 F< r1; r2 > � 2 F ) < r1 >< r2 > � 2 F< r1 [ r2 > � 2 F ) < r1 > �;< r2 > � 2 F< r� > � 2 F ) < r >< r� > � 2 F< �0? > � 2 F ) �0 2 F:The notion of Fisher-Ladner closure of a formula is closely related to the notion of setof subformulae in simpler modal logics: intuitively, given a formula �, CL(�) includesall the formulae that play some role in establishing the truth-value of �. Both thenumber and the size of the formulae in CL(�) are linearly bounded by the size of �(see [56]). Note that, by de�nition, if � 2 CL(�), then CL(�) � CL(�). We remarkthat the notion of Fisher-Ladner closure can be easily extended to formulae of otherpropositional dynamic logics.Let us denote the empty sequence of programs by the program ", and de�ne< " > � := � and ["]� := �. We call Post(r) the set of programs de�ned by induction7We recall that the following equations hold: (r1; r2)� = r�2 ; r�1 ; (r1 [ r2)� = r�1 [ r�2 ; (r�1)� =(r�1 )�; (�?)� = �?. 25



CHAPTER 2on the structure of r as follows (a = P j P�):Post(a) = f"; agPost(r1; r2) = fr01; r2 j r01 2 Post(r1)g [ Post(r2)Post(r1 [ r2) = Post(r1) [ Post(r2)Post(r�1) = fr01; r�1 j r01 2 Post(r1)gPost(�?) = f"; �?g:Similarly, we call Pre(r) the set of programs de�ned by induction on the structure ofr as follows: Pre(a) = f"; agPre(r1; r2) = fr1; r02 j r02 2 Pre(r2)g [ Pre(r1)Pre(r1 [ r2) = Pre(r1) [ Pre(r2)Pre(r�1) = fr�1; r01 j r01 2 Pre(r1)gPre(�?) = f"; �?g:Roughly, Post(r) is the set formed by those programs that are \post�x" of the pro-gram r, while Pre(r) is the set formed by those programs that are \pre�x" of r. Thesize of both Post(r) and Pre(r) is polynomial in the size of r. Moreover the programsin Post(r) have the following two properties.Proposition 2 Let < r > � be a formula. For all r0 2 Post(r), < r0 > � 2 CL(<r > �).Proof By induction on r.� r = a or r = �0?. Then Post(r) = f"; rg. By de�nition, both � 2 CL(< r > �)and < r > � 2 CL(< r > �).� r = r1; r2. Then Post(r1; r2) = fr01; r2 j r01 2 Post(r1)g [ Post(r2).Since r1 is a subprogram of r1; r2, by induction hypothesis, for all r01 2 Post(r1):< r01 > (< r2 > �) 2 CL(< r1 >< r2 > �) � CL(< r1; r2 > �):On the other hand, since r2 is subprogram of r1; r2, by induction hypothesis,for all r02 2 Post(r2):< r02 > � 2 CL(< r2 > �) � CL(< r1; r2 > �):� r = r1[r2. Then Post(r1[r2) = Post(r1)[Post(r2). By induction hypothesis,for i = 1; 2, for all r0i 2 Post(ri):< r0i > � 2 CL(< ri > �) � CL(< r1 [ r2 > �):� r = r�1. Then Post(r�1) = fr01; r�1 j r01 2 Post(r1)g. By induction hypothesis, forall r01 2 Post(r1):< r01 > (< r�1 > �) 2 CL(< r1 >< r�1 > �) � CL(< r�1 > �):26



Other preliminary notions2Proposition 3 Let < r1 > : : : < rl > � be a formula. For all r0 2 Post(r1; : : : ; rl),there is a formula  2 CL(< r1 > : : : < rl > �) such that  is equivalent to < r0 > �(i.e.  �< r0 > � is valid).Proof By induction on l. If l = 1, the thesis holds trivially, by Proposition 2. Ifl > 1 then Post(r1; r2; : : : ; rl) = fr01; r2; : : : ; rl j r01 2 Post(r1)g [ Post(r2; : : : ; rl). ByProposition 2, for all r01 2 Post(r1): < r01 > (< r2 > : : : < rl >)� 2 CL(< r1 ><r2 > : : : < rl > �). While, by induction hypothesis, for all r0 2 Post(r2; : : : ; rl):< r0 > � is equivalent to  , for some  2 CL(< r2 > : : : < rl > �) � CL(< r1 ><r2 > : : : < rl > �): 2PathsNext we introduce the notion of path, which is similar to the notion of trajectory usedin [7], and to that of execution sequence in [119].A path in a structure M is a sequence (s0; : : : ; sq) of states ofM (q � 0), such thatfor each i = 1; : : : ; q, (si�1; si) 2 Ra for some a = P j P�. The length of (s0; : : : ; sq)is q. Intuitively a path describes the sequence of states a given run of a program goesthrough.We inductively de�ne the set of paths PathsM (r) of a program r in a structureM , as follows8:PathsM (a) = Ra (a = P j P�)PathsM (r1 [ r2) = PathsM (r1) [ PathsM(r2)PathsM (r1; r2) = f(s0; : : : ; su; : : : ; sq) j (s0; : : : ; su) 2 PathsM (r1)and (su; : : : ; sq) 2 PathsM (r2)gPathsM (r�) = f(s) j s 2 Sg [ (Si>0PathsM(ri))PathsM (�0?) = f(s) j M; s j= �0g:We say that a path (s0) in M satis�es a formula � which is not of the form< r > �0 if M; s0 j= �. We say that a path (s0; : : : ; sq) in M satis�es a formula� of the form < r1 > � � � < rl > �0, where �0 is not of the form < r0 > �00, if(s0; : : : sq) 2 PathsM(r1; � � � ; rl) and M; sq j= �0.The following two propositions describe the basic properties of paths: they concernpaths of length 0 and paths of length greater then 0 respectively.Proposition 4 LetM be a structure and < r > � a formula such that: M; s j=< r >�, (s) 2 PathsM (r), and M; s j= �. Then there exists a formula < �1?; : : : ;�g? > �,with g � 0, such that:� all tests �i? occur in r;� M; s j=< �1?; : : : ;�g? > �;8The notation ri stands for i repetitions of r { i.e., r1 = r, and ri = r; ri�1. 27



CHAPTER 2� < �1?; : : : ;�g? > �)< r > � is valid.Proof By induction on r.1) r = �0?.The thesis holds trivially.2) r = r1; r2.M; s j=< r1; r2 > � and (s) 2 PathsM (r) implies that M; s j=< r1 >< r2 > � and(s) 2 PathsM(r1) and (s) 2 PathsM(r2).By induction hypothesis, we can assume that:� there is a formula < �1;1?; : : : ;�1;g1? >< r2 > � such that all tests �1;j? occurin r1, M; s j=< �1;1?; : : : ;�1;g1? >< r2 > �, and < �1;1?; : : : ;�1;g1? >< r2 >�)< r1 >< r2 > � is valid;� there is a formula < �2;1?; : : : ;�2;g2? > � such that all tests �2;j? occur in r2,M; s j=< �2;1?; : : : ;�2;g1? > �, and < �2;1?; : : : ;�2;g2? > �)< r2 > � is valid.Hence, we can conclude that the formula< �1;1?; : : : ;�1;g1?;�2;1?; : : : ;�2;g2? > �is such that: (1) all tests �i;j? occur in r1 or r2 and therefore in r; (2) M; s j=<�1;1?; : : : ;�1;g1?;�2;1?; : : : ;�2;g2? > �; (3) < �1;1?; : : : ;�1;g1?;�2;1?; : : : ;�2;g2? >� )< r1; r2 > � is valid, as can be easily veri�ed, considering that <�1;1?; : : : ;�1;g1? >< r2 > � )< r1 >< r2 > � is valid, and any formula of theform <  1?; : : : ; g? >  is equivalent to  1 ^ : : :^  g ^  .3) r = r1 [ r2.M; s j=< r1 [ r2 > � implies that, either for i = 1 or for i = 2, M; s j=< ri > � and(s) 2 PathsM (ri). By induction hypothesis we can assume that there is a formula< �i;1?; : : : ;�i;gi? > � such that all tests �i;j? occur in ri,M; s j=< �i;1?; : : : ;�i;gi? >�, and < �i;1?; : : : ;�i;gi? > � )< ri > � is valid. Therefore, considering that< ri > �)< r1 [ r2 > �, we get the thesis.4) r = r�1.Since (s) 2 PathsM (r�1), < r�1 > � is equivalent �_ < r1 >< r�1 > �, and M; s j= �,the thesis holds trivially (with g = 0). 2Proposition 5 Let M be a structure, and < r > � a formula such that: M; s j=<r > �, (s = s0; : : : ; sq) 2 PathsM(r) with q > 0, M; sq j= �. Then there exists aformula < �1?; : : : ;�g?; a >< r0 > �, with g � 0, such that:� all tests �i? occur in r;� r0 2 Post(r) (and hence < r0 > � is equivalent to  { i.e. < r0 > � �  is valid{ for some  2 CL(< r > �));� (s0; s1) 2 Ra;28



Other preliminary notions� M; s1 j=< r0 > �;� (s1; : : : ; sq) 2 PathsM (r0);� < �1?; : : : ;�g?; a >< r0 > �)< r > � is valid.Proof By induction on r.1) r = a.The thesis holds trivially.2) r = r1; r2.Let (s0; : : : ; si) be the segment of (s0; : : : ; sq) such that (s0; : : : ; si) 2 PathsM (r1)and (si; : : : ; sq) 2 PathsM (r2). We consider two cases:� i > 0. Consider that: (1) M; s0 j=< r1 > �0 for �0 =< r2 > �; (2) (s0; : : : ; si) 2PathsM (r1) with i > 0; (3) M; si j=< r2 > �. By induction hypothesis, thereis a formula < �1?; : : : ;�g?; a >< r01 >< r2 > � such that:{ all tests �i? occur in r1, and hence in r;{ r01 2 Post(r1), and hence r01; r2 2 Post(r1; r2);{ (s0; s1) 2 Ra;{ M; s1 j=< r01 >< r2 > �, and hence M; s1 j=< r01; r2 > �;{ (s1; : : : ; si) 2 PathsM (r01) with i � q, and hence (s1; : : : ; sq) 2 PathsM(<r01; r2 > �);{ < �1?; : : : ;�g?; a >< r01 >< r2 > �)< r1 >< r2 > � is valid, and hence< �1?; : : : ;�g?; a >< r01; r2 > �)< r1; r2 > � is valid.� i = 0. By Proposition 4, there exists a formula < �1;1?; : : : ;�1;g1? >< r2 > �such that{ all tests �1;j? occur in r1;{ M; s0 j=< �1;1?; : : : ;�1;g1? >< r2 > �;{ < �1;1?; : : : ;�1;g1? >< r2 > �)< r1 >< r2 > � is valid.On the other hand, observe that < r2 > � is such that: (1) M; s j=< r2 > �;(2) (s = s0; : : : ; sq) 2 PathsM(r2) with q > 0; (3) M; sq j= �. Therefore, byinduction hypothesis, there is a formula < �2;1?; : : : ;�2;g2?; a >< r02 > � suchthat{ all tests �2;j? occur in r2;{ r02 2 Post(r2) (� Post(r1; r2));{ (s0; s1) 2 Ra;{ M; s1 j=< r02 > �;{ (s1; : : : ; sq) 2 PathsM (r02);{ < �2;1?; : : : ;�2;g2?; a >< r02 > �)< r2 > � is valid. 29



CHAPTER 2Hence the formula < �1;1?; : : : ;�1;g1?;�2;1?; : : : ;�2;g2?; a >< r02 > � is suchthat{ all tests �i;j? occur in either in r1 or in r2;{ r02 2 Post(r1; r2);{ (s0; s1) 2 Ra;{ M; s1 j=< r02 > �;{ (s1; : : : ; sq) 2 PathsM (r02);{ < �1;1?; : : : ;�1;g1? >< �2;1?; : : : ;�2;g2?; a >< r02 > � )< r1 >< r2 > �is valid, and hence < �1;1?; : : : ;�1;g1?;�2;1?; : : : ;�2;g2?; a >< r02 > � )<r1; r2 > � is valid (recall that any formula of the form <  1?; : : : ; g? >  is equivalent to  1 ^ : : :^  g ^  ).3) r = r1 [ r2.M; s j=< r1 [ r2 > � with (s = s0; : : : ; sq) 2 PathsM (r1 [ r2) implies that ei-ther for i = 1 or i = 2: (1) M; s j=< ri > �; (2) (s = s0; : : : ; sq) 2 PathsM (ri)with q > 0; (3) M; sq j= �. Thus, by induction hypothesis, there is a formula< �i;1?; : : : ;�i;g1?; ai >< r0i > � such that:� all tests �i;j? occur in ri, and hence in r1 [ r2;� r0i 2 Post(ri) � Post(r1 [ r2);� (s0; s1) 2 Ra;� M; s1 j=< r0i > �;� (s1; : : : ; sq) 2 PathsM (r0i);� < �i;1?; : : : ;�i;gi?; ai >< r0i > �)< ri > � is valid, and therefore, consideringthat, < ri > � )< r1 [ r2 > � is valid, we get that < �i;1?; : : : ;�i;gi?; ai ><r0i > �)< r1 [ r2 > � is valid.4) r = r�1.Since q > 0, we have that M; s j=< r�1 > � implies M; s j=< r1 >< r�1 > �,and furthermore there is a segment (s0; : : : ; si) of (s0; : : : ; sq) with 0 < i � q,such that (s0; : : : ; si) 2 PathsM (r1) and (si; : : : ; sq) 2 PathsM (r�1). Thus we have:(1) M; s0 j=< r1 > �0 with �0 =< r�1 > �; (2) (s0; : : : ; si) 2 PathsM(r1) withi > 0; (3) M; si j=< r�1 > �. By induction hypothesis there exists a formula< �1?; : : : ;�g?; a >< r01 >< r�1 > � such that� all tests �i? occur in r1, and hence in r�1;� r01 2 Post(r1), and hence r01; r�1 2 Post(r�1);� (s0; s1) 2 Ra;� M; s1 j=< r01 >< r�1 > �, and hence M; s1 j=< r01; r�1 > �;30



Other preliminary notions� (s1; : : : ; si) 2 PathsM(r01), and hence (s1; : : : ; sq) 2 PathsM (r01; r�1);� < �1?; : : : ;�g?; a >< r01 >< r�1 > � )< r1 >< r�1 > � is valid, hence <�1?; : : : ;�g?; a >< r01; r�1 > � )< r1; r�1 > � is valid. Therefore, consideringthat < r1; r�1 > �)< r�1 > �, we get that < �1?; : : : ;�g?; a >< r01; r�1 > �)<r�1 > � is valid.2 Finally, if a denotes the atomic program P (resp. the inverse of an atomic programP�), then we write a� to denote P� (resp. P ).

31



CHAPTER 2

32



Chapter 3Functional RestrictionsIn this chapter we study the description logic CIF and the propositional dynamiclogic DIF obtained from CI and DI by adding the functional restriction construct(� 1 a). The functional restriction (� 1 a) imposes that the role a, where a is eitheran atomic role (program) or the inverse of an atomic role (program), is functional wrtindividuals (states) in which (� 1 a) holds.3.1 The logics CIF and DIFConcepts of CIF are formed according to the following abstract syntax:C ::= > j ? j A j C1 u C2 j C1 t C2 j C1 ) C2 j :C j9R.C j 8R.C j (� 1 a)a ::= P j P�R ::= a j R1 tR2 j R1 �R2 j R� j R� j id(C)where A denotes an atomic concept, C (possibly with a subscript) a generic concept,P an atomic role, a a simple role, i.e. either an atomic role or the inverse of an atomicrole, R (possibly with a subscript) a generic role.The semantics of CIF is the same as for CI, except for functional restrictions(� 1 a) whose meaning in an interpretation I is the following (recall a = P j P�):(� 1 a)I = fd 2 �I j there exists at most one d0 such that (d; d0) 2 aIg:Note that in CIF there is a complete symmetry between atomic roles and inverseof atomic roles. This symmetry is often needed in representing complex domains.Furthermore it makes CIF suitable to explore extensions of the logic based on therei�cation of the relations as shown later.The corresponding propositional dynamic logic is called DIF and its syntax is as33



CHAPTER 3follows: � ::= > j ? j A j �1 ^ �2 j �1 _ �2 j �1 ) �2 j :� j< r > � j [r]� j (� 1 a)a ::= P j P�r ::= a j r1 [ r2 j r1; r2 j r� j r� j �?where A denotes a propositional letter, � (possibly with a subscript) a formula, Pan atomic program, a a simple program, i.e. an atomic program or the inverse of anatomic program, and r (possibly with a subscript) a generic program.Consistently with its interpretation in CIF , the new construct is interpreted asfollows: given a structure M = (S; fRrg;�) and a state s 2 S,M; s j= (� 1 a) i� there exists at most one t such that (s; t) 2 Ra:The rest of the constructs are interpreted as in DI.Observe that the functional restriction (� 1 a) allows the notion of local determin-ism for both atomic programs and the converse of atomic programs to be representedin the logic. With this construct, we can denote states in which the running of anatomic program, or the converse of an atomic program, is deterministic, i.e. it leadsto at most one state. It is easy to see that this possibility allows one to impose theso-called global determinism too, i.e. that all runs of a given atomic program or theconverse of an atomic program, are deterministic. Therefore, DIF subsumes thelogic studied in [131], called Converse Deterministic PDL, where atomic programs,not their converse, are (globally) deterministic.3.2 Reasoning in CIF and DIFThe decidability and complexity of both satis�ability of CIF concepts and logical im-plication in CIF TBoxes can be derived immediately by exploiting the correspondencebetween CIF and DIF. This is realized through the mappings � and �+ describedin Chapter 2, suitably extended in order to deal with functional restrictions (giventhe semantics of these constructs in CIF and DIF , the extension is trivial). Notehowever that the decidability and the complexity of satis�ability in DIF have yet tobe established. We establish them below by exhibiting an encoding of DIF-formulaein DI. More precisely we show that, for any DIF-formula �, there is a DI-formula,denoted 
(�), whose size is polynomial with respect to the size of �, and such that �is satis�able if and only if 
(�) is satis�able. Since satis�ability in DI is EXPTIME-complete, this ensures that satis�ability in DIF is EXPTIME-complete too.In what follows, we assume, without loss of generality, that � is in negation normalform (i.e. negations are pushed inside as much as possible). It is easy to check thatthe transformation of any PDL formula in negation normal form can be performed inlinear time in the size of the formula.De�nition Let � be a DIF formula in negation normal form. We de�ne the DI-counterpart 
(�) of � as the conjunction of two formulae, 
(�) = 
1(�) ^ 
2(�),where:34



Reasoning in CIF and DIF� 
1(�) is obtained from the original formula � by replacing each (� 1 a) with anew propositional letter A(�1a), and each :(� 1 a) with (< a > H(�1a)) ^ (<a > :H(�1a)), where H(�1a) is again a new propositional letter.� 
2(�) = [(P1 [ : : :[ Pm [ P�1 [ : : :[ P�m)�]
12 ^ : : :^ 
g2 , where P1; : : : ; Pm areall atomic programs appearing in �, and with one conjunct 
i2 of the form(A(�1a)^ < a > �)) [a]�for every A(�1a) occurring in 
1(�) and every � 2 CL(
1(�)).2Lemma 6 Let � be a DIF formula, and 
(�) its DI-counterpart. Then 
(�) is aDI formula, and its size is polynomially related to the size of �.Proof Straightforward. 2The purpose of 
1(�) is to introduce the new propositional letters A(�1a) andH(�1a) in place of (� 1 a). Positive occurrences of (� 1 a) are represented bythe letter A(�1a), while negative occurrences of (� 1 a) are represented by < a >H(�1a)^ < a > :H(�1a). Note that every state where < a > H(�1a)^ < a > :H(�1a)holds, has at least two a-successors.The purpose of 
2(�) is less obvious. Intuitively, it constrains the models M of
(�) so that: for every state s of M , if A(�1a) holds in s, and t1 and t2 are twoa-successors of s, then t1 and t2 are equivalent wrt the formulae in CL(
1(�)). Weshow that this allows us to actually \collapse" t1 and t2 into a single state.Observe that if, instead of adding 
2(�), we imposed the axiom schema(A(�1a)^ < a > �)) [a]�where � is any formula, then the models of 
1(�) would be models of the originalformula as well. However, the problem of whether a DI formula  is deducible froman axiom schema is in general undecidable [74]. So, adding the above axiom schemato DI is of no use in establishing the decidability of DIF .Instead, the formula 
2(�) can be thought of as a �nite instantiation of the axiomschema (A(�1a)^ < a > �) ) [a]� (one instance for each formula in CL(
1(�))).1Intuitively, imposing the validity of such �nite instantiation guarantees that if 
1(�)has a model then it has a model that is model of the original formula as well.Next we introduce a function ES that given a state s of a modelM identi�es thestates of M that can be thought of as \replicas" of s. We consider (without loss ofgenerality) \connected" models only.2De�nitionLet M = (S; fRrg;�) be a model of 
(�). For any state s 2 S, we denoteby ES(s) the smallest set E(s) of states in M such that1Actually, 
2(�) already takes into account the reduction from logical implication to satis�ability.2A connectedmodel of � is a modelM = (S; fRP g;�) such that S = ft j (s; t) 2 ([P (RP[R�P )�gand M;s j= �. 35



CHAPTER 3� s 2 E(s), and� if s0 2 E(s) and for some simple program a{ (s0; t0) 2 Ra,{ M; t0 j= A(�1a�),{ t00 2 E(t1),{ (t00; s00) 2 R�a ,then s00 2 E(s).2 Note that, as a consequence of 
2(�), we have M; t2 j= A(�1a�), since A(�1a�) 2CL(
1(�)) (all atomic prepositions occurring in 
1(�) are in CL(
1(�)).An alternative way to see ES(s) is the following:ES(s) = fs0 j (s; s0) 2 RXgwhere X is program, which is not denoted by a regular expression, but by the followingcontext-free grammar:X ::= " j (a;A(�1a�)?;X; a�);X (a any simple program):By de�nition, ES(s) is obtained starting from s by including recursively the statess0 which are linked byR(ai ;A(�1a�i )?;a�i ) orR(ai ;A(�1a�i )?;(aj ;A(�1a�j )?;a�j );a�i ) orR(ai ;A(�1a�i )?;(aj ;A(�1a�j )?;(ak;A(�1a�k )?;a�k );a�j );a�i ) or: : :to states that are already known to be in ES(s). By 
2(�), the states s0 satisfy thesame formulae of CL(
1(�)) as the state s. Hence all states in ES(s) satisfy the sameformulae, wrt those in CL(
1(�)).Observe, however, that ES(s) does not contain all the states of M satisfyingthe same formulae of CL(
1(�)) that s satis�es. The discussion above clari�es thatthe states in ES(s) are only those in the connected component of the relation RXcontaining s.In the reminder of this section we shall prove that any DIF-formula � is satis�ableif and only if its DI-counterpart 
(�) is satis�able. We start by showing that if 
(�)is satis�able then � is satis�able. We proceed as follows:1. Given a modelM of 
(�), we build a tree-like modelM t such that M t; root j=
(�) (root is the root of the tree-structure).36



Reasoning in CIF and DIF2. Then, by suitably modifyingM t, we construct a modelM f , such that all func-tional restriction requirements are satis�ed { i.e., every state s in which A(�1 a)holds has at most one a-successor.3. Finally, by eliminating the interpretation on the atomic propositions A(�1 a)and H(�1a), we get a model MF of �.We construct M t fromM in two steps.Step 1. Let < a1 >  1; : : : ; < ah >  h be all the formulae of the form < a > �0,with a a simple program and �0 any formula, included in CL(�).3 We consider anin�nite h-ary tree T whose root is root and such that every node x has h childrenchildi(x), one for each formula < ai >  i. We write father(x) to denote the fatherof a node x in T . We de�ne two partial mappings m and l: m maps nodes of Tto states of M , and l is used to label the arcs of T by either atomic programs, orthe converse of atomic programs. For the de�nition of m and l, we proceed levelby level. Let s 2 S be any state such that M; s j= 
(�). We put m(root) = s,and, for all arcs (root; childi(root)) corresponding to a formula < ai >  i such thatM; s j=< ai >  i, we put l((root; childi(root))) = ai. Suppose we have de�ned mand l up to level k, let x be a node at level k + 1, and let l((father(x); x)) = aj{ this implies M;m(father(x)) j=< aj >  j . We choose a minimal path (i.e. apath with minimal length) in M satisfying < aj >  j, say (s0; s1; : : : ; sq), such thats0 2 ES(father(x)); we put m(x) = s1 and for every < ai >  i 2 CL(�) such thatM; t j=< ai >  i we put l((x; childi(x))) = ai.Step 2. For each P , let R0P = f(x; y) 2 T j l((x; y)) = P or l((y; x)) = P�g. Wede�ne the structure M t = (St; fRtPg;�t) as follows:St = fx 2 T j (root; x) 2 (SP (R0P [R0�P ))�gRtP = R0P \ (St � St)�t(x) = �(m(x)) for all x 2 St):Observe that the structure M t is a generally in�nite tree. However the set of statesSt is countable.Next we construct the structure M f , satisfying all the functional restrictions re-quirements.Step 1 Let us enumerate level by level the states x 2 St such that M t; x j= A(�1 a)for some simple program a.4Step 2 From this enumeration, we de�ne a sequence of structures M t =M0;M1;M2; : : :l, where each Mk is obtained fromM (k�1) by considering the k � thstate xk 2 St such that M t; xk j= A(�1a) for some simple program a and proceedingas follows:� If xk 62 S(k�1), then Mk = M (k�1).3Notice that the formulae  i may be of the form < r > �, and that  i 2 CL(�).4In this way states at level (depth) i are all enumerated before states at level i+ 1. 37



CHAPTER 3� If xk 2 S(k�1), then for each simple program a such that M t; xk j= A(�1 a):{ if (xk; father(xk)) 62 R(k�1)a , we de�neR(k�1)a 0 = R(k�1)a � f(x; childi(x)) 2 R(k�1)a except oneg;{ if (xk; father(xk)) 2 R(k�1)a , we de�neR(k�1)a 0 = R(k�1)a � f(x; childi(x)) 2 R(k�1)a g:We de�ne Mk = (Sk; fRkPg;�k) as follows:Sk = fx 2 St j (root; x) 2 (SP (RkP 0 [ (RkP 0)�))�gRkP = RkP 0 \ (Sk � Sk)�k(x) = �t(x) for all x 2 Sk:Observe thatMk satis�es the functional restriction requirements for the �rst k states.Observe also that root 2 Sk for all k, and thatSt = S0 � S1 � S2 � : : :RtP = R0P � R1P � R2P � : : : :Step 3 We de�ne M f = (Sf ; fRfPg;�f ) as follows:Sf = Tk�0 SkRfP = Tk�0RkP�f (x) = �t(x) for all x 2 Sf :Intuitively, the modelM f is a (generally in�nite) tree, obtained by \visiting" level bylevel M t and eliminating, for each state x, all the states in ES(x) except one (whichmust be connected to the root). Observe that, in general, M f contains many statessatisfying the same formulae, wrt those in CL(
1(�)). Hence, M f is not a �ltration5of M by CL(
1(�)). We will come back to this point at the end of the chapter.Finally, we de�ne MF = (SF ; fRFP g;�F) as follows:SF = SfRFP = RfP�F (x) = �f (x) � fA(�1a);H(�1a) j A(�1a);H(�1a) 2 �t(x)g for all x 2 SF :The following three lemmas state the basic properties of M t, M f , and MF .Lemma 7 Let M be a model of 
(�). Then, for every formula � 2 CL(
(�)) andevery x 2 St, M t; x j= � i� M;m(x) j= �:5See for example [60] for the de�nition of �ltration in Modal Logic.38



Reasoning in CIF and DIFProof We prove the lemma by induction on the formation of � (called formula in-duction in the following). We assume, without loss of generality, _; [�] to be expressedby means of :;^; < � >, and that the converse operator is applied only to atomicprograms.� � = A.M;m(x) j= A i� A 2 �(m(x)) i� (by construction ofM t) A 2 �t(x) i�M t; x j=A.� � = �1 ^ �2.M;m(x) j= �1^�2 i�M;m(x) j= �1 andM;m(x) j= �2 i� (by formula inductionhypothesis) M t; x j= �1 and M t; x j= �2 i� M t; x j= �1 ^ �2.� � = :�0.M;m(x) j= :�0 i� M;m(x) 6j= �0 i� (by formula induction hypothesis) M t; x 6j=�0 i� M t; x j= :�0.� � =< r1 > : : : < rl > �0 with �0 not of the form < r00 > �00.Let r be r1; : : : ; rl. We recall that < r > �0 is equivalent to < r1 > : : : < rl > �0,and that, by Proposition 3, for all r0 2 Post(r), < r0 > �0 is equivalent to some 2 CL(< r1 > : : : < rl > �0).Let M;m(x) j=< r > �0, we prove that M t; x j=< r > �0. We proceed byinduction on the length of the path in M satisfying < r > � (called pathinduction in the following)If (m(x)) 2 PathsM(r) and M;m(x) j= �0, then, by Proposition 4, there existsa formula < �1?; : : : ;�g? > �0, with g � 0, such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M;m(x) j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every  2 f�1; : : :�g; �0g, M;m(x) j=  i�M t; x j=  , and hence M t; x j=< r > �0.Otherwise, let (m(x) = s0; s1; : : : ; sq) be a path in M satisfying < r > �0. ByProposition 5, there exists a formula < �1?; : : : ;�g?; a >< r0 > �0, with g � 0,such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r0 2 Post(r), and hence by Proposition 3, the formula < r0 > �0 is equiva-lent to  for some  2 CL(< r1 > : : : < rl > �0) � CL(
(�));{ (s0; s1) 2 Ra;{ (s1; : : : ; sq) 2 PathsM (r0); 39



CHAPTER 3{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �i 2 f�1; : : :�gg, M;m(x) j= �i i�M t; x j= �i.By construction of M t, there is a minimal path (s00; s01; : : : ; s0q0) satisfying <a >< r0 > �0 such that s00 2 ES(m(x)) and s01 = m(childi(x)), which isshorter or of the same length as (s0; s1; : : : ; sq). Therefore, by path inductionhypothesis, M;m(childi(x)) j=< r0 > �0 implies M t; childi(x) j=< r0 > �0 andso M t; x j=< a >< r0 > �0. Hence we can conclude that M t; x j=< r > �0.Let M t; x j=< r > �0, we prove M;m(x) j=< r > �0.If (x) 2 PathsMt(r) and M t; x j= �, then, by Proposition 4, there exists aformula < �1?; : : : ;�g? > �0, with g � 0, such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M t; x j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every  2 f�1; : : :�g; �0g, M t; x j=  i�M;m(x) j=  , and hence M;m(x) j=< r > �0.Otherwise, let (x = x0; x1; : : : ; xq) be a path in M t satisfying < r > �0. ByProposition 5, there exists a formula < �1?; : : : ;�g?; a >< r0 > �0 , with g � 0,such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r0 2 Post(r), and hence by Proposition 3, the formula < r0 > �0 is equiva-lent to  for some  2 CL(< r1 > : : : < rl > �0) � CL(
(�));{ (x0; x1) 2 Ra;{ (x1; : : : ; xq) 2 PathsMt(r0);{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �i 2 f�1; : : :�gg, M t; x j= �i i�M;m(x) j= �i.By path induction hypothesis M t; x1 j=< r0 > �0 impliesM;m(x1) j=< r0 > �0.If x1 = childi(x) then, by construction of M t, there is an s 2 ES(m(x)) suchthat (s;m(childi(x))) 2 Ra. Hence we have M; s j=< a >< r0 > �0, and inturn M;m(x) j=< a >< r0 > �0, since < a >< r0 > �0 2 CL(< r > �0) �CL(
1(�)), and s 2 ES(m(x)).If x1 = father(x) then, by construction ofM t, there is an s 2 ES(m(x1)) suchthat (s;m(x)) 2 R�a and M; s j=< r0 > �0, since < r0 > �0 2 CL(< r > �0) �CL(
1(�)) and m(x1) 2 ES(s). Hence we have M;m(x) j=< a >< r0 > �0.Hence in both cases we can conclude that M;m(x) j=< r > �0.40



Reasoning in CIF and DIF2 Observe that, by inspecting the proof above, it is easy to verify that for all x ofM t and for all < r > �0 2 CL(
1(�)), if M t; x j=< r > �0 then there exists a path ofthe form (x; childi1(x) = x1; : : : ; childiq(: : : childi1(x) : : :) = xq) 2 PathsMt(r) withq � 0 such that M t; xq j= �0.Lemma 8 Let M = (S; fRrg;�) be a model of 
1(�), and M t = (St; fRrg;�) bethe structure de�ned as above. Let < r > � be a formula such that� � is not of the form < r0 > �0;� < r > � is equivalent to some  2 CL(
1(�)).Then, for all x 2 St, if there is a path (x = x0; : : : ; xq) on M t satisfying < r > �then there is a path (x = x00; : : : ; x0q0) in M t satisfying < r > � which is shorter or ofthe same length as (x = x0; : : : ; xq), and such that: for all x0i 2 fx02; : : : ; x0q0g, for allsimple programs a:(x0i�2; x0i�1; x0i) 2 PathsMt(a;A(�1a�)?; a�) implies x0i�2 = x0i:Proof By induction on the length of the path (x0; : : : ; xq).If such a length is less than 3, then the thesis holds vacuously.Let the length of (x0; : : : ; xq) be greater or equal to 3.By applying Proposition 5, we can conclude that, there exists a formula <(�0?; : : : ;�g?); a; r0 > �, with g � 0, such that:� all tests �i? occur in r;� r0 2 Post(r), and hence by Proposition 2, the formula < r0 > � is equivalent to 0 2 CL(
1(�));� (x0; x1) 2 Rta;� (x1; : : : ; xq) 2 PathsMt(r0);� < (�0?; : : : ;�g?); a; r0 > �)< r > � is valid.1. If (x0; x1; x2) 62 PathsMt(a;A(�1a�)?; a�) or x0 = x2, then by induction hy-pothesis there exists a path (x1 = x01; : : : ; x0q0) satisfying < r0 > � such that: forall x0i 2 fx03; : : : ; x0q0g, for all simple programs a(x0i�2; x0i�1; x0i) 2 PathsMt(a;A(�1a�)?; a�) implies x0i�2 = x0i:Hence the path (x0 = x00; x01; : : : ; x0q0) satis�es < r > � and is such that: for allx0i 2 fx02; : : : ; x0q0g, for all simple programs a(x0i�2; x0i�1; x0i) 2 PathsMt(a;A(�1a�)?; a�) implies x0i�2 = x0i: 41



CHAPTER 32. If (x0; x1; x2) 2 PathsMt(a;A(�1a�)?; a�) and x0 6= x2, then by Proposition 5,there exists a formula < (�0?; : : : ;�g?); a�; r00 > �, with g � 0, such that:� all tests �i? occur in r;� r00 2 Post(r0), and hence by Proposition 2, the formula < r00 > � isequivalent to  0 2 CL(
1(�));� (x1; x2) 2 Rta� ;� (x2; : : : ; xq) 2 PathsMt(r00);� < (�0?; : : : ;�g?); a�; r00 > �)< r0 > � is valid.Since (x0; x2) 2 Rta;A(�1 a�)?;a� and < r00 > � is equivalent to  0 2 CL(
1(�)),we have that M t; x0 j=< r00 > � i� M t; x2 j=< r00 > �.Moreover, by construction of M t, we have that m(x2) 2 ES(m(x0)), and thisimplies that there exists a path (x0 = x002 ; : : : ; x00q00) satisfying < r00 > � whichis shorter or of the same length as (x2; : : : ; xq). Now consider the path (x0 =x000 ; x1 = x001 ; x0 = x002 ; : : : ; x00q00): it satis�es < r > �, it is shorter or of the samelength as (x0; : : : ; xq), (x0; x1; x2) 2 PathsMt(a;A(�1a�)?; a�), and x000 = x002 .Hence applying the reasoning at item 1. we get the thesis.2Lemma 9 For every formula � 2 CL(
1(�)) and every x 2 S0, M t; x j=� i� M f ; x j= �:Proof Consider that M f is the limit of the (in�nite) sequence of models M t =M0;M1; : : :. We prove that for each h � 0, M t; x j= � i� Mh; x j= �, for all x 2 Shand all � 2 CL(
1(�)). We proceed by induction on h (called state induction in thefollowing).� h = 0. Since M0 = M t, the thesis holds trivially.� h = k+1. It su�ces to prove that, for all x 2 Sk+1 and all � 2 CL(
1(�)), Mk; x j=� i� Mk+1; x j= �. Indeed, by state induction hypothesis, for all � 2 CL(
1(�))and all x 2 Sk(� Sk+1), Mk; x j= � i� M t; x j= �.We proceed by induction on the formation of � (called formula induction in thefollowing). We assume, without loss of generality, _; [�] to be expressed by means of:;^; < � >, and that the converse operator is applied only to atomic programs.� � = A.Mk; x j= A i� (by construction of Mk+1) Mk+1; x j= A.� � = �1 ^ �2.Mk; x j= �1 ^ �2 i� Mk; x j= �1 and Mk; x j= �2 i� (by formula inductionhypothesis) Mk+1; x j= �1 and Mk+1; x j= �2 i� Mk+1; x j= �1 ^ �2.42



Reasoning in CIF and DIF� � = :�0.Mk; x j= :�0 i� Mk; x 6j= �0 i� (by formula induction hypothesis) Mk+1; x 6j= �0i� Mk+1; x j= :�0.� � =< r > �0.Let Mk+1; x j=< r > �0, we prove that Mk; x j=< r > �0.Mk+1; x j=< r > �0 i� for there is a path (x = x0; : : : ; xq) 2 PathsMk+1(r) suchthat Mk+1; xq j= �0. By construction of Mk+1, (x = x0; : : : ; xq) 2 PathsMk(r),while, by formula induction hypothesis Mk; xq j= �0. Hence, we haveMk; x j=<r > �0.Let Mk; x j=< r > �0, we prove that Mk+1; x j=< r > �0.If (x) 2 PathsMk(r) and Mk; x j= �0, then, by Proposition 4, there exists aformula < �1?; : : : ;�g? > �0, with g � 0, such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ Mk; x j=< �1?; : : : ;�g? > �0, and hence M t; x j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �)< r > �0 is valid.By formula induction hypothesis, for every  2 f�1; : : :�g; �0g, Mk; x j=  i�Mk+1; x j=  , Therefore Mk+1; x j=< r > �0.Otherwise, there is a path (x = x0; : : : ; xq) 2 PathsMk(r) such that Mk; xq j=�0. By applying Proposition 5 q times and Proposition 4 once, we can concludethat there exists a formula< (�01?; : : : ;�0g0?); a1; : : : ;(�(q�1)1?; : : : ;�(q�1)g(q�1)?); aq;(�q1?; : : : ;�qgq?) > �0with gi � 0, such that:{ all tests �ij? occur in r, and hence all �ij are subformulae of < r > �0;{ (xi�1; xi) 2 Rkai , for i = 1; : : : ; q;{ The following formula is valid:< (�01?; : : : ;�0g0?); a1; : : : ;(�(q�1)1?; : : : ;�(q�1)g(q�1)?); aq;(�q1?; : : : ;�qgq?) > �0 )< r > �0:If, for xi = x0; : : : ; xq, xi 2 Sk+1, then, by construction of Mk+1, (xi�1; xi) 2Rkai implies (xi�1; xi) 2 Rk+1ai . By formula induction hypothesis, for every  2f�0g0; : : :�qgq ; �0g, Mk; xi j=  i� Mk+1; xi j=  . Therefore we can concludeMk+1; x j=< r > �0. 43



CHAPTER 3Otherwise, let xm+1, with (m � 0), be the �rst state in (x0; : : : ; xq)such that xm+1 62 Sk+1 { i.e., xm is the state of Mk whose succes-sors have been modi�ed in order to get Mk+1. By applying Proposi-tion 5 m times only, we can conclude that, there exists a formula <(�01?; : : : ;�0g0?); a1; : : : ; am; (�(m�1)1?; : : : ;�mg(m�1) ?); am+1; r0 > �0, with gi �0, such that:{ all tests �ij? occur in r, and hence all �ij are subformulae of < r > �0;{ r0 2 Post(r), and hence by Proposition 2, the formula < r0 > �0 is equiva-lent to  for some  2 CL(< r > �0) � CL(
1(�));{ (xi�1; xi) 2 Rkai , for i = 1; : : :m + 1;{ (xm+1; : : : ; xq) 2 PathsMk(r0);{ < (�01?; : : : ;�0g0?); a1; : : : ; am; (�(m�1)1?; : : : ;�mg(m�1)?); am+1; r0 >�0 )< r > �0 is valid.By de�nition of Mk+1, we have:{ Mk; xm j= A(�1a), with a = am+1{ xm�1 = father(xm){ xm+1 = childi(xm).Therefore, one of the following two cases holds:{ (xm; father(xm)) 62 Rka { i.e., am 6= a�. Then, Mk+1 is obtained fromMk by removing all (xm; childl(xm)) fromRka, except one, say childj(xm).By 
2(�), for every  2 CL(
1(�)) we have that Mk; childi(xm) j=  i�Mk; childj(xm) j=  . Furthermore, by Lemma 8, we can conclude thatthere is a path (childj(xm) = x01; : : : ; x0q0) 2 PathsMk(r0), with Mk; x0q0 j=�0, such that childj(xm) is the only child of xm occurring in it. Hence, asshown above, we have that Mk+1; x01 j=< r0 > �0. Therefore it is easy tosee that Mk+1; x j=< r > �0.{ (xm; father(xm)) 2 Rka { i.e., am = a�. Then, Mk+1 is obtained fromMk by removing all (xm; childl(xm)) from Rka. By 
2(�), for every 2 CL(
1(�)), we have that Mk; father(xm) j=  i� Mk; childi(xm) j= . Furthermore, by Lemma 8, can conclude that there is a path(father(xm) = x01; : : : ; x0q0) 2 PathsMk(r), with Mk; x0q0 j= �0, thatdoes not include any childl(xm). Hence, as shown above, we have thatMk+1; x01 j=< r0 > �0. Therefore it is easy to see that Mk+1; x j=< r > �0.We have proved that, for each h � 0, Mh; x j= � i� M t; x j= �, for all x 2 Sh andall � 2 CL(
1(�)). By considering the de�nition of M f it is now easy to concludethat M f ; x j= � i� M t; x j= �, for all x 2 Sh and all � 2 CL(
1(�)). 2Note thatM f is a model of 
(�), since, on the one hand, by Lemma 9,M f ; root j=
1(�), and on the other hand M f ; root j= 
2(�), because whenever M f ; x j= A(�1a),there exists at most one x0 such that (x; x0) 2 Rfa .44



Reasoning in CIF and DIFLemma 10 M f ; root j= 
1(�) implies MF ; root j= �.Proof Observe that, if M f ; x j= A(�1a) then, by construction of M f , there existsat most one x0 such that (x; x0) 2 Rfa , implying that MF ; x j= (� 1 a). On the otherhand, ifM f ; x j= (< a > H(�1a))^(< a > :H(�1a)), then there are at least two statesx1; x2 such that (x; x1) 2 Rfa and (x; x2) 2 Rfa , implying that MF ; x j= :(� 1 a).The proof is easily completed by induction on the structure of �. 2By Lemma 7, Lemma 9, and Lemma 10, we can state the following result.Theorem 11 A DIF-formula � is satis�able only if its DI-counterpart 
(�) issatis�able.Next we turn to the converse of Theorem 11. We remark that transforming amodel of � into a model of 
(�) is not always possible, since con
icts may arise inassigning the extensions of the atomic propositions H(�1a). For example suppose thatM = (S; fRP g;�) is a model of a given DIF-formula � such that:fs1; s2; s3; t1; t2; t3g � Sf(s1; t1); (s1; t2); (s1; t3); (s2; t1); (s2; t3); (s3; t2); (s3; t3)g � RP :The states s1; s2; s3; s4 satisfy :(� 1P ). Nevertheless it is impossible to assign suit-ably the atomic proposition H(�1P ) to t1; t2; t3.One way to overcome this problem is to prove the tree model property for DIF ,i.e. that any model can be transformed into a tree-like model. Indeed for tree-likemodels the above con
icts cannot arise. We can construct tree-like models, followingthe construction of M t shown above as a blueprint.In fact, in proving the converse of Theorem 11, we exploit a weaker property.Theorem 12 A DIF-formula � is satis�able if its DI-counterpart 
(�) is satis�-able.Proof LetM = (S; fRPg;�) be a model of �. We assume, without loss of generality,that H(�1a) 62 �(s) and A(�1a) 62 �(s), for all s 2 S, and for all (� 1 a) occurring in�. We also assume the converse operator applied only to atomic programs in �.Starting fromM , we build a modelM 0 = (S 0; fR0Pg;�0) of 
(�) in two steps: �rstwe transform M into M 00, and then we transformM 00 into M 0.Step 1We transformM intoM 00 so as to assign the propositions H(�1a) to states (orequivalently states to the propositions H(�1a)) in a suitable way. Let (� 1 a1); : : : ; (�1 al) be all the functional restrictions occurring in �. M 00 is obtained inductively fromM , by applying the transformation below l times.l = 0. No functional restrictions occur in �, hence M 00 = M .l > 0. Suppose that M has been transformed into Mi = (Si; fRiPg;�i) by applyingthe transformation i times, so that states are suitably assigned to propositionsH(�1a),45



CHAPTER 3for a = a1; : : : ; ai. We show how to get Mi+1 from Mi, and we prove that Mi+1 isstill a model of �.Let M1i = (S1i ; fR1i P g;�1i ) and M2i = (S2i ; fR2i P g;�2i ) be two disjoint copies ofMi, i.e. S1i \ S2i = ;. Given a state s 2 Si, we denote by s1 2 S1i and s2 2 S2i thecopies of s in M1i and M2i respectively.Now, let M1]2i be the disjoint union of M1i and M2i , de�ned as:S1]2i = S1i [ S2iRi1]2P = R1i P [R2i P�1]2i (s) = � �1i (s) if s 2 S1i�2i (s) if s 2 S2iObserve that M1]2i is a model of �, since Mi; s j= � if and only if M1]2i ; s1 j= �, ifand only if M1]2i ; s2 j= �.From M1]2i we get Mi+1 = (Si+1; fRi+1Pg;�i+1) by de�ning Si+1 and �i+1 as:Si+1 = S1]2i�i+1(s) = � �1i (s) [ fH(�1ai+1)g if s 2 S1i�2i (s) if s 2 S2iand by de�ning Ri+1P as follows:� if ai+1 6= P , then Ri+1P = Ri1]2P ;� if ai+1 = P , then Ri+1P is obtained from Ri1]2P as follows: for all s 2 Sisuch that Mi; s j= :(� 1P ) we choose one of its P -successors, say t, and wereplace (s1; t1) with (s1; t2) and (s2; t2) with (s2; t1) in Ri1]2P . Note that, forevery simple program a, the number of a-successors of all states in Mi+1, andin particular of s1, s2, t1, t2, remains unchanged wrt M1]2i .� if ai+1 = P� then Ri+1P is obtained from R1]2i P as follows: for all s 2 Sisuch that Mi; s j= :(� 1P�) we choose one of its P�-successors, say t, and wereplace (t1; s1) with (t2; s1) and (t2; s2) with (t1; s2) in Ri1]2P . Note that, forevery simple program a, the number of a-successors of all states in Mi+1, andin particular of s1, s2, t1, t2, remains unchanged wrt M1]2i .By construction, Mi+1; s j= :(� 1 aj) implies Mi+1; s j=< aj > H(�1aj )^ < aj >:H(�1aj ) for aj = a1 : : :ai+1.Next we verify that Mi+1 is a model of �. Speci�cally, we prove that, for anys 2 Si, any � 2 CL(�), and h = 1; 2, Mi; s j= � if and only if Mi+1; sh j= �. Weproceed by induction on the formula � (called formula induction in the following).� � = A.Mi; s j= A i� A 2 �i(s) i� A 2 �i+1(sh) i� Mi+1; sh j= A.� � = �1 ^ �2.Mi; s j= �1^�2 i�Mi; s j= �1 and Mi; s j= �2 i� (by formula induction hypoth-esis) Mi+1; sh j= �1 and Mi+1; sh j= �2 i� Mi+1; sh j= �1 ^ �2.46



Reasoning in CIF and DIF� � = :�0.Mi; s j= :�0 i� Mi; s 6j= �0 i� (by formula induction hypothesis) Mi+1; sh 6j= �0i� Mi+1; sh j= :�0.� � = (� 1 a).Mi; s j= (� 1 a) i� Mi+1; sh j= (� 1 a) by construction of Mi+1.� � =< r > �0.Let Mi; s j=< r > �0, then there exists a path (s = s0; : : : ; sq) 2 PathsMi(r),with q � 0, such that Mi; sq j= �0. We prove Mi+1; sh j=< r > �0 by inductionon the length q of the path (called path induction).If q = 0, then (s) 2 PathsMi(r), and, by Proposition 4, there exists a formula< �1?; : : : ;�g? > �0, with g � 0, such that:{ all tests �j? occur in r, and hence all �j are subformulae of < r > �0;{ Mi; s j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every  2 f�1; : : :�g; �0g, Mi; s j=  i�Mi+1; sh j=  , and hence Mi+1; sh j=< r > �0.If, q > 0, then, by Proposition 5, there exists a formula < �1?; : : : ;�g?; a ><r0 > �0, with g � 0, such that:{ all tests �j? occur in r, and hence all �j are subformulae of < r > �0;{ r0 2 Post(r), and hence by Proposition 3, the formula < r0 > �0 is equiva-lent to  for some  2 CL(< r > �0) � CL(�);{ (s0; s1) 2 Ria;{ (s1; : : : ; sq) 2 PathsMi(r0);{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : :�gg, Mi; s j= �x i�Mi+1; sh j= �x.By path induction hypothesis, Mi; s1 j=< r0 > �0 implies Mi+1; s11 j=< r0 > �0and Mi+1; s21 j=< r0 > �0, since (s1; : : : ; sq) 2 PathsMi(r0) is shorter than(s0; : : : ; sq).While, by de�nition, (s0; s1) 2 Ria implies that:{ if a 6= ai+1, then (sh0 ; sh1 ) 2 Ri+1a;{ if a = ai+1, then (sh0 ; sk1) 2 Ri+1a, with k = 2 if h = 1 and k = 1 if h = 2.47



CHAPTER 3Hence we can conclude that Mi+1; sh j=< r > �0.Let Mi+1; sh j=< r > �0, then there exists a path (sh = sh00 ; : : : ; shqq ) 2PathsMi+1(r) such that Mi+1; shqq j= �0. We prove Mi; s j=< r > �0 by in-duction on the length q of the path.If q = 0, then (sh) 2 PathsMi+1(r), and, by Proposition 4, there exists a formula< �1?; : : : ;�g? > �0, with g � 0, such that:{ all tests �j? occur in r, and hence all �j are subformulae of < r > �0;{ Mi+1; sh j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every  2 f�1; : : :�g; �0g, Mi+1; sh j=  i� Mi; s j=  , and hence Mi; s j=< r > �0.If, q > 0, then, by Proposition 5, there exists a formula < �1?; : : : ;�g?; a ><r0 > �0, with g � 0, such that:{ all tests �j? occur in r, and hence all �j are subformulae of < r > �0;{ r0 2 Post(r), and hence by Proposition 3, the formula < r0 > �0 is equiva-lent to  for some  2 CL(< r > �0) � CL(�);{ (sh00 ; sh11 ) 2 Ri+1a;{ (sh11 ; : : : ; shqq ) 2 PathsMi+1(r0);{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : :�gg, Mi+1; sh j= �x i�Mi; s j= �x.By path induction hypothesis, Mi+1; sh11 j=< r0 > �0 impliesMi; s1 j=< r0 > �0,since (sh11 ; : : : ; shqq ) 2 PathsMi+1(r0) is shorter than (sh00 ; : : : ; shqq ).While, by de�nition, (sh00 ; sh11 ) 2 Ri+1a implies that (s0; s1) 2 Ria, either inthe case h0 = h1 or h0 6= h1 (h0 = h).Hence we can conclude that Mi; s j=< r > �0.Finally, as M 00 = Ml, we have that all states of M 00 are suitably assigned to thepropositions H(�1a), for a = a1 : : : al, and M 00 is a model of �.Step 2 We transform the model M 00 = (S 00; fR00Pg;�00) of � into a model M 0 =(S0; fR0Pg;�0) of 
(�). Considering a state s 2 S00 such that M 00; s j= �, we de�neM 0 as follows: S0 = ft j (s; t) 2 (SP (R00P [R00P� ))�gR0P = R00P \ S0 � S0�0(t) = � �00(t) [ fA(�1a)g if M 00; t j= (� 1 a)�00(t) otherwise.48



DiscussionIt is easy to verify that M 0; s j= 
1(�), and (trivially) M 0; s j= 
2(�). Therefore, M 0is a model of 
(�). 2We can now formulate the main result of this chapter.Theorem 13 Satis�ability in DIF is an EXPTIME-complete problem.Proof The satis�ability problem for DI is EXPTIME-complete, and by Lemma 6the size of the DI-counterpart 
(�) of a DIF-formula � is polynomially related tothe size of �. 2As an immediate consequence we can characterize the computational complexity ofreasoning in CIF .Theorem 14 Satis�ability of CIF concepts, satis�ability of CIF TBoxes, and logicalimplication in CIF TBoxes, are EXPTIME-complete problems.3.3 DiscussionWe did not use a standard �ltration argument to prove our result. In fact, the standard�ltration argument does not work in proving Theorem 11. Here is an example: Letthe DIF formula � be A ^ [P �]((� 1 P�)^ < P > :A), where A is an atomicproposition and P an atomic program (� is already in negation normal form).The DI formula 
1(�) is A ^ [P �](A(�1P�)^ < P > :A) and its Fisher-LadnerClosure, CL(
1(�)), is formed byA ^ [P �](A(�1P�)^ < P > :A)A[P �](A(�1P�)^ < P > :A)[P ][P �](A(�1P�)^ < P > :A)A(�1P�)^ < P > :AA(�1P�)< P� > :Aand their negations.The DI counterpart of � is 
(�) = 
1(�) ^ 
2(�) where 
2(�) assures that inevery model of 
(�) if a state satis�es A(�1P�) then all its P -successors satisfy thesame formulae, wrt those that are members of CL(
1(�)).Now consider the structure M = (S;RP ;�):S = fd1; d2; d3gRP = f(d1; d2)(d2; d3); (d3; d3)g�(A) = fd1g; �(A(�1P�)) = fd1; d2; d3gIt is easy to verify that M is a model of 
(�), but not of � since d3, has two (P�)-successors, and therefore does not satisfy (� 1 P�). 49



CHAPTER 3The states d2 and d3 satisfy the same formulae, wrt those that are members ofCL(
1(�)). Hence a �ltration technique would allow us to merge them into a singlestate d02, getting the new structure M 0. In M 0, the state d02 has two (P�)-successorsso it does not satisfy (� 1 P�) and, as a consequence, again M 0 is not a model of�. Moreover M 0 is not even a model of 
(�), since d02 has one (P�)-successor, d1,satisfying A 2 CL(
1(�)) and one, d2, satisfying :A 2 CL(
1(�)), therefore 
2(�) isnot satis�ed anymore.In general, the ability to get a �ltration of a model by a �nite set of formulae(as CL(
1(�))) leads to a �nite model property. But DIF does not have the �nitemodel property. Indeed, the above � is an example of a formula having only in�nitemodels6. So we can conclude that �ltration techniques are not suitable to prove thedecidability of DIF .The construction we have described in this chapter, builds, from a given model of
(�), a model of � that can be an in�nite tree. In the example above, our constructiongives as a result a new structure MF which is an in�nite chain of P such that allthe states along the chain satisfy (� 1 P�) while only the �rst state satis�es A. Itis easy to verify that MF is indeed a model of �. We �nd it quite surprising andinteresting that satis�ability in DIF , which is a logic that does not have the �nitemodel property, can be reduced, in a natural way, to satis�ability in DI, a logic thatdoes have it.We have already mentioned that the formula 
2(�) can be thought of as a �niteinstantiation of the axiom schema (A(�1a)^ < a > �) ) [a]�, which is su�cient toguaranty that the DI formula 
(�) is satis�able if and only if DIF formula � issatis�able. The methodology of reducing satis�ability in a given logic to satis�abil-ity in a target logic by constraining structures of the target logic, through a �nite(polynomial) number of instances of an axiom schema, can be exploited to establishdecidability (and complexity) in many situations. In fact, it is the central elementbehind many of the results in this thesis.It is worth noting that, since DIF subsumes Converse Deterministic PDL, alsoformulae of that logic can be encoded in DI. This fact gives us an optimal procedure7to decide the satis�ability of Converse Deterministic PDL formulae that does not relyon techniques based on automata on in�nite structures as those in [129, 131].Observe also that the mapping 
 can be easily restricted to encode DeterministicPDL formulae in PDL. Though, in this simpler case there is no need of a sophisticatedtechnique, as the one above, to build a model of a Deterministic PDL formula from itsPDL counterpart, a standard �ltration argument being su�cient. Indeed, the methodadopted in [7] to study satis�ability of Deterministic PDL, can be rephrased makinguse of a mapping similar to 
.6Such a formula is a variant of the Converse Deterministic PDL formula A^ [(P�)�] < P� > :A(see for example [131]).7Note that satis�ability of Converse Deterministic PDL is an EXPTIME-complete problem.50



Chapter 4Quali�ed NumberRestrictionsIn this chapter we study the description logic CIN and the propositional dynamiclogic DIN obtained from CI and DI by adding the quali�ed number restrictionconstructs (� na:C) and (� na:C) with n � 1. In the setting of description logics,quali�ed number restrictions where �rst considered (without inverse and re
exive-transitive closure of roles) in [65]. The quali�ed number restriction (� na:C) denotesthe set of objects that have links with at most n objects in C, and (� na:C) the setof objects that have links with at least n objects in C, where a is either an atomicrole or the inverse of an atomic role.4.1 The logics CIN and DINConcepts of CIN are formed according to the following abstract syntax:C ::= > j ? j A j C1 u C2 j C1 t C2 j C1 ) C2 j :C j9R.C j 8R.C j (� na:C) j (� na:C)a ::= P j P�R ::= a j R1 tR2 j R1 �R2 j R� j R� j id(C)where A denotes an atomic concept, C (possibly with a subscript) a generic concept,P an atomic role, a a simple role, i.e. either an atomic role or the inverse of an atomicrole, R (possibly with a subscript) a generic role.The semantics of CIN is the same as for CI, except for quali�ed number restric-tions (� na:C) and (� na;C) with n � 1, whose meaning in an interpretation I isthe following (recall a = P j P�):(� na:C)I = fd 2 �I j there exists at most n d0 such that(d; d0) 2 aI and d0 2 CIg(� na:C)I = fd 2 �I j there exists at least n d0 such that51



CHAPTER 4 (d; d0) 2 aI and d0 2 CIgObserve that the two kinds of quali�ed number restrictions are interde�nablesince (� 1 a:C) is equivalent to 9a.C and (� na:C) with n � 2 is equivalent to:(� n � 1 a:C). A functional restriction (� 1 a) is expressible by (� 1 a:>), henceCIN is a generalization of CIF . Similarly the well-known constructs called numberrestrictions (� na) and (� na) are expressed in CIN by (� na:>) and (� na:>)respectively. Indeed quali�ed number restrictions are the most general kind of cardi-nality constraints, while functional restrictions can be considered the simplest ones.Note that in CIN , as in CIF, there is complete symmetry between atomic roles andinverse of atomic roles.The corresponding propositional dynamic logic is called DIN and its syntax is asfollows: � ::= > j ? j A j �1 ^ �2 j �1 _ �2 j �1 ) �2 j :� j< r > � j [r]� j (� na:�) j (� na:�)a ::= P j P�r ::= a j r1 [ r2 j r1; r2 j r� j r� j �?where A denotes a propositional letter, � (possibly with a subscript) a formula, P anatomic program, a a simple program, i.e. an atomic program or the converse of anatomic program, and r (possibly with a subscript) a generic program.Consistently with its interpretation in CIN the new construct is interpreted asfollows: given a structure M = (S; fRrg;�) and a state s 2 S,M; s j= (� n a:�) i� there are at most n states t such that(s; t) 2 Ra and M; t j= �M; s j= (� n a:�) i� there are at least n states t such that(s; t) 2 Ra and M; t j= �:The rest of the constructs are interpreted as in DI.Intuitively, if s is a state satisfying (� n a:�) (respectively (� n a:�)), thenthere are at most (at least) n a-successors of s satisfying �. By means of quali�ednumber restrictions we can control the nondeterminism of simple programs in a quitesophisticated way. Local determinism of a simple program a can be imposed by(� 1 a:>).Quali�ed number restrictions are sometimes called graded nondeterminism con-structs. Indeed, as such a name suggests, they are strongly related to graded modalitiesin modal logic (see the �nal section of this chapter).4.2 Reasoning in CN and DNBefore discussing reasoning in CIN and DIN , we discuss some of the issues involvedin the simpler logics CN and DN obtained by dropping the constructs for inverseroles and converse programs respectively. This will allow us to gain some intuitionabout results for CIN and DIN .52



Reasoning in CN and DNThe decidability and complexity of both satis�ability of CN concepts and logicalimplication in CN TBoxes can be derived by exploiting the correspondence betweenCN and DN 1. Hence it su�ces to establish decidability and complexity of satis�a-bility for DN . We do so by translating DN formulae in Deterministic PropositionalDynamic Logic formulae whose satis�ability is known to be decidable and EXPTIME-complete [7].Let us ignore for a moment the quali�ed number restriction constructs. Formulaeof DN without quali�ed number restrictions are, in fact, formulae of the basic PDL.It is well-known (see [87]) that such formulae can be reduced to Deterministic PDLformulae: we replace each atomic program P in a formula � by FP ; (F 0P )� where FPand F 0P are new atomic programs that are (globally) deterministic. Let us call theresulting formula �0, we have that � is satis�able if and only if �0 is so.2We brie
y sketch the reasoning behind the proof of this statement. The if directionis straightforward. The only if direction is as follows. We recall that both PDL andDeterministic PDL have the tree model property: if a formula has a model it has a treemodel, i.e. a model having the form of a tree.3 So we can restrict our attention to treemodels only without loss of generality. Now there is a one-to-one transformation fromtree modelsMT of � to (tree) modelsMB of �0. Indeed, we put SB = ST , �B = �T ,and given a state x of MT having as P -successors z1; : : : ; zl,4 we put (x; z1) 2 RBFP ,and (zi; zi+1) 2 RBF 0P , for i = 1; : : : ; l � 1. In this way we have (x; zi) 2 RTP if andonly if (x; zi) 2 RBFP ;(F 0P )� .5We remark that MT is required to be a tree because once we get MB we need torecover the \original" P -predecessor x of a state zi, namely we need (FP ; (F 0P )�)� tobe deterministic, otherwise, given a state zi, we would not know which of the various(FP ; (F 0P )�)�-successors is its original P -predecessor x, and therefore we would notbe able to reconstruct MT fromMB .Representing atomic programsP as FP ; (F 0P )�, where FP and F 0P are deterministic,makes it easy to express quali�ed number restrictions as constraints on the chain ofFP ; (F 0P )�-successors of a state. For example, let us denote the transitive closure of ras r+ { i.e. r+ := r; r�:(� 3 P:�) can be expressed by[FP ; (F 0P )�;�?; (F 0P )+;�?; (F 0P )+;�?; (F 0P)+]:�1The correspondence is realized by modifying straightforwardly the mappings � and �+ describedin Chapter 2 so to consider the absence of inverse roles and the presence of quali�ed numberrestrictions.2Note that while it is necessary to introduce one FP for each P , we could introduce just one FU ,instead of all F 0Pi . Here we have preferred to be slightly redundant, for the sake of clarity.3Given a model of � we get a tree model simply by \unfolding" the original one.4We implicitly assume that MT is a �nite branching tree model. This can be done without lossof generality since PDL has the �nite model property, and hence unfolding a �nite model we geta �nite branching tree model. Note however that it would su�ce to assumeMT to be a countablebranching tree model.5Note that this construction is similar to the one often used in programming to reduce n-ary treesto binary trees by coding children of a node as the combination of one child and its siblings. 53



CHAPTER 4that is equivalent to[FP ; (F 0P )�](�) [(F 0P )+](�) [(F 0P )+](�) [(F 0P )+]:�)))and can be read as \everywhere along the chain FP ; (F 0P )� there are at most threestates in which � holds", that corresponds exactly to the intended meaning.(� 3 P:�) can be expressed by< FP ; (F 0P )�;�?; (F 0P)+;�?; (F 0P )+ > �that is equivalent to< FP ; (F 0P )� > (�^ < (F 0P )+ > (�^ < (F 0P )+ > �))and can be read as \somewhere along the chain FP ; (F 0P )� there are at least threestates in which � holds", that again corresponds exactly to the intended meaning.The above discussion leads to the following results. Let � be a DN formula. Wecall the Deterministic PDL counterpart v(�) of � the formula obtained as follows:1. We replace every atomic program P by FP ; (F 0P )�, where FP and F 0P are newdeterministic atomic programs.2. We replace every quali�ed number restriction(� n (FP ; (F 0P )�):�) by [(FP ; (F 0P )�; (�?; (F 0P )+)n]:�;(� n (FP ; (F 0P )�):�) by < FP ; (F 0P )�; (�?; (F 0P )+)n�1 > �;where the notation rn stands for n repetitions of r.6Theorem 15 A DN formula � is satis�able if and only if the Deterministic PDLformula v(�) is satis�able.Theorem 16 Satis�ability in DN is a EXPTIME-complete problem.Observe that we are translating DN to Deterministic PDL. As a special case wecan translate DF to Deterministic PDL by expressing (� 1 P ) as [FP ][F 0P ]?.4.3 Reasoning in CIN and DINLet us go back to CIN and DIN . The decidability and computational complexityof both satis�ability of CIN concepts and logical implication in CIN TBoxes can bederived by exploiting the correspondence between CIN and DIN 7. Hence it su�cesto establish decidability and computational complexity of satis�ability in DIN .6Note that, in accordance with (� n P:�) = :(� n� 1 P:�), we have:[FP ; (F 0P )�; (�?; (F 0P )+)n�1]:� =< FP ; (F 0P )�; (�?; (F 0P )+)n�1 > �:7The correspondence is realized by extending straightforwardly the mappings � and �+ describedin Chapter 2 in order to deal with quali�ed number restrictions.54



Reasoning in CIN and DINLet us ignore once again quali�ed number restrictions for the moment, i.e. we cutDIN down to DI. The presence of converse programs in DI makes its structuresno longer reducible to tree structures as above8, making the technique shown in theprevious section inapplicable. Nonetheless we are able to obtain essentially the sameresults, by developing a more involved reduction.Indeed, we are going to prove that for any DIN formula � there exists a DIFformula �0, whose size is polynomial wrt the size of �, that is satis�able if and only if�0 is so. Since we have proved in Chapter 3 that satis�ability in DIF is EXPTIME-complete, this guarantees that satis�ability in DIN is EXPTIME-complete too. Inorder to carry out this reduction we �rst need to reify the relations associated withatomic programs, then we can exploit a technique similar to the one used in theprevious section.4.3.1 Rei�cation of binary relationsAtomic programs are interpreted as binary relations. Reifying a binary relation meanscreating an object for each tuple in the relation. The set of such objects represents theset of tuples forming the relation. However the following problem arises: in general,there may be two or more objects referring to the same tuple. Obviously in order tohave a faithful representation of a relation such a situation must be avoided.Given an atomic program P , we call its rei�ed form the following programf�1 ;AP?; f2where AP is a new proposition denoting objects representing the tuples of the relationassociated with P , and f1 and f2 denote two functions that, given an object in AP ,return the �rst and the second component respectively of the tuple represented bythe object. In other words, given a running of an atomic program starting in s andending in t, we replace it by adding an intermediate state z and two deterministicatomic programs f1 and f2 starting from z and ending in s and t respectively. Wecall states such as z pseudo states since they denote the materialization of tuples suchas (s; t) and not real states.Note that there is a clear symmetry between the program f�1 ;AP?; f2 and itsconverse f�2 ;AP ?; f1.After the rei�cation of P , formulae of the form (� n P:')=(� n P�:') assume theform (� n f�1 ;AP ?; f2:�)=(� n f�2 ;AP ?; f1:�), thus denoting quali�ed number restric-tions of complex programs. Yet, since the programs f1 and f2 denote partial functions,the following equivalences hold:(� n (f�1 ;AP ?; f2):�) � (� n f�1 :(< AP ?; f2 > �));(� n (f�1 ;AP ?; f2):�) � (� n f�1 :(< AP ?; f2 > �));(� n (f�1 ;AP ?; f2)�:�) � (� n f�2 :(< AP ?; f1 > �));(� n (f�1 ;AP ?; f2)�:�) � (� n f�2 :(< AP ?; f1 > �)):De�nition Let � be a DIN formula. We de�ne the rei�ed-counterpart �1(�) of �as the conjunction of two formulae, �1(�) = �0(�) ^�1, where:8Indeed the presence of converse programs makes the structures reducible to \two-way" treestructures, as opposed to the \one-way" tree structures needed here. 55



CHAPTER 4� �0(�) is obtained from the original formula � by replacing{ every atomic programPi, i = 1 : : :m, by the complex program f�1 ;APi?; f2,where f1; f2 are new atomic programs (the only ones present after thetransformation) and APi is a new atomic proposition;{ and then every quali�ed number restriction(� n (f�1 ;AP ?; f2):�) by (� n f�1 :(< AP ?; f2 > �));(� n (f�1 ;AP ?; f2):�) by (� n f�1 :(< AP ?; f2 > �));(� n (f�1 ;AP ?; f2)�:�) by (� n f�2 :(< AP ?; f1 > �));(� n (f�1 ;AP ?; f2)�:�) by (� n f�2 :(< AP ?; f1 > �)):� �1 = [(f1 [ f2 [ f�1 [ f�2 )�]((� 1 f1) ^ (� 1 f2)).92Lemma 17 Let � be a DIN formula, and �1(�) its rei�ed-counterpart. Then �1(�)is a DIN formula, and its size is polynomially related to the size of �.Proof Straightforward. 2Observe that �1 imposes the global determinism of both f1 and f2, that is, inevery model M = (S; fRf1 ;Rf2g;�) of �0(�), the relations Rf1 and Rf2 are partialfunctions.The next lemma guarantees us that, without loss of generality, we can restrictour attention to models of �1(�) that faithfully represent relations associated withatomic programs, i.e. models in which each tuple of such relations is represented by asingle (pseudo) state. This is an essential property and guarantees the soundness ofour rei�ed representation of relations associated with atomic programs.Lemma 18 If the formula �1(�) has a model M = (S; fRf1 ;Rf2g;�) then it hasa model M 0 = (S 0; fR0f1 ;R0f2g;�0) such that for each (x; y) 2 R0f�1 ;APi ?;f2 thereis exactly one zxy such that (zxy; x) 2 R0f1 and (zxy; y) 2 R0f2 . That is, for allz1; z2; x; y 2 S0 such that z1 6= z2 and x 6= y, the following condition holds:(APi 2 �0(z1) ^APi 2 �0(z2))):((z1; x) 2 R0f1 ^ (z2; x) 2 R0f1 ^ (z1; y) 2 R0f2 ^ (z2; y) 2 R0f2):Proof Suppose that the condition is not already satis�ed by the modelM , we showhow to build a modelM 0 in which the condition is satis�ed.Let us introduce some notation. Given a pseudo state z denoting a tuple (x; y) 2Rf�1 ;AP ?;f2 we denote x by f1(z) and y by f2(z), this is in agreement with Rf1 andRf2 being functional. We call con
ict the presence of more pseudo states referringto the same tuple. Let (x; y) 2 Rf�1 ;AP ?;f2 , if there is more that one pseudo state zreferring to (x; y) { that is, if there is more that one (pseudo) state z in M such that9Observe that f1; f2 are the only atomic programs occurring in �0(�).56



Reasoning in CIN and DINAP 2 �(z) and (z; x) 2 Rf1 and (z; y) 2 Rf2 { then we randomly choose one suchpseudo state to represent (x; y) and we say that the others induce a con
ict. We callConf the set of all pseudo states inducing a con
ict.10We start our construction, by de�ning a structure M2Conf as the disjoint union ofj2Conf j copies of M , one copy, denoted by ME , for every set E 2 2Conf . We denoteby sE the copy in ME of the state s in M . The structure M2Conf is trivially a modelof �1(�) as M is.Let ME and ME0 be two copies of M in M2Conf , we call \exchanging f2(tE ) withf2(tE0 )" the operation on M2Conf consisting of removing the tuple (tE ; f2(tE )) fromREf2 replacing it with (tE ; f2(tE0 )) and, at the same time, removing (tE0 ; f2(tE0 )) fromRE0f2 replacing it with (tE0 ; f2(tE)) 11. By exchanging f2(tE ) with f2(tE0), we resolve tfor both ME and ME0 , in the sense that tE and tE0 no longer induce con
icts.Note that given a t 2 Conf , we can univocally associate to a set E 2 2Conf suchthat t 2 E , the set E � ftg. The set of all E and E � ftg such that E 2 2Conf andt 2 E for some t 2 Conf , is equal to 2Conf .Now we can complete our construction. We get a model M 0 with the desiredproperty by modifyingM2Conf as follows: For each state t 2 Conf , for each E 2 2Confsuch that t 2 E , we exchange f2(tE ) with f2(tE�ftg).12Indeed proceeding in this way, on the one hand all con
icts present in the originalmodel M are eliminated from all its copies in M2Conf . On the other hand no newcon
icts are created as shown in the following. New con
icts could be created only byresolving two t; t0 2 Conf in the same E 2 2Conf , since otherwise we are guaranteedby de�nition of M2Conf that f1(tE) 6= f1(tE0) if E 6= E 0. However, given two pseudostates t; t0 2 Conf and a set E 2 2Conf , following the construction proposed we havethat:� if t; t0 2 E , we exchange f2(tE) with f2(tE�ftg) to resolve t and f2((t0)E ) withf2((t0)E�ft0g) to resolve t0;� if t; t0 62 E . we exchange f2(tE) with f2(tE[ftg) to resolve t and f2((t0)E ) withf2((t0)E[ft0g) to resolve t0;� if t 2 E and t0 62 E , we exchange f2(tE) with f2(tE�ftg) to resolve t and f2((t0)E)with f2((t0)E[ft0g) to resolve t0.Observe that in all cases we resolve t; t0 by acting on di�erent copies on the originalmodel M , so no con
icts can be introduced.Finally, M 0 is indeed a model of �1(�), since by construction �1 is satis�ed ev-erywhere in M 0, and it is straightforward to check by induction on �0(�), that, forall E 2 2Conf , M; s j= �0(�) if and only if M 0; sE j= �0(�). 2By using Lemma 18 we can prove the result below, which constitutes the prelim-inary step of our reduction form DIN to DIF .10Note that Conf can be uncountable.11Obviously the same thing can be done acting on f1(tE) and f1(tE0).12Note that the transformation leading fromM2Conf toM 0 does not change the number of tuplesin which a state occurs. 57



CHAPTER 4Lemma 19 A DIN formula � is satis�able if and only if its rei�ed-counterpart�1(�) is satis�able.Proof ) Let M = fS; fRPg;�g be a model of �. We de�ne a model of M 0 =fS0; fR0f1 ;R0f2g;�0g of �1(�) as follows:� S0 = S [ fzxy j (x; y) 2 RPi for some Pig,� R0f1 = f(zxy; x) j (x; y) 2 RPig, R0f2 = f(zxy; y) j (x; y) 2 RPig,� �0(t) = � �(t) for t 2 SfAPi j (x; y) 2 RPig for t = zxy:The construction above implies (x; y) 2 RPi i� (x; y) 2 R0f�1 ;APi ?;f2 .Since R0f1 ;R0f2 are partial functions, it follows that �1 is satis�ed all overM 0, andby induction on �, it is easy to verify that M; s j= � if and only if M 0; s j= �0(�).( Let M 0 = fS0; fR0f1 ;R0f2g;�0g be a model of �1(�), By Lemma 18 we canassume that for each (x; y) 2 R0f�1 ;APi ?;f2 there is exactly one zxy such that (zxy; x) 2R0f1 and (zxy; y) 2 R0f2 . This guarantees that quali�ed number restrictions holdingin the states x and y, restrict correctly the number of (f�1 ;APi?; f2)-successors and(f�2 ;APi?; f1)-successors, respectively.13We de�ne a model M = fS; fRPg;�g of � as follows. First we de�ne RPi =R0f�1 ;APi ?;f2 Then, let s 2 S0 be a state such that M 0; s j= �1(�), we de�neS = ft j (s; t) 2 (Si(RPi [R�Pi ))�g;RPi = RPi \ (S � S);�(t) = �0(t) � fAPi for any Pig; for all t 2 S:Finally it is easy to verify by induction of �0(�) that M 0; s j= �0(�) if and only ifM; s j= �. 24.3.2 Reducing DIN to DIFBy Lemma 19, we can concentrate on the rei�ed-counterparts of DIN formulae. Notethat these are DIN formulae themselves, but their special form allows us to convertthem into DIF formulae. We adopt a technique resembling the one exploited forreducing DN to Deterministic PDL, in the previous section. Intuitively the tech-nique works as follows. We represent a rei�ed program f�1 ;AP ?; f2 by the programF1;AP ?; (F 01;AP ?)�; (F2;AP ?; (F 02;AP ?)�)�, where Fj; F 0j (with j = 1; 2) are new de-terministic atomic programs. In this way the program f�j ;AP ? (j = 1; 2) which isnot deterministic in general, is expressed by chain Fj;AP ?; (F 0j;AP ?)� of determinis-tic programs, and quali�ed number restrictions can be encoded as constraints on sucha chain. The only cardinality constraints that are present in the resulting formulae13Otherwise we could get something like: (zxy ; x); (z0xy; x) 2 R0f1 , (zxy ; y); (z0xy ; y) 2 R0f2 , AP 2�0(zxy) and AP 2 �0(z0xy). In this case (� 2 (f�1 ;APi ?;f2).>) holds in x, but actually there is onlyone tuple (x; y) 2 R0f�1 ;APi?;f2 .58



Reasoning in CIN and DINare functional restrictions. Hence by �rst transforming a DIN formulae into theirrei�ed-counterpart and then applying the technique sketched above we reduced DINto DIF which has been studied in Chapter 3.Formally we de�ne the DIF-counterpart of a DIN formula as follows.De�nition Let � be a DIN formula and �1(�) = �0(�)^�1 its rei�ed-counterpart.We de�ne the DIF-counterpart �2(�) of � as the conjunction of two formulae,�2(�) = �00(�) ^�2, where:� �00(�) is obtained from �0(�) by replacing{ every occurrence of program f�1 ;APi?; f2 byF1;APi?; (F 01;APi?)�; (F2;APi?; (F 02;APi?)�)�;where Fj; F 0j (j = 1; 2) are new atomic programs;{ every (� n f�1 : < APi?; f2 > �) by[F1;APi?; (F 01;APi?)�; (�0?; (F 01;APi?)+)n]:�0;and every (� n f�1 : < APi?; f2 > �) by< F1;APi?; (F 01;APi?)�; (�0?; (F 01;APi?)+)n�1 > �0;where �0 =< (F2;APi?; (F 02;APi?)�)� > �;14{ every (� n f�2 : < APi?; f1 > �) by[F2;APi?; (F 02;APi?)�; (�00?; (F 02;APi?)+)n]:�00;and every (� n f�2 : < APi?; f1 > �) by< F2;APi?; (F 02;APi?)�; (�00?; (F 02;APi?)+)n�1 > �00;where �00 =< (F1;APi?; (F 01;APi?)�)� > �;� �2 = [(Sj=1;2(Fj [F 0j [F�j [F 0�j ))�]�1^ �2, with each conjunct �j of the form:(� 1 Fj) ^ (� 1 F 0j) ^ (� 1 F�j ) ^ (� 1 F 0�j )^:(< F�j > >^ < (F 0j)� > >):2Lemma 20 Let � be a DIN formula, and �2(�) its DIF-counterpart. Then �2(�)is a DIF formula, and its size is polynomially related to the size of �.14As before the notation r+ stands for r; r�, and the notation rn stands for n repetitions of r. 59



CHAPTER 4Proof Straightforward. 2Observe that �2 constrains the models M = (S; fRFg;�) of �2(�) so that therelations RFj ;RF�j ;RF 0j ;RF 0�j are partial functions, and each state cannot belinked to other states by both RF�j and R(F 0j )� . As a consequence we get thatR(Fj ;APi ?;(F 0j ;APi ?)�)� is a partial function. This condition is required to prove thelemma below.Lemma 21 Let � be a DIN formula and �1(�) its rei�ed-counterpart. �1(�) issatis�able if and only if �2(�) is satis�able.Proof ) Let M = fS; fRf1 ;Rf2g;�g be a model of �1(�). Then we build amodel M 0 = fS0; fR0Fg;�0g of �2(�) as follows. First, we de�ne fR0F g. For eachstate x 2 S such that M;x j=< f�1 ;APi?; f2 > >, let z1; z2 : : : be the states suchthat (x; zk) 2 Rf�1 and M; zk j=< APi?; f2 > >.15 We put (x; z1) 2 R0F1 , andfor all k = 1; 2; : : : we put (zk; zk+1) 2 R0F 01 . Similarly, for each x 2 S such thatM;x j=< f�2 ;APi?; f1 > >, let z1; z2; : : : be the states such that (x; zk) 2 Rf�2 andM; zk j=< APi?; f1 > >. We put (x; z1) 2 R0F2 , and for all k = 1; 2; : : : we put(zk; zk+1) 2 R0F 02 . Then, let s 2 S be such that M; s j= �1(�), we de�neS0 = ft j (s; t) 2 (Sj=1;2(R0Fj [R0F 0j [R0�Fj [R0�F 0j ))�g;RF = R0F \ (S 0 � S 0);�0(t) = �(t) for all t 2 S0:Note that since Rfj is a partial function, R0(Fj ;APi ?;(F 0j ;APi ?)�)� is a partial functionas well. By this construction we have that(x; y) 2 Rf�1 ;APi ?;f2 i� (x; y) 2 R0F1;APi ?;(F 01;APi ?)�;(F2 ;APi ?;(F 02;APi ?)�)� :Moreover, �2 is satis�ed all over M 0.Considering that R0(Fj ;APi?;(F 0j ;APi ?)�)� is a partial function, and that[Fj;APi?; (F 0j;APi?)�; (�?; (F 0j;APi?)+)n]:�< Fj;APi?; (F 0j;APi?)�; (�?; (F 0j;APi?)+)n�1 > �specify that there are at most, at least respectively, n states satisfying �, along thechain Fj;APi?; (F 0j;APi?)�, it is easy to verify by induction on �0(�) that M; s j=�0(�) if and only if M 0; s j= �00(�).( Let M 0 = fS0; fR0Fg;�0g be a model of �2(�). We can de�ne a model M =fS; fRf1 ;Rf2g;�g of �1(�) as follows. First we de�ne Rfj = R0(Fj ;APi?;(F 0j ;APi ?)�)�15Without loss of generality, we implicitly assume that each state x 2 S has a countable numberof f�i -successors, i = 1;2.60



Discussion(j = 1; 2). Then let s 2 S0 be such that M 0; s j= �2(�), we de�neS = ft j (s; t) 2 (Rf1 [Rf2 [R�f1 [R�f2 )�g;Rfj = Rfj \ (S � S);�(t) = �0(t) for all t 2 S:Note that, by �2, R0(Fj ;APi?;(F 0j ;APi ?)�)� is a partial function, and hence Rfj is apartial function as well, thus �1 is satis�ed all over M .Considering again the meaning of[Fj;APi?; (F 0j;APi?)�; (�?; (F 0j;APi?)+)n]:�< Fj;APi?; (F 0j;APi?)�; (�?; (F 0j;APi?)+)n�1 > �it is easy to verify by induction on �00(�) that M 0; s j= �00(�) if and only if M; s j=�0(�). 2Now we are ready to state the main results of this section.Theorem 22 A formula � of DIN is satis�able if and only if the formula �2(�) ofDIF is satis�able.Proof By Lemma 19 and Lemma 21. 2Theorem 23 Satis�ability in DIN is an EXPTIME-complete problem.Proof The satis�ability problem for DIF is EXPTIME-complete as shown in Chap-ter 3, and, by Lemma 20 the size of the DIF-counterpart �2(�) of a DIN formula� is polynomially related to the size of �. 2As an immediate consequence we can characterize the computational complexity ofreasoning in CIN .Theorem 24 Satis�ability of CIN concepts, satis�ability of CIN TBoxes, and log-ical implication in CIN TBoxes, are EXPTIME-complete problems.4.4 DiscussionLet us illustrate with an example the basic relationships between models of DINformulae and those of their rei�ed-counterparts and DIF-counterparts.Consider the following DIN formula:� =< P > (= 2 P�:(= 2 P:>))where the notation (= n a:�) stands for (� na:�)^ (� na:�).Figure 4.1 shows a model M of � such that M;a j= �.In Figure 4.2 the model M of � is transformed in a model M 0 of its rei�ed-counterpart �1(�) as done in the proof of Lemma 19. 61



CHAPTER 4 -Pba edc RR 		 Figure 4.1: A model of a DIF formula � f2f1--R R	 	 � II� 4321 APAPAPAP ba edc Figure 4.2: A model of the rei�ed-counterpart �1(�) of �
-- - F 02F2--F 01F1--� I I		 4321 APAPAPAP ba edc Figure 4.3: A model of the DIF-counterpart �2(�) of �62



DiscussionFinally, in Figure 4.3 the model M 0 of �1(�) is transformed into a model M 00 ofthe DIF-counterpart �2(�) of � as in the proof of Lemma 21. Notice that fromM 00we can easily reconstruct M 0, and from it the modelM of the original formula.The other direction, transforming models of �2(�) �rst into models of �1(�) andthen into models of � is slightly more involved in general, for two reasons. First weare not imposing any explicit distinction between states and pseudo states in bothmodels of �1(�) and �2(�). Indeed nothing prevents a state, which is not intendedto represent a relation, from satisfying < fj > > in models of �1(�) and similarly< (Fj;AP ?; (F 0j;AP ?)�)� > > in models of �2(�). However starting from a state sat-isfying �1(�) (respectively �2(�)) we can isolate the component, connected by meansof programs f�1 ;AP ?; f2 (respectively F1;AP ?; (F 01;AP ?)�; (F2;AP ?; (F 02;AP ?)�)�) ortheir converse. In such a connected component, formulae < fj > > (respectively< Fj;AP ?; (F 0j;AP ?)� > >) are satis�ed only by states that are intended to representa relation. The second di�culty is that in general models of �1(�) may contain morepseudo states referring to the same tuple of a relation, however by Lemma 18 we canrestrict our attention to models in which this di�culty does not arise, without loss ofgenerality.We remark that the only condition required by the proof of Lemma 18 is that,given a model of a formula, the disjoint union of copies of this model is still a model.This condition is very general, and most modal logics satisfy it. Note, however, thatin the following we will introduce a family of propositional dynamic logics in which itis possible to denote a property satis�ed by exactly one state. Because of this, suchlogics violate the condition above.We end the chapter with a few words about the tight relation between quali-�ed number restriction and graded modalities in modal logic [128, 127, 54, 55]. Thegraded modal operator < a >n � (with n � 0) is equivalent to the quali�ed numberrestriction, (� n+1 a:�), and its dual [a]n� = : < a >n :� is equivalent to (� na:�)for n � 1 and to [a]� for n = 0. The decidability and computational complexity of apropositional dynamic logic comprising graded modal operators on atomic programsand converse of atomic programs, were not known. Since such logic is straightfor-wardly polynomially reducible to DIN , as an immediate consequence of the resultson DIN , we can state its decidability and characterize its computational complexityas EXPTIME-complete.16
16Note that even for the much simpler basic PDL augmented with graded modalities on atomicactions, decidability and computational complexity were not known. Such logic is essentially DN ,whose decidability and computational complexity has been discussed in the section on reasoning inCN and DN . 63



CHAPTER 4

64



Chapter 5Boolean Properties andAssertions on Atomic RolesIn this chapter we add to CIN the possibility of expressing boolean combinations ofatomic roles, in particular the intersection of atomic roles P1uP2, and the negation ofatomic roles :P interpreted as \any role but P". We also allow for stating inclusionassertions on atomic roles, thus expressing hierarchies of roles, disjointness of roles,etc. The corresponding propositional dynamic logic is introduced and studied at thesame time.5.1 The logics CINB and DINBThe abstract syntax of the description logic CINB is as follows:C ::= > j ? j A j C1 u C2 j C1 t C2 j C1 ) C2 j :C j9R.C j 8R.C j (� na:C) j (� na:C)� ::= any j P j �1 u �2 j �1 t �2 j �1 ) �2 j :�a ::= � j ��R ::= a j R1 tR2 j R1 �R2 j R� j R� j id(C)where A denotes an atomic concept, C (possibly with a subscript) a generic concept,any \the most general" atomic role, P an atomic role, � a basic role, i.e. a booleancombination of atomic roles, a a simple role, i.e. either a basic role or the inverse of abasic role, R (possibly with a subscript) a generic role. Note that wrt CIN quali�ednumber restrictions are extended from atomic roles and their inverse to basic rolesand their inverse.The semantics of CINB is similar to that of CIN except for the basic roles whichare not present in CIN . To such roles an interpretation I = (�I ; �I) assigns meaning65



CHAPTER 5as follows: anyI � �I ��IP I � anyI(�1 u �2)I = �I1 \ �I2(�1 t �2)I = �I1 [ �I2(�1 ) �2)I = :�I1 [ �I2:�I = anyI � �I :Observe that anyI 6= �I � �I , in general. As a consequence :P is to be in-terpreted as \the set of pairs of individuals that are linked (by any) but not by P"(:P I = anyI �P I) as opposed to \the set of pairs of individuals that are not linkedby P" (:P I = �I � �I � P I). The following example should further clarify thedi�erence between the two interpretations. The concept 8:P .C, wrt the �rst inter-pretation, means: \ the class of individuals such that all their successors, that arenot P -successors, are in C"; wrt the second interpretation, it means: \the class ofindividuals such that all individuals, that are not their P -successors, are in C". Weshall return to this point at the end of the chapter.The basic role P1 u P2 denotes the intersection of P1 and P2, i.e. the pairs ofindividuals that are both in P1 and in P2. So, for example, 9P1 u P2.C denotesindividuals which have a P1-successor in C that is also a P2 successor. Similarly(� nP1 u P2:C) denotes individuals which have at most n P1-successors in C thatare also P2 successors. While 8P1 u P2.C denotes individuals of whose P1-successorsthat are also P2-successors are in C.Di�erently from what is usually assumed, we allow for directly specifying inter-dependencies between basic roles. In other words, besides of inclusion assertions onconcepts, CINB TBoxes allow for inclusion assertions on basic roles. Analogouslywe are also interested in checking for subsumption between basic roles wrt a TBox.Simple examples of inclusion assertions on basic roles are:father v parentmother v parentparent v mother t fatherfather v :motherspecifying that both the roles father andmother are specializations of the role parent,that parent is in turn a specialization ofmothertfather, and that father andmotherare disjoint, i.e. their intersection is empty.1 Obviously inclusion assertions on rolesmust be taken into account in logical inference: for example, from father v parentand human v 8parent.human we infer human v 8father.human.Formally we de�ne a CINB TBox to be a set of inclusion assertions both on con-cepts (C1 v C2) and on basic roles (�1 v �2). As usual we say that an interpretationI is a model of an inclusion assertion on concepts C1 v C2, if CI1 � CI2 . Similarlywe say that an interpretation I is a model of an inclusion assertion on basic roles�1 v �2, if �I1 v �I2 . We say that an interpretation I is a model of a TBox, if it isa model of all inclusion assertions in it (both on concepts and basic roles). We say1Note that these inclusion assertions a�rm that the role parent is partitioned into the rolesfather and mother.66



The logics CINB and DINBthat a TBox K logically implies an inclusion assertion on concepts or on basic roles,written as K j= C1 v C2, K j= �1 v �2 respectively, if all models of K are models ofthe inclusion assertion.We also introduce the notion of satis�ability for basic roles, besides the usualsatis�ability of concepts. A basic role � is satis�able, if there exists an interpretationI such that �I 6= ;.The corresponding propositional dynamic logic is called DINB. Formulae ofDINB are of two sorts: program formulae and state formulae.Program formulae are boolean combinations of atomic programs and their syntax isas follows: � ::= any j P j �1 \ �2 j �1 [ �2 j �1 ) �2 j :�where any is \the most general" atomic program, P an atomic program, and � ageneric program formula also called basic program.State formulae (the usual sort of propositional dynamic logic formulae), describingproperty of states, have the following abstract syntax:� ::= > j ? j A j �1 ^ �2 j �1 _ �2 j �1 ) �2 j :� j< r > � j [r]� j (� na:�) j (� na:�)a ::= � j ��r ::= a j r1 [ r2 j r1; r2 j r� j r� j �?where A denotes a propositional letter, � (possibly with a subscript) a state formula, �a basic program, i.e. a boolean combination of atomic programs, a a simple program,i.e. a basic program or the converse of an basic program, and r (possibly with asubscript) a generic program.Consistently with the interpretation of basic roles in CINB, basic programs areinterpreted as follows: for all structures M = (S; fRrg;�),Rany � S � SRP � RanyR�1\�2 = R�1 \R�1R�1[�2 = R�1 [R�2R�1)�2 = R:�1 [R�2R:� = Rany �R�:The rest of the constructs are interpreted as in DIN .Intuitively a program P1\P2 denotes the concurrent execution of P1 and P2, while:P denotes the non-execution of P . In general program formulae (basic programs)denote a set of atomic programs executed concurrently and a set of atomic programsnot executed at all. Note that nothing is said about atomic programs that are notcontained in one of these sets, they could be executed or not, i.e. we are adopting anopen semantics for program formulae.By forcing validity of program formulae (which correspond to state inclusion asser-tions on roles in CINB) we can represent hierarchies of basic programs, for example by67



CHAPTER 5forcing validity of resize icon) resize picture we can represent that resize icon is aspecialization of resize picture. In the same way we can represent mutual exclusion,for example by forcing the validity of :(open window ^ close window) we representthat the program open window and close window cannot be executed together.Formally, we say that a program formula � is valid in a structure M = (S; fRrg;�),if R� = Rany, while a state formula � is valid in M , if for all s 2 S, M; s j= �. Wecall axioms formulae (either program or a state formulae) that are assumed to bevalid. Formally, we say that a structure M is a model of an axiom  , if  is valid inM . We say that an axiom is satis�able, if it has a model. We say that a structureM is a model of a �nite set of axioms �, if M is a model of all axioms in �. We saythat a �nite set of axioms is satis�able, if it has a model. We say that a �nite set� of axioms logically implies a formula  (either program or state formula), written� j=  ,if  is valid in every model of �.Note that CINB inclusion assertions are analogue to DINB valid formulae, andCINB TBoxes are analogue to sets of DINB axioms. Hence satis�ability of CINBTBoxes correspond to satis�ability of �nite sets of DINB axioms,and logical impli-cation in CINB corresponds to logical implication in DINB.We also introduce the notion of satis�ability for program formula (the analogueof the notion of satis�ability for a basic role). A program formula � is satis�able, ifthere exists a structure M = (S; fRrg;�) such that R� 6= ;.5.2 Reasoning in CINB and DINBThe CINB reasoning services we are interested in are satis�ability of concepts, sat-is�ability of basic roles, satis�ability of TBoxes, and logical implication in TBoxes.It is easy to check that satis�ability of basic roles is reducible to satis�ability inpropositional logic, hence it is computational characterized as NP-complete.2 Theother reasoning services are EXPTIME-hard since CINB contains CIN , and theirdecidability and computational complexity is to be established yet.We can derive such results for CINB by exploiting the correspondence betweenCINB and DINB. The correspondence is realized by suitably extending the mapping� in Chapter 2 to deal with basic roles and quali�ed number restrictions. Note thatthe mapping �+, reducing logical implication in the description logic to satis�abilityin the correspondent propositional dynamic logic, cannot be extended because of thepresence of inclusion assertions on basic roles. Hence logical implication in CINBis directly mapped, by the extension of �, to logical implication in DINB and viceversa.In the following we concentrate on logical implication in DINB 3, proving thatit can be polynomially reduced to logical implication in DIN (which in turn can bereduced to satis�ability of a single formula as usual). As corollaries of this result weestablish decidability of both CINB and DINB and characterize the computational2Similarly, satis�ability of DINB program formulae is NP-complete.3Observe that satis�ability of a state formula � as well as satis�ability of a �nite set of axioms �can be reformulated by means of logical implication as ; 6j= :� and � 6j= ?, respectively.68



Reasoning in CINB and DINBcomplexity of satis�ability and logical implication in both the logics as EXPTIME-complete.The reduction from logical implication in DINB to logical implication in DINis based on reifying relations associated with basic programs, similarly to what wasdone in Chapter 4. Intuitively, the key idea underlying the reduction is to representeach pair of states (x; y) associated with the program any by a (pseudo) state zxy,introducing two deterministic programs f1 and f2 linking each pseudo state zxy tothe �rst component x and the second component y of the corresponding pair (x; y).In this way, we can translate program formulae that hold for a pair (x; y) into stateformulae that hold in the corresponding pseudo state zxy.We start presenting the reduction, by de�ning two mappings: �p from DINBprogram formulae to DIN (state) formulae, and �s from DINB state formulae toDIN formulae.De�nitionWe de�ne a mapping �p fromDINB program formulae � to DIN (state)formulae �p(�) as follows: �p(any) = >any�p(P ) = >any ^AP�p(�1 \ �1) = �p(�1) ^ �p(�2)�p(�1 [ �1) = �p(�1) _ �p(�2)�p(�1 ) �1) = �p(�1)) �p(�2)�p(:�) = >any ^ :�p(�)where >any and AP are new propositional letters. 2Note that �p(P ) ) �p(any) is equivalent to (>any ^ AP ) ) >any which is aninstance of a propositional tautology.De�nitionWe de�ne a mapping �s from DINB state formulae � to DIN formulae�s(�) as follows: �s(>) = >s�s(?) = :>s�s(A) = A�s(�1 ^ �2) = �s(�1) ^ �s(�2)�s(�1 _ �2) = �s(�1) _ �s(�2)�s(:�) = :�s(�)�s([r]�) = [� 0s(r)]�s(�)�s(< r > �) =< � 0s(r) > �s(�)�s((� n �:�)) = (� n f�1 : < �p(�?); f2 > �s(�))�s((� n ��:�)) = (� n f�2 : < �p(�?); f1 > �s(�))where f1 and f2 are two new atomic programs, and � 0s is a mapping from DINB69



CHAPTER 5programs r to DIN programs � 0s(r) de�ned as follows:� 0s(�) = f�1 ; �p(�); f2� 0s(��) = f�2 ; �p(�); f1� 0s(r1; r2) = � 0s(r1); � 0s(r2)� 0s(r1 [ r2) = � 0s(r1) [ � 0s(r2)� 0s(r�) = � 0s(r)�� 0s(�?) = � 0s(�)?� 0s(r�) = � 0s(r)�:2 Note that f1 and f2 are the only atomic programs occurring in �s(�). Note alsothat DINB basic programs are transformed into their rei�ed form, similarly to whatwas shown in Chapter 4.Making use of the above mappings, we de�ne a mapping � from DINB formulaeto DIN formulae, and a mapping T from �nite sets of DINB axioms to �nite setsof DIN axioms.De�nitionLet  be a DINB formula. We de�ne � ( ) as the followingDIN formula:� if  is a state formula, then � ( ) = >s ) �s( )� if  is a program formula, then � ( ) = >any ) �p( ).2Lemma 25 Let  be a DINB formula, and � the mapping de�ned above. Then � ( )is a DIN formula, and its size is polynomially related to the size of  .Proof Straightforward. 2De�nitionLet � be a �nite set of DINB axioms. We de�ne T (�) as the set T1(�)[T2of DIN axioms, where:� T1(�) = f� ( ) j  2 �g� T2 is the set composed by the following three axioms:>any � :>s ^ (< f1 > >s) ^ (< f2 > >s)(� 1 f1:>)(� 1 f2:>):2Lemma 26 Let � be a �nite set of DINB axioms, and T the mapping de�ned above.Then T (�) is a �nite set of DIN axioms, and its size is polynomially related to thesize of �.70



Reasoning in CINB and DINBProof Straightforward. 2Intuitively, in the models of T (�) we distinguish states satisfying >s, which representstates in the models of �, and (pseudo) states satisfying >any, which represent pairsof states of any in the models of �. Such pseudo states have exactly one f1-successorand one f2-successor, both satisfying >s.Next, by showing that models of a �nite set � ofDINB axioms can be transformedinto models of T (�), we prove the following lemma.Lemma 27 Let � be a �nite set of DINB axioms,  a DINB formula, and T and� the mappings above. Then � j=  if T (�) j= � ( ).Proof By contradiction: suppose that T (�) j= � ( ) and there exists a model M =(S; fRrg;�) of �, in which  is not valid.From M we de�ne the structure M 0 = (S 0; fR0f1;R0f2g;�0) as follows:� S0 = S [ fzxy j (x; y) 2 Ranyg� for each (x; y) 2 Rany, we put >any 2 �0(zxy), (zxy ; x) 2 R0f1 , and (zxy; y) 2R0f2� for each P , for each (x; y) 2 RP , we put AP 2 �0(zxy)� for each state x 2 S, we put �0(x) = �(x) [ f>sg.Observe that for each pair (x; y) 2 Rany there is exactly one element zxy 2 S 0.Moreover, by construction, M 0 is a model of T2.Next we prove that for all program formulae �, (x; y) 2 R� if and only if(x; y) 2 R0f�1 ;�p (�)?;f2 . We proceed by induction on the formation of � (without lossof generality we skip the cases � = �1 [ �2 and � = �1 ) �2).� (x; y) 2 Rany i� >any 2 �0(zxy), (zxy; x) 2 R0f1 , (zxy; y) 2 R0f2 , by construc-tion.� (x; y) 2 RP i� >any; AP 2 �0(zxy), (zxy ; x) 2 R0f1 , (zxy; y) 2 R0f2 , by con-struction.� (x; y) 2 R�1\�2 i� (x; y) 2 R�1 and (x; y) 2 R�2 , i� (by induction hypothesis)�p(�1) 2 �0(zxy), (zxy ; x) 2 R0f1 , (zxy; y) 2 R0f2 , and �p(�2) 2 �0(zxy), (zxy; x) 2R0f1 , (zxy; y) 2 R0f2 , i.e. �p(�1 \ �2) 2 �0(zxy), (zxy ; x) 2 R0f1 , (zxy; y) 2 R0f2 .� (x; y) 2 R:� i� (x; y) 2 Rany and (x; y) 62 R�, i� (by induction hypothesis)>any 2 �0(zxy), (zxy; x) 2 R0f1 , (zxy; y) 2 R0f2 , and �p(�) 62 �0(zxy), (zxy ; x) 2R0f1 , (zxy; y) 2 R0f2 , i.e. �p(:�) 2 �0(zxy), (zxy; x) 2 R0f1 , (zxy; y) 2 R0f2 .Observe that by de�nition ofM 0, (x; y) 2 R0f�1 ;�p(�)?;f2 if and only if M 0; zxy j= �p(�).Proceeding again by induction, it is easy to prove that for all state formulae �and all x 2 S, M;x j= � if and only if M 0; x j= �s(�). For example, let us considera state formula of the form (� n �:�). By de�nition, M;x j= (� n �:�) if there are71



CHAPTER 5at most n states y such that (x; y) 2 R� and M; y j= �. We have already provedthat (x; y) 2 R� if and only if (x; y) 2 R0f�1 ;�p(�)?;f2 , and by inductive hypothesiswe can assume M; y j= � i� M 0; y j= �s(�). Considering that f2 is functionalwe have, fy j (x; y) 2 R0f�1 ;�p(�)?;f2 and M 0; y j= �s(�)g is equal to fy j (x; zxy) 2R0f�1 ; (zxy; y) 2 R0f2 and M 0; zxy j=< �p(�)?; f2 > �s(�)g. Thus we conclude thatM;x j= (� n �:�) if and only if M 0; x j= (� n f�1 : < �p(�)?; f2 > �s(�)).Let � be a DINB state formula, � is valid in M if and only if for all s 2 S,M; s j= �. Considering the de�nition of M 0 this holds, if and only if, for all s 2 S0such that M 0; s j= >s, we have M 0; s j= �s(�), i.e. if and only if � (�) is valid in M 0.Similarly, let � be a DINB program formula, � is valid in M if and only if forall x; y 2 S such that (x; y) 2 Rany, we have (x; y) 2 R�. Considering again thede�nition of M 0, this holds if and only if, for all z 2 S0 such that z 2 >any, we havez 2 �p(�), i.e. if and only if � (�) is valid in M 0.Hence M 0 is a model of T (�) and yet � ( ) is not valid in M 0, contradicting thehypothesis. 2In order to prove the converse of Lemma 27, we show that, given a model M =(S; fRf1 ;Rf2g;�) of T (�), we can construct a model of � on the basis ofM . Howeversuch construction can be carried out only starting from models of T (�) satisfying thefollowing condition: for each pair (x; y) 2 Rf�1 ;�p(�)?;f�2 , there is a single pseudo statezxy such that (zxy; x) 2 Rf1 and (zxy; y) 2 Rf2 . The next lemma guarantees thatwe can assume such condition to be satis�ed in the models of T (�), without loss ofgenerality.Lemma 28 Let � be a �nite set of DINB axioms, and T the mapping de�nedabove. If T (�) has a model M = (S; fRf1 ;Rf2g;�), then it has a model M 0 =(S0; fR0f1 ;R0f2g;�) such that, for each (x; y) 2 R0f�1 ;�p(�)?;f2 there is exactly one zxysuch that (zxy ; x) 2 R0f1 and (zxy; y) 2 R0f2 . That is, for all z1; z2; x; y 2 S0 such thatz1 6= z2 and x 6= y, the following condition holds:M 0; z1 j= �p(�) and M 0; z2 j= �p(�) implies:((z1; x) 2 R0f1 ^ (z2; x) 2 R0f1 ^ (z1; y) 2 R0f2 ^ (z2; y) 2 R0f2):Proof The proof is almost identical to that of Lemma 18 in Chapter 4. We sketch ithere for completeness. Suppose that the condition is not already satis�ed by M . Weshow how to build a model M 0 in which the condition above is satis�ed. Given anpseudo state z referring to a pair (x; y) 2 Rf�1 ;�p(�)?;f2 we denote x by f1(z) and y byf2(z) (this is in agreement with Rf1 and Rf2 being functional). We call the presenceof more pseudo states referring to the same pair, con
ict. Let (x; y) 2 Rf�1 ;�p(�)?;f2 .If there is more than one pseudo state z referring to (x; y), then we randomly chooseone such pseudo state to represent (x; y) and we say that the others induce a con
ict.We call Conf the set of all pseudo states inducing a con
ict. Note that Conf can beuncountable.We de�ne a structure M2Conf as the disjoint union of j2Conf j copies of M , onecopy, denoted by ME , for every set E 2 2Conf . We denote by sE the copy in ME ofthe state s in M . Trivially,M2Conf is a model of T (�) as is M .72



Reasoning in CINB and DINBLet ME and ME0 be two copies of M in M2Conf , we call \exchanging f2(tE ) withf2(tE0 )" the operation on M2Conf consisting of removing the pair (tE ; f2(tE )) fromREf2 replacing it with (tE ; f2(tE0 )) and, at the same time, removing (tE0 ; f2(tE0 )) fromRE0f2 replacing it with (tE0 ; f2(tE)). By exchanging f2(tE) with f2(tE0 ), we resolve t forboth ME and ME0 , in the sense that tE and tE0 no longer induce con
icts.We get a modelM 0 with the desired property by modifyingM2Conf as follows: foreach state t 2 Conf , for each E 2 2Conf such that t 2 E , we exchange f2(tE ) withf2(tE�ftg).Indeed, proceeding in this way, on the one hand all con
icts present in the originalmodel M are eliminated from all its copies in M2Conf . On the other hand no newcon
icts are created.Finally, M 0 is a model of T (�), since by construction T2 is valid in M 0, and it isstraightforward to check by induction that for every � 2 T1(�), for all E 2 2Conf ,M; s j= � if and only if M 0; sE j= �. 2Lemma 29 Let � be a �nite set of DINB axioms,  a DINB formula, and T and� the mappings de�ned above. Then T (�) j= � ( ) if � j=  .Proof By contradiction: suppose that � j=  and there exists a model M 0 =(S0; fR0f1 ;R0f2g;�0) of T (�) such that � ( ) is not valid. As a consequence ofLemma 28, we can assume that, in M 0, for each pair (x; y) 2 R0f�1 ;>any?;f2 thereexists a single pseudo state zxy such that (zxy; x) 2 R0f1 and (zxy; y) 2 R0f2 .From M 0 we de�ne a structure M = (S; fRrg;�) as follows:� S = fs 2 S0 jM 0; s j= >sg� (x; y) 2 Rany if and only if (x; y) 2 R0f�1 ;>any?;f2 , and similarly for all atomicprograms P , (x; y) 2 RP if and only if (x; y) 2 R0f�1 ;(>any^AP )?;f2 (note thatx; y 2 >s by de�nition of T (�))� �(x) = �0(x), for all x 2 S.We prove that for all program formulae �, (x; y) 2 R0f�1 ;�p (�)?;f2 if and only if(x; y) 2 R�. We proceed by induction on the formation of � (without loss of generalitywe skip the cases � = �1 [ �2 and � = �1 ) �2).� (x; y) 2 Rany if and only if (x; y) 2 R0f�1 ;>any?;f2 , by construction of M .� (x; y) 2 RP if and only if (x; y) 2 R0f�1 ;(>any^AP )?;f2 , by construction of M .� (x; y) 2 R0f�1 ;�p(�1\�2)?;f2 i� (x; y) 2 R0f�1 ;�p (�1)?;f2 and (x; y) 2 R0f�1 ;�p(�2)?;f2 i�by inductive hypothesis (x; y) 2 R�1 and (x; y) 2 R�2 , i.e. (x; y) 2 R�1\�2 .� (x; y) 2 R0f�1 ;�p (:�)?;f2 , i.e. (x; y) 2 R0f�1 ;>any?;f2 and (x; y) 62 R0f�1 ;�p(�)?;f2 i�by inductive hypothesis (x; y) 2 Rany and (x; y) 62 R�, i.e. (x; y) 2 R:�. 73



CHAPTER 5Observe that (x; y) 2 R0f�1 ;�p(�)?;f2 if and only if the single (pseudo) state zxy, suchthat (zxy; x) 2 R0f1 and (zxy; y) 2 R0f2 , satis�es �p(�).It is easy to prove by induction that, for all state formulae �, for all states x 2 SM;x j= � if and only if M 0; x j= �s(�).Let � be a DINB state formula. Then � (�) is valid in M 0 if and only if for alls 2 S0, M 0; s j= >s ) �s(�). Considering the de�nition of M this holds if and onlyif, for all s 2 S, M; s j= �, i.e. if and only if � is valid in M .Similarly, let � be a program formula. Then � (�) is valid in M 0 if and only if forall s 2 S 0 M 0; s j= >any ) �p(�), i.e. if and only if for all (x; y) 2 R0f�1 ;>any?;f2 , wehave (x; y) 2 R0f�1 ;�p (�)?;f2 . Considering again the de�nition of M this holds if andonly if, for all (x; y) 2 Rany we have (x; y) 2 R�, i.e. if and only if � is valid in M .Hence M is a model of � in which  is not valid, contradicting the hypothesis. 2Putting together the Lemma27 and Lemma29 we can state the following theorem.Theorem 30 Let � be a set of DINB axioms,  a DINB formula, and T and �the mappings above. Then � j=  if and only if T (�) j= � ( ).Thus we can reduce logical implication in DINB to logical implication in DINwhich in turn is reducible to satis�ability in DIN and hence is decidable and com-putational characterized as EXPTIME-complete, as established in Chapter 4. As aconsequence, we can assert the following complexity results for DINB.Theorem 31 Logical implication in DINB is an EXPTIME-complete problem.Proof By Theorem 30, considering Lemma 25, and Lemma 26, and considering thatlogical implication in DIN is EXPTIME-complete. 2Theorem 32 Satis�ability of DINB state formulae is an EXPTIME-complete prob-lem.Proof Considering that satis�ability of DINB state formulae is EXPTIME-hard,being DINB an extension of DIN , by Theorem 31, the thesis follows. 2As an immediate consequence we can characterize the computational complexity ofreasoning in CINB.Theorem 33 Satis�ability of CINB concepts, satis�ability of CINB TBoxes, andlogical implication for CINB TBoxes, are EXPTIME-complete problems.5.3 DiscussionLet us comment on the semantics of negation on basic roles. Given an interpretationI = (�I; �I), there are two ways to assign semantics to such a construct; the oneadopted by CINB, namely to interpret a basic role :� as :�I = anyI � �I where74



DiscussionanyI � �I ��I with anyI 6= �I ��I in general; and a stronger one, namely tointerpret it as :�I = �I ��I � �I .4In order to see when the extra power of the stronger interpretation comes in, letus present an example: \A problem is EXPTIME-complete if and only if it is inEXPTIME and every problem in EXPTIME is polynomially reducible to it". In �rstorder logic we can express this sentence as:8p(EXPTIME comp(p) �EXPTIME(p) ^ 8p0(EXPTIME(p0)) P red to(p; p0))):Adopting the stronger interpretation of negation on basic roles we can express thesame sentence in a description logic asEXPTIME comp � EXPTIME u 8:P red to.:EXPTIMEi.e. \A problem is EXPTIME-complete if it is in EXPTIME and all problems, thatare not linked by the role P red to to it, are not EXPTIME".Observe that to get the desired meaning we need to refer implicitly to the uni-versal role (the one interpreted as �I ��I). In fact the extra power of the strongerinterpretation of negation on basic roles is tightly connected with the ability to referto a basic role that is universal, an ability that CINB does not have5.It is our opinion that, interpreting negation on basic roles as in CINB su�ces formost uses. Indeed, it captures the (set-theoretic) di�erence of atomic roles (actually,of conjunction and disjunction of atomic roles). It allows for expressing implicationsbetween role expressions involving conjunction, disjunction and di�erence. It su�cesfor expressing inclusion assertions on basic roles. We believe that the only stronglimitation it has is that it cannot be used to express the Cartesian product of thedomain { i.e. the universal role { (or of concepts).The possibility of denoting a basic role which is universal within CINB wouldallow us to express constraints on the cardinality of the domain of interpretation,by means of quali�ed number restrictions. For example by adopting the strongerinterpretation of negation on basic role the concept (� 5P t :P:>) would expressthat there are at most 5 individuals in the domain.Now, we have seen that a fundamental step in devising decidability of CINB isLemma 28. To carry out the proof of this lemma it is only required that the logicful�lls very general conditions (see the discussion on the similar Lemma 18 at the endof Chapter 4). Such conditions are actually violated exactly when constraints on thecardinality of the domain of interpretation can be expressed.We can conclude that the technique developed in this chapter to establish thedecidability of CINB cannot be applied, if the stronger interpretation of negation onbasic roles is adopted. Indeed, to the best of our knowledge, decidability in this caseremains an open problem.4This interpretation is stronger, in the sense that it can represent :� as interpreted in CINB (asany u :�) while the other way round is not true.5Note that CINB does have the ability to denote the universal role (through the role (any tany�)�, essentially), it lacks the ability to denote it by means of a basic role. 75



CHAPTER 5We close the chapter mentioning the possibility of using DINB for representingand reasoning about situations evolving as a result of performing actions, in line withthe literature on Situation Calculus in Arti�cial Intelligence. In such respects DINBo�ers a formal framework with a clean semantics and a precise computational charac-terization that in our opinion makes it a kind of Principled Monotonic PropositionalSituation Calculus. By exploiting the features of DINB, many advanced issues canbe investigated, including complex actions, concurrent actions, hierarchies of actions,etc.6 In [42] and [44] a preliminary account of this line of research is reported.

6In particular, a basic program :� expresses the performance of an action which is di�erent from�. This way of interpreting negations of programs is well suited for reasoning on actions.76



Chapter 6N-ary RelationsIn this chapter we study the description logic CINBR obtained from CINB by meansof suitable mechanisms to aggregate individuals into tuples. Each tuple has an asso-ciated arity which is the number of individuals constituting the tuple. Tuples of thesame arity n can be grouped into sets forming n-ary relations.1 The correspondingpropositional dynamic logic, DINBR, can easily be de�ned, however we will notexplicitly introduce it here.6.1 The logic CINBRAn n-ary relation is described by a name and n relation roles (r-roles in the following).Each r-role names a component of the relation, i.e. a component of each of its tuples.For each relation R the set of its r-roles is denoted by rol(R). The cardinality of thisset is greater than or equal to 2, and implicitly determines the arity of R. We call\U -component" the component of R corresponding to the r-role, U 2 rol(R).In CINBR, relations having the same set of r-roles U1; : : : ; Un can be composedby means of boolean constructs according to the following abstract syntax:R ::= AnyU1;:::;Un j P j R1 uR2 j R1 tR2 j R1 ) R2 j :Rwhere AnyU1;:::;Un denotes the most general relation having as set of r-rolesU1; : : : ; Un, P an atomic relation, and R (possibly with a subscript) a generic re-lation. We remark that CINBR allows for composing relations R1 and R2 only incase rol(R1) = rol(R2).A relation R can be projected onto two of its components U;U 0 2 rol(R) gettinga binary relation denoted by R[U;U 0]. In CINBR such projections play the partthat basic roles play in CINB. Projections can be composed into navigation pathsby means of nondeterministic choice, chaining, re
exive transitive closure, identitybinary relation projected on concepts, namely:R ::= R[U;U 0] j R1 tR2 j R1 �R2 j R� j R� j id(C):1We remark that extending description logics with n-ary relations, has already been proposed in[114, 21]. 77



CHAPTER 6Note that the application of the inverse construct can be restricted to only R[U;U 0]projections, without loss of generality. Furthermore, since (R[U;U 0])� is equivalentto R[U 0; U ], we could actually do without the inverse construct at all in CINBR.Next we introduce the constructs to build CINBR concepts. Concepts in CINBRhave the following abstract syntax:C ::= > j ? j A j C1 u C2 j C1 tC2 j C1 ) C2 j :C j 8R.C j 9R.C j8R[U ].T1 : C1; : : : ; Tm : Cm j 9R[U ].T1 : C1; : : : ; Tm : Cm(� lR[U ].T1 : C1; : : : ; Tm : Cm) j (� lR[U ].T1 : C1; : : : ; Tm : Cm)where A denotes an atomic concept, C (possibly with a subscript) a concept, R anavigation path, R a relation such that U; T1; : : : ; Tm 2 rol(R) and m � jrol(R)j.The intuitive meaning of the new concept constructs is explained below (the otherconstructs have the usual meaning).� 8R[U ].T1 : C1; : : : ; Tm : Cm represents the set of individuals x such that foreach tuple r in R with x as U -component, the Ti-component of r belongs to theextension of Ci (i = 1; : : : ;m).� 9R[U ].T1 : C1; : : : ; Tm : Cm represents the set of individuals x such that thereis a tuple r in R with x as U -component and xi (i = 1; : : : ;m) as Ti-component,such that xi belongs to the extension of Ci.� (� lR[U ].T1 : C1; : : : ; Tm : Cm) represents the set of individuals x such thatthere are at most l tuples r in R with x as U -component and xi (i = 1; : : : ;m)as Ti-component, such that xi belongs to the extension of Ci.� (� lR[U ].T1 : C1; : : : ; Tm : Cm) represents the set of individuals x such thatthere are at least l tuples r in R with x as U -component and xi (i = 1; : : : ;m)as Ti-component, such that xi belongs to the extension of Ci.The semantics of CINBR is given, as usual, through an interpretation I =(�I ; �I), now extended to interpret relations and the new constructs. In particu-lar, if R is a relation whose set of r-roles is rol(R) = fU1; : : : ; Ung, then RI is a setof labeled tuples of the form < U1 : d1; : : : ; Un : dn > where d1; : : : ; dn 2 �I. Wewrite r[U ] to denote the value associated with the U -component of the tuple r.Relations R with rol(R) = fU1; : : : ; Ung are interpreted by I as:(AnyU1;:::;Un)I � f< U1 : d1; : : : ; Un : dn >j d1; : : : ; dn 2 �IgPI � (AnyU1;:::;Un)I(R1 uR2)I = RI1 \RI2(R1 tR2)I = RI1 [RI2(R1 ) R2)I = :RI1 [RI2:RI = (AnyU1;:::;Un)I �RI:Projections R[U;U 0] of R onto its U -component and U 0-component (U;U 0 2rol(R)) are interpreted by I as follows:R[U;U 0]I = f(d; d0) 2 �I ��I j 9r 2 RI:d = r[U ]^ d0 = r[U 0]g:78



The logic CINBRThe other constructs for navigating paths have the usual meaning in I.Finally the new constructs for concepts are interpreted by I as follows:(8R[U ].T1 : C1; : : : ; Tm : Cm)I = fd 2 �I j8r 2 RI :r[U ] = d) (r[T1] 2 CI1 ^ � � � ^ r[Tm] 2 CIm)g(9R[U ].T1 : C1; : : : ; Tm : Cm)I = fd 2 �I j9r 2 RI :r[U ] = d^ r[T1] 2 CI1 ^ � � � ^ r[Tm] 2 CImg(� lR[U ].T1 : C1; : : : ; Tm : Cm)I = fd 2 �I jthere are at most l tuples r 2 RI such thatr[U ] = d ^ r[T1] 2 CI1 ^ � � � ^ r[Tm] 2 CImg(� lR[U ].T1 : C1; : : : ; Tm : Cm)I = fd 2 �I jthere are at least l tuples r 2 RI such thatr[U ] = d ^ r[T1] 2 CI1 ^ � � � ^ r[Tm] 2 CImgAn interpretation I is a model of a CINBR concept C, if CI 6= ;. Similarly, Iis a model of a CINBR relation R, if RI 6= ;. A CINBR concept is satis�able, if ithas a model. Similarly a CINBR relation is satis�able, if it has a model. In CINBR,we allow for inclusion assertions on both concepts, C1 v C2, and relations, R1 v R2with rol(R1) = rol(R2). An interpretation I is a model of an inclusion assertions onconcepts C1 v C2, if CI1 � CI2 . Similarly, I is a model of an inclusion assertion onrelations R1 v R2, if RI1 � RI2 .CINBR TBoxes are de�ned as a �nite set of inclusion assertions on both conceptsand relations. An interpretation I is a model of a TBox K if it is a model of all theinclusion assertions in it. A TBox is satis�able if it has a model. A TBox K logicallyimplies an inclusion assertion k (either on concepts or on relations), if every model ofK is a model of k.Let us show some examples of the use of CINBR. Consider the relation Parents,with rol(Parents) = fchild; father;motherg, denoting the set of tuples, child andhis/her (natural) parents (both father and mother). We may force the followinginclusion assertion:Human v 8Parents[child].father : Human;mother : Humanstating that both the father and the mother of a child, who is human, must behuman as well (more precisely, every individual who is Human is such that, if (s)heparticipates, as child-component, in a tuple r of the relation Parents, then both thefather-component of r and the mother-component of r are Human). Note that, inorder to represent the (natural) parents of a child, the relation Parent must be sothat any individual has at most one father and one mother in the relation Parents {that is, individuals may occur as child-component in at most one tuple of the relation.This fact can be represented in CINBR by asserting that:> v (� 1Parents[child].child : >): 79



CHAPTER 66.2 Reasoning in CINBRWe investigate the decidability and the complexity of the reasoning tasks for CINBR.Satis�ability of CINBR relations is easily reducible to propositional logic and henceis characterized as NP-complete. Satis�ability of concepts, satis�ability of TBoxes,and logical implication in CINBR TBoxes, are all EXPTIME-hard, being CINBRa superset of CIN . However their decidability and computational complexity char-acterization are yet to be established. In the following we concentrate on logicalimplication2 showing that logical implication in CINBR is polynomially reducibleto logical implication in CIN , which is decidable and EXPTIME-complete. In factthe argument by which we prove the result follows quite closely the one adopted inChapter 5 to reduce logical implication in DINB to logical implication in DIN .For simplicity of exposition we will implicitly assume that in a logical implicationK j= k the atomic relations (including AnyU1;:::;Un) occurring in k also occur in K.3We start the reduction by de�ning two mappings: %r from CINBR relations toCIN concepts, and %c from CINBR concepts to CIN concepts.De�nition We de�ne a mapping %r form CINBR relations R having rol(R) =fU1; : : : ; Ung to CIN concepts %r(R) as follows:%r(AnyU1;:::;Un) = >AnyU1;:::;Un%r(P) = >AnyU1;:::;Un uAP%r(R1 uR2) = %r(R1) u %r(R2)%r(R1 tR2) = %r(R1) t %r(R2)%r(R1 ) R2) = %r(R1)) %r(R2)%r(:R) = >AnyU1;:::;Un u :%r(R)where >AnyU1;:::;Un and AP are new atomic concepts. 2De�nitionWe de�ne a mapping %c from CINBR concepts C to CIN concepts %c(C)2We recall that satis�ability of concepts and satis�ability of TBoxes can be reformulated aslogical implications, namely, a concept C is satis�able i� ; 6j= C v ?, and a TBox K is satis�able i�K 6j= > v ?.3Observe that this will not limit the generality of the result, since if an atomic relation P occursin k but not in K, we may add the inclusion assertion P v P to K without changing its model.80



Reasoning in CINBRas follows: %c(>) = >c%c(?) = :>c%c(A) = A%c(C1 u C2) = %c(C1) u %c(C2)%c(C1 t C2) = %c(C1) t %c(C2)%c(:C) = :%c(C)%c(8R.C) = 8%0c(R).%c(C)%c(9R.C) = 9%0c(R).%c(C)%c(8R[U ].T1 : C1; : : : ; Tm : Cm) =8f�U .(%r(R) u 9fT1 .%c(C1) u : : :u 9fTm .%(Cm))%c(9R[U ].T1 : C1; : : : ; Tm : Cm) =9f�U .(%r(R) u 9fT1 .%c(C1) u : : :u 9fTm .%(Cm))%c((� lR[U ].T1 : C1; : : : ; Tm : Cm)) =(� l f�U .%r(R) u 9fT1 .%c(C1) u : : :u 9fTm .%(Cm))%c((� lR[U ].T1 : C1; : : : ; Tm : Cm)) =(� l f�U .%r(R) u 9fT1 .%c(C1) u : : :u 9fTm .%(Cm))where fU are new atomic roles, and %0c is a mapping from CINBR navigation pathsR to CIN roles %0c(R) de�ned as follows:%0c(R[U;U 0]) = f�U � %r(R) � fU 0%0c(R1 tR2) = %0c(R1) t %c(R2)%0c(R1 �R2) = %0c(R1) � %0c(R2)%0c(R�) = %0c(R)�%0c(id(C)) = id(%c(C))%0c(R�) = %0c(R)�:2 Making use of the above mappings we de�ne a mapping % from CINBR inclusionassertions to CIN inclusion assertions, and a mapping P from CINBR TBoxes toCIN TBoxes.De�nition Let k be a CINBR inclusion assertions, we de�ne %(k) as follows:� if k = C1 v C2, then %(k) = >c u %c(C1) v %c(C2)� if k = R1 v R2, then %(k) = %r(R1) v %r(R2).2Lemma 34 Let k be a CINBR inclusion assertion, and % the mapping de�ned above.Then %(k) is a CIN inclusion assertion, and its size is polynomially related to thesize of k.Proof Straightforward. 2De�nition Let K be a CINBR TBox. We de�ne a CIN TBox P (K) as P (K) =P1(K) [ P2(K), where 81



CHAPTER 6� P1(K) = f%(k) j k 2 Kg� P2(K) is the set constructed by one>AnyU1;:::;Un � :>c u 9fU1 .>c u : : :u 9fUn .>cfor each >AnyU1;:::;Un occurring in P1(K), and one> v (� 1 fU .>)for each fU occurring in P1(K).2Lemma 35 Let K be CINBR TBox, and P the mapping de�ned above. Then P (K)is a CIN TBox, and its size is polynomially related to the size of K.Proof Straightforward. 2Intuitively, in the models of P (K), we distinguish individuals in >c, which repre-sent instances of concepts in models of K, and those in >AnyU1;:::;Un , which representinstances of the relation AnyU1;:::;Un in models of K. Individuals in >AnyU1;:::;Unhave exactly one link for each fU1 ; : : : ; fUn , and these links connect them to individ-uals in >c. In general, a relation R, with rol(R) = fU1 : : : ; Ung, occurring in K, isrepresented in P (K) by the concept %r(R), i.e. the tuples of R are represented by in-stances of %r(R). Observe that this representation is accurate only in the models I ofP (K) where each tuple of R corresponds to a single individual, otherwise, in I therewould be two individuals representing the same tuple. However, we can show (byusing the same technique applied in proving Lemma 18 in Chapter 4 and Lemma 28in Chapter 5) that if P (K) admits a model, then it admits a model satisfying theabove condition. Formally, the following lemma holds.Lemma 36 The CIN TBox P (K) obtained by the above construction has a model Iif and only if it has a model I 0 satisfying the condition:d; d0 2 %r(R)I0 ):((d; d1) 2 fI0U1 ^ (d0; d1) 2 fI0U1^: : :^ (d0; dn) 2 fI0Un ^ (d0; dn) 2 fI0Un )for every relation R, with rol(R) = fU1; : : : ; Ung, occurring in P (K).Proof The proof is almost identical to that of Lemma 18 in Chapter 4. We sketchit here for completeness. Suppose that the condition is not already satis�ed in themodel I, we show how to build a model I 0 in which the condition above is satis�ed.Given an individual t 2 %r(R)I , we denote by fU (t) (U = U1; : : : ; Un) the individualu such that (t; u) 2 fIU , this is in agreement with fIU being functional.82



Reasoning in CINBRWe call con
ict the existence of a non-singleton set S<U1:d1 ;:::;Un:dn> of individualst, such that t 2 %r(R)I , and fU1(t) = d1; : : : ; fUn = dn, for some �xed d1; : : : ; dn.From S<U1:d1 ;:::;Un:dn> we randomly choose one individual z, and we say that theothers induce the con
ict. We call Conf the set of all individuals inducing a con
ict.Note that Conf can be uncountable.We de�ne a interpretation I2Conf as the disjoint union of j2Conf j copies of I, onecopy, denoted by IE , for every set E 2 2Conf . We denote by dE the copy in IE of theindividual d in I. Trivially, I2Conf is a model of P (K) as I is.Let IE and IE0 be two copies of I in I2Conf , we call \exchanging fUn(tE ) withfUn (tE0)" the operation on I2Conf consisting of removing the pair (tE ; fUn(tE )) fromfIEUn replacing it with (tE ; fUn(tE0 )) and, at the same time, removing (tE0 ; fUn(tE0))from fIE0Un replacing it with (tE0 ; fUn(tE )). By exchanging fUn(tE ) with fUn (tE0), weresolve t for both IE and IE0 , in the sense that tE and tE0 no longer induce con
icts.We get a model I 0 with the desired property by modifying I2Conf as follows: foreach state t 2 Conf , for each E 2 2Conf such that t 2 E , we exchange fUn(tE ) withfUn (tE�ftg).Indeed proceeding in this way, on the one hand all con
icts present in the originalmodel I are eliminated from all its copies in I2Conf . On the other hand no newcon
icts are created.Finally, I 0 is a model of P (K), since by construction inclusion assertions in P2(K)are satis�ed in I0, and it is straightforward to check by induction that for everyC 2 P (K), for all E 2 2Conf , d 2 CI if and only if dE 2 CI0 . 2Now, we are ready to state the desired result.Theorem 37 Let K be a CINBR TBox, k a CINBR inclusion assertions, and Pand % the mappings de�ned above. Then K j= k if and only if P (K) j= %(k).Proof ( By contradiction: suppose there exists a model I of K which is not amodel of k.From I we can de�ne an interpretation I0 as follows:� �I0 = �I [ �I0r , where �I0r contains one element z<U1:d1 ;:::;Un:dn> for each< U1 : d1; : : : ; Un : dn >2 (AnyU1;:::;Un)I , for some AnyU1;:::;Un� for all AnyU1;:::;Un, for all < U1 : d1; : : : ; Un : dn >2 (AnyU1;:::;Un)I , we putz<U1:d1 ;:::;Un:dn> 2 >I0AnyU1;:::;Un(z<U1:d1 ;:::;Un:dn>; d1) 2 fI0U1: : :(z<U1:d1 ;:::;Un:dn>; dn) 2 fI0Un� for all P, for all < U1 : d1; : : : ; Un : dn >2 PI, we put z<U1:d1 ;:::;Un:dn> 2 AI0P� >I0c = �I, and for all atomic concepts A, we put AI0 = AI . 83



CHAPTER 6First, note that by construction, I0 is a model of P2(K).Next it is easy to verify by induction that, given a CINBR relation R withrol(R) = fU1; : : : ; Ung, for all d1; : : : ; dn 2 �I ,< U1 : d1; : : : ; Un : dn >2 RI i� z<U1:d1;:::;Un:dn> 2 %r(R)I0and that, given a CINBR concept C, for all d 2 �I,d 2 CI i� d 2 %c(C)I0 :Let C1 v C2 be a CINBR inclusion assertion on concepts. The interpretation Iis a model of C1 v C2 i� for all d 2 �I, d 2 CI1 ) d 2 CI2 . Considering the de�nitionof I0 this holds if and only if: for all d 2 >c, d 2 %c(C1)I0 ) d 2 %c(C2)I0 , i.e. I0 is amodel of >c u %c(C1) v %c(C2).Similarly, let R1 v R2 be a CINBR inclusion assertion on relations . The inter-pretation I is a model ofR1 v R2 i� for all< U1 : d1; : : : ; Un : dn >2 (AnyU1;:::;Un)I ,< U1 : d1; : : : ; Un : dn >2 RI1 )< U1 : d1; : : : ; Un : dn >2 RI2 . Considering the def-inition of I 0 this holds if and only if: for all z 2 >I0AnyU1;:::;Un , z 2 %r(R1)I0 ) z 2%r(R2)I0 , which is equivalent to: for all z 2 �I0 , z 2 %r(R1)I0 ) z 2 %r(R2)I0 , i.e.I0 is a model of %r(R1) v %r(R2).Hence I0 is a model of P (K) and yet is not a model of %(k), contradicting thehypothesis.) Again by contradiction: suppose there exists a model I 0 of P (K) which is nota model of %(k). Without loss of generality we assume that I0 satis�es the conditionin Lemma 36.From I0 we can de�ne an interpretation I as follows:� �I = >I0c� for all AnyU1;:::;Un , for all z 2 >I0AnyU1;:::;Un with (z; d1) 2 fI0U1 ; : : : ; (z; dn) 2fI0Un , we put < U1 : d1; : : : ; Un : dn >2 (AnyU1;:::;Un)I� for all atomic relations P with rol(P) = fU1; : : : ; Ung, for all z 2(>AnyU1;:::;Un u AP)I0 with (z; d1) 2 fI0U1 ; : : : ; (z; dn) 2 fI0Un , we put < U1 :d1; : : : ; Un : dn >2 PI� for all atomic concepts A, we put AI = AI0 \�I.It is easy to verify by induction that given a CINBR relation R with rol(R) =fU1; : : : ; Ung, < U1 : d1; : : : ; Un : dn >2 RI i� z 2 %r(R)I0where d1; : : : ; dn are the individuals such that (z; d1) 2 fI0U1 ; : : : ; (z; dn) 2 fI0Un (observethat by Lemma 36 d1; : : : ; dn univocally determine z). Similarly we can verify thatgiven CINBR concept C, for all d 2 >I0cd 2 CI i� d 2 %c(C)I0 :84



Reasoning in CINBRLet C1 v C2 be a CINBR inclusion assertion on concepts. The interpretation I0 isa model of>cu%c(C1) v %c(C2) i� for all d 2 �I0, d 2 (>cu%c(C1))I0 ) d 2 %c(C2)I0 ,that is equivalent to: for all d 2 >I0c , d 2 %c(C1)I0 ) d 2 %c(C2)I0 . Considering thede�nition of I this holds if and only if: for all d 2 �I, d 2 CI1 ) d 2 CI2 , i.e. I is amodel of C1 v C2.Similarly, let R1 v R2 be a CINBR inclusion assertion on relations. The inter-pretation I0 is a model of %r(R1) v %r(R2) i� for all z 2 �I0 , z 2 %r(R1)I0 )z 2 %r(R2)I0 , that is equivalent to for all z 2 >I0AnyU1;:::;Un , z 2 %r(R1)I0 )z 2 %r(R2)I0 . Considering the de�nition of I this holds if and only if: for all< U1 : d1; : : : ; Un : dn >2 (AnyU1;:::;Un)I, < U1 : d1; : : : ; Un : dn >2 R1 )<U1 : d1; : : : ; Un : dn >2 R2, i.e. I is a model of R1 v R2.Hence I is a model of K and yet is not a model of k, contradicting the hypothesis.2Theorem 38 Satis�ability of CINBR concepts, satis�ability of CINBR TBoxes,and logical implication in CINBR TBoxes, are EXPTIME-complete problems.Proof Considering that, by Lemma 35 and Lemma 34, P (K) and %(k) are poly-nomially bounded to K and k, the decidability and the complexity of reasoning inCINBR are an immediate consequence of the results on CIN in Chapter 4. 2

85



CHAPTER 6

86



Chapter 7IndividualsIn this chapter, we study reasoning involving knowledge on individuals expressed interms of membership assertions. Given an alphabet O of symbols for individuals, amembership assertion is of one of the following forms:C(�1); R(�1; �2)where C is a concept, R is a role, and �1; �2 belong to O. The semantics of suchassertions is stated as follows. An interpretation I is extended so as to assign to each� 2 O an element �I 2 �I in such a way that di�erent elements are assigned todi�erent symbols in O. Then, I satis�es C(�) if �I 2 CI, and I satis�es R(�1; �2)if (�I1 ; �I2 ) 2 RI . An extensional knowledge base (ABox) M is a �nite set of mem-bership assertions, and an interpretation I is called a model ofM if I satis�es everyassertion inM.A knowledge base is a pair B = (K;M), where K is a TBox, and M is an ABox.An interpretation I is called a model of B if it is a model of both K and M. B issatis�able if it has a model, and B logically implies an assertion � (B j= �), where �is either an inclusion or a membership assertion, if every model of B satis�es �. Sincelogical implication can be reformulated in terms of unsatis�ability (e.g. if � = C(�),then B j= � i� B [ f:C(�)g is unsatis�able, similarly if � = C1 v C2, then B j= �i� B [ fC1u:C2(�0)g is unsatis�able, where �0 does not occur in B), we only need aprocedure for checking satis�ability of a knowledge base.We study the satis�ability problem for knowledge bases expressed in two descrip-tion logics CN (Section 7.1) and CI (Section 7.2).7.1 Knowledge bases in CNThe description logic CN is obtained from CI by dropping inverse roles and addingquali�ed number restrictions (see Chapter 4). We show that satis�ability of a CNknowledge base B can be polynomially reduced to satis�ability of a DN formula'(B), where DN is the PDL obtained from DI by dropping converse programs andincluding quali�ed number restrictions. 87



CHAPTER 7We start the reduction by de�ning a mapping '0 form CN knowledge bases toDN formulae.De�nition Let B be a CN knowledge base. We de�ne the DN formula '0(B) asthe conjunction of the following formulae (there is a new letter Ai in '0(B) for eachindividual �i in B):� for every individual �i, Ai ) ^j 6=i:Aj� for every membership assertion of the form C(�i) (� is the mapping introducedin Chapter 2), Ai ) �(C)� for every membership assertion of the form R(�i; �j),Ai )< R > Aj� for every inclusion assertion C1 v C2 in K,�(C1)) �(C2):2 We call r:int the program obtained from r by chaining the test (^i:Ai)? aftereach atomic program occurring in r, i.e. the program de�ned inductively as:P:int = P ; (^i:Ai)?(r1; r2):int = (r1):int; (r2):int(r1 [ r2):int = (r1):int [ (r2):int(r�1):int = (r1)�:int(�?):int = �?:The size of both Post(r) and Pre(r) is polynomial in the size of r.Next we de�ne the DN -counterpart of a CN knowledge base.De�nitionLet B be a CN knowledge base, '0 the mapping from above, create a newatomic program, and u an abbreviation for (P1[ : : :[Pm)�, where P1; : : : ; Pm are allthe atomic roles in B. We de�ne the DN -counterpart of B as '(B) = '1(B) ^'2(B),where:� '1(B) = '11(B)^� � �^'n1 (B)^[create]([u]'0(B)), with one 'i1(B) =< create > Aifor each individual �i in B.� '2(B) is the conjunction of the following formulae:{ for all Ai and for all P occurring in '0(B):[create][u](� 1P .Ai) (7.1)88



Knowledge bases in CN{ for all Ai in '0(B), for all � 2 CL([u]'0(B)):[create](< u > (Ai ^ �)) [u](Ai ) �)) (7.2){ for all Ai in '0(B), for all < r > � 2 CL([u]'0(B)):[create](<u> (Ai^ < r:ind > �))[u](Ai )< r:ind > �)) (7.3){ for all Ai; Aj and for all P in '0(B), for all programs r0 2 Pre(r), with roccurring in CL([u]'0(B)):[create](<u> (Ai^ < r0:ind;P > Aj))[u](Ai )< r0:ind;P > Aj)): (7.4)2Lemma 39 Let B be a CN knowledge base, and '(B) its DN -counterpart. Then'(B) is a DN formula, and its size is polynomially related to the size of B.Proof Straightforward. 2The role of (7.1),(7.2),(7.3) and (7.4) is to allow us to collapse all the states wherea certain Ai holds, so as to be able to transform them into a single state correspondingto the individual �i.In the following, without loss of generality, we will implicitly restrict our attentionto models M = (S; fRPg;�) of '(B) such that S = fsg [ fs0 j (s; s0) 2 Rcreate �(SP RP )�g and M; s j= '(B).We call states t of a model M of '(B), individual-aliases of an individual �i i�M; t j= Ai. The formulae (7.3) and (7.4) allow us to prove the technical lemma below.Lemma 40 Let M be a model of '(B), let t be an individual-alias of �i, and let< r > � 2 CL([u]'0(B)). If there is a path from t that satis�es < r > � and containsN individual-aliases t = t1; : : : ; tN , of �i = �i1; : : : ; �iN respectively, then from everyindividual-alias t0 of �i in M , there is a path that satis�es < r > � and contains Nindividual-aliases t0 = t01; : : : ; t0N of �i1; : : : ; �iN , in the same order as t1; : : : ; tN .Proof By induction on the number N of individual-aliases.Base Case: N = 1, i.e. the only individual-alias is t. Then, by (7.3), we have[create](< u > (Ai^ < r:ind > �)) [u](Ai )< r:ind > �)):So from every individual-alias t0 of �i there is a path satisfying < r > � in which noindividual-aliases, other than the initial t0, occur.Inductive Case: N > 1. Assume that from t there is a path satisfying < r > �in which k + 1 individual-aliases of �i1 ; : : : ; �ik+1 occur. Let such a path be (t =s0; : : : ; sw; : : : ; sq), where M; s0 j= Ai1 , M; sw j= Ai2 , and no individual-aliases occurin (s1; : : : ; sw�1). This implies that there exists a program r0;P 2 Pre(r) and a89



CHAPTER 7program r00 2 Post(r) such that (s0; : : : ; sw) 2 PathsM(r0;P ), and (sw; : : : ; sq) 2PathsM (r00), and < r0;P >< r00 > �)< r > �.Note that < r00 > � 2 CL([u]'0(B)) thus, since the path (sw; : : : ; sq), satisfying< r00 > � contains k individual-aliases of �i2; : : : ; �ik, by inductive hypothesis we canconclude that from each individual-alias of �i2 , there is a path satisfying < r00 > �which goes through one individual-alias for each one of the individuals �i2; : : : ; �ik,in the same order as in (sw ; : : : ; sq).On the other hand, by (7.4), we have:[create](< u > (Ai1^ < r0:ind;P > Ai2)) [u](Ai1 )< r0:ind;P > Ai2 )):So for any individual-alias t0 of �i1, there is a path satisfying < r0;P > Ai2 in whichno other individual-aliases occur. Thus combining these two arguments we get thethesis. 2Given a model M = (S; fRP g;�) of '(B), we can obtain a new model M 0 =(S0; fR0Pg;�0) of '(B) in which there is exactly one individual-alias, for each individ-ual in B. Let s 2 S be such that M; s j= '(B). For every individual �i, we randomlychoose, among its individual-aliases x such that (s; x) 2 Rcreate, a distinguished onedenoted by s�i . We de�ne the relations R00create and R00P , for every atomic programP in '0(B), as follows:� R00create = f(s; s�i) 2 Rcreate j �i is an individualg;� R00P = (RP � f(x; y) 2 RP j M; y j= Aj for some Ajg) [ f(x; s�j ) j (x; y) 2RP and M; y j= Aj for some Ajg.Now, we de�ne M 0 as:� S0 = fsg [ fx 2 S j (s; x) 2 R00create � (SP R00P )�g� R0create = R00create \ (S0 � S0)R0P = R00P \ (S 0 � S0)� �0(x) = �(x), for each state x 2 S0.Observe that, for every atomic program P , the number of P -successors of all statesin M 0, remains unchanged wrt M . The following two lemmas concern M 0.Lemma 41 Let M be a model of '(B), and M 0 be de�ned as above. Then for everyformula � 2 CL('1(B)), for every state x of M 0: M;x j= � i� M 0; x j= �.Proof By induction on the formation of � (called formula induction in the following).We assume, without loss of generality, _;); [�]; (� n �) to be expressed by means of:;^; < � >; (� n �).� � = A (atomic formula). M;x j= A i� M 0; x j= A, by construction of M 0.� � = �1^�2. M;x j= �1^�2 i�M;x j= �1^M;x j= �2 i�M 0; x j= �1^M 0; x j= �2(by formula induction hypothesis) i� M 0; x j= �1 ^ �2.90



Knowledge bases in CN� � = :�0. M;x j= :�0 i� M;x 6j= �0 i� M 0; x 6j= �0 (by formula inductionhypothesis) i� M 0; x j= :�0.� � = (� nP .�0).). M;x j= (� nP .�0) if there are at least n states x1; : : : ; xn such thatM;xi j=�0. We distinguish two cases.{ xi is not an individual-alias. Then (x; xi) 2 RP implies (x; xi) 2 R0P ,whereas by formula induction hypothesis M 0; xi j= �0.{ xi is an individual-alias for �j. Then, by (7.1), either xi = s�j or (x; s�j ) 62RP . In both cases, by construction of M 0, (x; xi) 2 RP implies (x; s�j) 2R0P . Now, M;xi j= �0 implies M; s�j j= �0 by (7.2), and thus, by formulainduction hypothesis M 0; s�j j= �0.Hence we can conclude that M 0; x j= (� nP .�0).(. M 0; x j= (� nP .�0) if there are at least n states x1; : : : ; xn such thatM 0; xi j= �0. We distinguish two cases.{ xi is not an individual-alias. Then (x; xi) 2 R0P implies (x; xi) 2 R0P ,whereas by formula induction hypothesis M;xi j= �0.{ xi = s�j . Then, by construction ofM 0 and by (7.1), (x; s�j ) 2 R0P impliesthat there exists (exactly) one t in M such that (x; t) 2 RP (possiblyt = s�j ). Now, M 0; s�j j= �0 implies M; s�j j= �0, by formula inductionhypothesis, and thus, by (7.2),M 0; t j= �0.Hence we can conclude that M;x j= (� nP .�0).� � =< r > �0.). Let M;x j=< r > �0 then there is a path (x = x0; : : : ; xq) 2 PathsM(r)such that M;xq j= �0. We prove M 0; x j=< r > �0, by induction on the numberk of individual-aliases along the path (x0; : : : ; xq), starting the count from the�rst non-chosen individual-alias (we call this induction, path induction).k = 0, this means that for all the states xi along the path, xi 2 S0. By applyingProposition 5 q times and Proposition 4 once, we can conclude that there existsa formula< (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pq; (�q;1?; : : : ;�q;gq?) > �0with gi � 0, such that:{ all tests �i;j? occur in r, and hence all �ij are subformulae of < r > �0;{ (xi�1; xi) 2 RPi , for i = 1; : : : ; q;{ the formula < (�0;1?; : : : ;�0;g0?);P1;(�1;1?; : : : ;�1;g1?); : : : ;Pq;(�q;1?; : : : ;�q;gq?) > �0 )< r > �0is valid. 91



CHAPTER 7By formula induction hypothesis we have that, for all �i;j, M;xi j=�i;j i� M 0; xi j= �i;j, and M;xq j= �0 i� M 0; xq j= �0. While by constructionof M 0, (xi�1; xi) 2 RPi implies (xi�1; xi) 2 R0Pi . Hence M 0; x j=< r > �0.k > 0. Let (x0; : : : ; xq) = (x0; : : : ; xu; : : :xq) where xu, such that M;xu j= Aj ,is the �rst non-chosen individual-alias along the path (x0; : : : ; xq). By applyingProposition 5 m times only, we can conclude that, there exists a formula< (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pu >< r0 > �0with g1 � 0, such that:{ all tests �i;j? occur in r, and hence all �ij are subformulae of < r > �0;{ r0 2 Post(r0), and hence by Proposition 2, the formula < r0 > �0 is equiv-alent to  for some  2 CL(< r > �0) � CL('1(B));{ (xi�1; xi) 2 RPi , for i = 1; : : :u;{ (xu; : : : ; xq) 2 PathsM (r0);{ < (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pu >< r0 > �0 )< r > �0is valid.The path (xu; : : : ; xq) contains k individual-aliases thus, by Lemma 40, fromeach individual-alias on �j there is a path satisfying < r0 > �0 which goesthrough exactly the \same" k individual-aliases in the same order. Let (s�i =x0u; : : : ; x0q0) be such a path from s�j . This path contains strictly less than kindividual-aliases, excluding x0u, thus by path induction hypothesis,M 0; s�i j=<r0 > �0.Now, by construction of M 0, (xu�1; xu) 2 RPu implies (xu�1; s�i) 2 R0Pu thusM 0; xu�1 j=< Pu >< r0 > �0. Whereas, by formula induction hypothesis, for all�i;j, M;xi j= �i;j i� M 0; xi j= �i;j. Hence considering that for i = 1; : : : ; u�1,(xi�1; xi) 2 RPi implies (xi�1; xi) 2 R0Pi , we get M 0; x j=< r > �0.(. Let M 0; x j=< r > �0, then there is a path (x = y0; : : : ; yq) 2 PathsM 0(r)such thatM 0; yq j= �0. We proveM;x j=< r > �0, by induction on the number kof individual-aliases along the path (y0; : : : ; yq) excluding x, if x is an individual-alias (we call this induction, path induction).k = 0, this means that for all the states yi along the path, yi 2 S. By applyingProposition 5 q times and Proposition 4 once, we can conclude that there existsa formula< (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pq; (�q;1?; : : : ;�q;gq?) > �0with gi � 0, such that:{ all tests �i;j? occur in r, and hence all �ij are subformulae of < r > �0;{ (yi�1; yi) 2 R0Pi , for i = 1; : : : ; q;92



Knowledge bases in CN{ the formula < (�0;1?; : : : ;�0;g0?);P1;(�1;1?; : : : ;�1;g1?); : : : ;Pq;(�q;1?; : : : ;�q;gq?) > �0 )< r > �0is valid.By formula induction hypothesis, for all tests �i;j M 0; yi j= �i;j i� M; yi j= �i;j,and M 0; yq j= �0 i� M; yq j= �0. While by construction of M 0, (yi�1; yi) 2 R0Piimplies (yi�1; yi) 2 RPi . Hence M 0; x j=< r > �0.k > 0. Let (y0; : : : ; yq) = (y0; : : : ; yu; : : :yq) where yu = s�i is the �rstindividual-alias along the path. By applying Proposition 5 m times only, wecan conclude that, there exists a formula< (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pu >< r0 > �0with g1 � 0, such that:{ all tests �i;j? occur in r, and hence all �ij are subformulae of < r > �0;{ r0 2 Post(r0), and hence by Proposition 2, the formula < r0 > �0 is equiv-alent to  for some  2 CL(< r > �0) � CL('1(B));{ (yi�1; yi) 2 R0Pi , for i = 1; : : :u;{ (yu; : : : ; yq) 2 PathsM 0(r0);{ < (�0;1?; : : : ;�0;g0?);P1; (�1;1?; : : : ;�1;g1?); : : : ;Pu >< r0 > �0 )< r > �0is valid.Notice thatM 0; s�i j=< r0 > �0, and along yu; : : : ; yq there are k�1 individual-aliases, excluding yu. Thus, by path induction hypothesis M; s�i j=< r0 > �0,and by (7.2) the same is true for all the individual-aliases of �i appearing inM .Now, by construction of M 0, (yu�1; yu) 2 R0Pu implies that there exists anindividual-alias t of �i such that (yu�1; t) 2 RPu . Thus M; yu�1 j=< Pu ><r0 > �0. Whereas, by formula induction hypothesis, for all �i;j, M 0; xi j=�i;j i� M;xi j= �i;j. Hence considering that, for i = 1; : : : ; u� 1, (yi�1; yi) 2R0Pi implies (yi�1; yi) 2 RPi , we get M;x j=< r > �0.2Lemma 42 Let M be a model of '(B) such that M; s j= '(B), and let M 0 be astructure derived from M as speci�ed above. Then M 0; s j= '(B).Proof By Lemma 41 M; s j= '1(B) implies M 0; s j= '1(B). On the other hand,we trivially have M 0; s j= '2(B), since it has one individual-alias of each individual.Hence the thesis holds. 2We can now state the main theorem on reasoning in CN knowledge bases. 93



CHAPTER 7Theorem 43 A CN knowledge base B is satis�able i� its DN -counterpart '(B) issatis�able.Proof ) Let I be an interpretation satisfying the knowledge base B. Then we cande�ne a model M = (S; fRPg;�) of '(B) as follows: S = �I [ fsnewg, R�(P ) = P I,Rcreate = f(snew; �Ii ) j �i 2 Og, �(s) = f�(A) j s 2 AIg [ fAi j s = �Ii g. It iseasy to see that M; snew j= '1(B). Furthermore since, by construction, in M thereis exactly one individual-alias of each individual, we have trivially M; snew j= '2(B).Hence M; snew j= '(B).( If there exists a model M of '(B) then by Lemma 42 we can construct amodel M 0 such that for each individual there exists exactly one individual-alias. LetM 0; s j= '(B), we can de�ne an interpretation I as follows: �I = fs0 j (s; s0) 2R0create � (SP R0P )�g, RI = R0�(R), CI = fs0 j M 0; s0 j= �(C)g, and for each individual�i, �Ii = fs�i jM 0; s�i j= Aig (please notice that this set is a singleton).Now for each inclusion assertion C1 v C2 in B, we have that �(C1)) �(C2) holdsin every state of M 0, thus CI1 � CI2 . For each membership assertion �i : C in B,we have M 0; s�i j= �(C). Finally for each membership assertion �iR�j, we have thatM 0; s�i j=< �(R) > Aj and there is only one state in M 0 in which Aj holds, thus(�i; �j) 2 R�(R). Hence I satis�es B. 2Theorem 44 Satis�ability and logical implication for CN knowledge bases (TBoxand ABox) are EXPTIME-complete problems.Proof By Theorem 43, satis�ability for CN knowledge bases is polynomially relatedto satis�ability in DN , which is EXPTIME-complete, by Theorem 16. 27.2 Knowledge bases in CIAnalogously to the case of CN , satis�ability of a CI knowledge bases can be polyno-mially reduced to satis�ability of DI-formulae.We de�ne a mapping �0(B) from CI knowledge bases to DI formulae, as identicalto '0 introduced in the previous section. Then we de�ne the DI-counterpart of a CIknowledge base as follows.De�nition Let B be a CI knowledge base, �0 the mapping de�ned above, create anew atomic program, and u an abbreviation for (P1 [ : : : [ Pm [ P�1 [ : : : [ P�m )�,where P1; : : : ; Pm are all the atomic roles in B. We de�ne the DI-counterpart of B as�(B) = �1(B) ^ �2(B), where:� �1(B) = �11(B)^� � �^�n1 (B)^[create]([u]�0(B)), with each �i1(B) =< create > Aifor each individual �i in B.� �2(B) = �12(B) ^ � � � ^ �p2(B), where we have one �i2(B) of the form[create](< u > (Ai ^ �)) [u](Ai ) �)); (7.5)for each Ai, and for each � 2 CL([u]�0(B)).94



Knowledge bases in CI2Lemma 45 Let B be a CI knowledge base, and �(B) its DI counterpart. Then �(B)is a DI formula, and its size is polynomially related to the size of B.Proof Straightforward. 2Again, the role of (7.5) is to make all the states where a certain Ai holds, equivalent,so as to be able to collapse them into a single state corresponding to the individual �i.By reasoning similarly to the case of CN , we are going to show that B is satis�ablei� �(B) is satis�able.1We again use the notion of individual-aliases of an individual in the models of�(B).Let M = (S; fRP g;�) a model of �(B), such that M; s j= �(B), for some states 2 S. We show how to obtain a new modelM 0 of �(B) in which for every individualin B there is exactly one individual-alias in M 0.For each individual �i, we randomly choose among the individual-aliases x suchthat (s; x) 2 Rcreate, a distinguished one denoted by s�i and we de�ne R00create =f(s; s�i) j �i is an individualg. For each atomic program P we de�ne R00P as follows:� if (x; y) 2 RP , M;x j= ^i:Ai, and M; y j= ^i:Ai, then we put (x; y) 2 R00P ;� if (x; y) 2 RP , M;x j= ^i:Ai, and M; y j= Aj then we put (x; s�j ) 2 R00P ;� if (x; y) 2 RP , M;x j= Aj , and M; y j= ^i:Ai, then we put (s�j ; y) 2 R00P ;� if (x; y) 2 RP , M;x j= Ai, and M; y j= Aj , then we put (s�i ; s�j ) 2 R00P .The structure M 0 = (S 0; fR0Pg;�0) is now de�ned as follows:� S0 = fsg [ fx 2 S j (s; x) 2 R00create � (SP (R00P [R00P�)�g� R0create = R00create� R0P = R00P \ (S 0 � S0)� �0(x) = �(x), for each state x 2 S0.Note that, in contrast to the construction in the previous section, the one abovedoes not preserve the number of edges involving the chosen individual-aliases, henceit does not preserve either local or global functionality. The main properties of M 0are stated in the following two lemmas.Lemma 46 LetM be a model of �(B), letM 0 be de�ned as above, and let f : S ! S 0be a mapping de�ned as follows:f(x) = � s�i if M;x j= Ai (for some Aj)x otherwise:1The proof is much simpler in this case, witness the absence of constraints analogous to (7.3) and(7.4). 95



CHAPTER 7Then for every formula � 2 CL(�1(B)), for every state x of M :M;x j= � i� M 0; f(x) j= �:Proof We prove the lemma by induction on the formation of � (called formula in-duction in the following). We assume, without loss of generality, _; [�] to be expressedby means of :;^; < � >, and that the converse operator is applied only to atomicprograms.� � = A.M;x j= A i� M 0; f(x) j= A by construction of M 0.� � = �1 ^ �2.M;x j= �1 ^�2 i� M;x j= �1 ^M;x j= �2 i� (by formula induction hypothesis)M 0; f(x) j= �1 ^M 0; f(x) j= �2 i� M 0; f(x) j= �1 ^ �2.� � = :�0.M;x j= :�0 i� M;x 6j= �0 i� (by formula induction hypothesis) M 0; f(x) 6j= �0i� M 0; f(x) j= :�0.� � =< r > �0.). Let M;x j=< r > �0 and let (x = x0; : : : ; xq) 2 PathsM(r) such thatM;xq j= �0. We prove M 0; f(x) j=< r > �0, by induction on the length q of thepath (called path induction, in the following).q = 0. By Proposition 4, there exists a formula< �1?; : : : ;�g? > �0, with g � 0,such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M;x j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �)< r > � is valid.By formula induction hypothesis, for  = f�1; : : : ; �q; �0g, M;x j= �i impliesM 0; f(x) j= �i.q > 0. By Proposition 5, there exists a formula < �1?; : : : ;�g?; a >< r0 > �0,with g � 0, such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r0 2 Post(r), and hence the formula < r0 > �0 is equivalent to  for some 2 CL(< r > �0) � CL(�1(B));{ (x0; x1) 2 Ra;{ (x1; : : : ; xq) 2 PathsM (r0);{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.96



Knowledge bases in CIBy formula induction hypothesis, for �i = f�1; : : : ; �qg, M;x j= �i impliesM 0; f(x) j= �i. By construction ofM 0, (x; x1) 2 Ra implies (f(x); f(x1)) 2 R0a.By path induction hypothesis, since (x1; : : : ; xq) 2 PathsM (r0) is shorter then(x0; : : : ; xq) 2 PathsM(r), we can conclude that M;x1 j=< r0 > �0 impliesM 0; f(x1) j=< r0 > �0. Hence M 0; x j=< r > �0.(. Let M 0; f(x) j=< r > �0 and let (f(x) = y0; : : : ; yq) 2 PathsM 0(r) such thatM 0; yq j= �0. We prove M;x j=< r > �0, by induction on the length q of thepath (called path induction, in the following).q = 0. By Proposition 4, there exists a formula< �1?; : : : ;�g? > �0, with g � 0,such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M; f(x) j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �)< r > � is valid.By formula induction hypothesis, for  = f�1; : : : ; �q; �0g,M 0; f(x) j= �i impliesM;x j= �i.q > 0. By Proposition 5, there exists a formula < �1?; : : : ;�g?; a >< r0 > �0,with g � 0, such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r0 2 Post(r), and hence the formula < r0 > �0 is equivalent to  for some 2 CL(< r > �0) � CL(�1(B));{ (y0; y1) 2 R0a;{ (y1; : : : ; yq) 2 PathsM 0(r0);{ < �1?; : : : ;�g?; a >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for �i = f�1; : : : ; �qg , M 0; f(x) j= �i impliesM;x j= �i. By construction of M 0, if (f(x); y1) 2 R0a then there exists a statex1 such that f(x1) = y1 and (x; x1) 2 Ra. By path induction hypothesis,since (y1; : : : ; yq) 2 PathsM 0(r0) is shorter then (y0; : : : ; yq) 2 PathsM 0(r), wecan conclude that M 0; f(x1) j=< r0 > �0 implies M;x1 j=< r0 > �0. HenceM;x j=< r > �0.2Lemma 47 Let M be a model of �(B) such that M; s j= �, and let M 0 be derivedfrom M 0 as speci�ed above. Then, M 0; s j= �(B).Proof By Lemma 46 M; s j= �1(B) implies M 0; s j= �1(B). On the other hand,M 0; s j= �2(B), since it has one individual-alias of each individual. Hence the thesisholds. 2We can now state the main theorem of this section. 97



CHAPTER 7Theorem 48 A CI knowledge base B is satis�able i� its DI-counterpart �(B) issatis�able.Proof Similar to the proof of Theorem 43. 2Theorem 49 Satis�ability and logical implication for CI knowledge bases (TBox andABox) are EXPTIME-complete problems.Proof By Theorem 48, satis�ability for CI knowledge bases is polynomially relatedto satis�ability in DI, which is EXPTIME-complete. 27.3 DiscussionObserve that in devising the results in Section 7.1 and Section 7.2, we did not exploitthe fact that knowledge about individuals is organized in membership assertions. Weexploited only the fact that the number of individuals occurring in a knowledge baseis �nite.This observation allows us to rephrase the results in those sections in a moregeneral form. Let us introduce the description logics CNO and CIO, which areobtained by adding to CN and CI special atomic concepts A�, called names, havingexactly a single instance �, i.e. the individual they name. Names may occur inconcepts exactly as atomic concepts, and hence constitute one of the most 
exibleway to express knowledge about single individuals.By using names we can capture the construct ONE-OF, having the formf�1; : : : ; �ng, denoting the concept made of exactly the enumerated individuals�1; : : : ; �n 2; as well as the construct FILLS, having the form R : �, denoting thoseindividuals having the individual � as a role �ller of R 3 (see [107] and referencestherein for further discussion on these constructs).The result in Section 7.1 can be generalized as follows: satis�ability in CNOknowledge bases can be polynomially reduced to satis�ability of CN formulae, henceis decidable, and EXPTIME-complete. Similarly, the result in Section 7.2 can begeneralized as follows: satis�ability in CIO knowledge bases can be polynomiallyreduced to satis�ability of CI formulae, hence is decidable, and EXPTIME-complete.It is straightforward to de�ne the propositional dynamic logics DNO and DIO,corresponding to the description logics CNO and CIO respectively. It is also straight-forward to de�ne CFO and DFO, the description logic and propositional dynamiclogic obtained from CNO and DNO by allowing only functional restrictions, insteadof full quali�ed number restrictions.The notion of names introduced above has a correspondent in modal logic in thenotion of nominals. Nominals have a tradition in modal logic that dates back to[96, 17], recent papers on nominals are [11, 58, 10]. Nominals have also been studied2Actually, names and the ONE-OF construct are essentially equivalent, since a name A� isequivalent to f�g and f�1 : : : ; �ng is equivalent to A�1 t : : : tA�n .3The FILLS construct R : � is captured by 9R.A�.98



Discussionwithin the setting of propositional dynamic logics in [89, 59, 90]. In the following, wefocus on two such logics.The �rst is called deterministic combinatory propositional dynamic logic, DcPDL,and is essentially deterministic propositional dynamic logic augmented with nominals.In [89] its decidability is established, by a �nite model argument, and it is proved thatsatis�ability can be checked in nondeterministic double exponential time, i.e. it is inthe complexity class 2NEXPTIME. Since that paper, this upper bound hasn't beimproved (see [90]). Obviously since DcPDL contains deterministic PDL, its satis�-ability is EXPTIME-hard. Thus the computational complexity of satis�ability is notfully characterized yet. Now it is easy to check that every DcPDL formula can bepolynomially translated into a DFO formula. From the discussion above we knowthat satis�ability in DFO is EXPTIME-complete. Hence the results in this chapterallow us to precisely characterize the complexity of satis�ability (and thus of validityand logical implication) of DcPDL as EXPTIME-complete, closing the previous gapbetween the upper bound and the lower bound.The second logic we consider is called converse combinatory propositional dynamiclogic, CcPDL, and is essentially converse propositional dynamic logic with nominals.Such logic is not known to be decidable yet, see [90]. Now it is easy to check thatevery CcPDL can be polynomially translated into a DIO formula, preserving satis�a-bility, where DIO is the propositional dynamic logic corresponding to CIO. From thediscussion above we know that satis�ability in DIO is EXPTIME-complete. Hencethe results in this chapter allow us to establish the decidability of CcPDL and to pre-cisely characterize the computational complexity of satis�ability (and hence validityand logical implication) as EXPTIME-complete.Finally, we remark that, to the best of our knowledge, DNO is the �rst logicin which both nominals and graded modalities (quali�ed number restrictions) arepresent.
99



CHAPTER 7

100



Chapter 8Recursive De�nitions:FixpointsThere are basically two ways of using and describing classes (concepts). In the �rstone, which we can call the prescriptive approach, the description formalism allows forexpressing several properties of a class, thus prescribing constraints that the instancesof the class must satisfy. In the second one, which we can call the de�nitional approach,the formalism allows for providing the de�nition of a class, i.e. a set of properties thatprecisely characterize the instances of the class. While the prescriptive approach isquite well understood and established, the de�nitional approach is still the subjectof an interesting debate, regarding both its nature and its semantic foundation. Inparticular, it is well known that there are various possibilities of assigning a meaningto a class de�nition when it contains some sort of recursion [2, 3, 84, 8, 5].In this chapter, we are concerned with the semantical problems related to thede�nitional approach, arguing that, instead of choosing a single style of semantics forthe knowledge representation formalism, we achieve better results by adopting a moregeneral formalism that allows for di�erent semantics to coexist.8.1 FixpointsIn this section, we brie
y recall some notions on �xpoints. The reader is referred to[33] for an introduction to the subject.Consider the equation X = f(X) where f is an operator from 2S to 2S (2Sdenotes the set of all subsets of a set S). The solutions E of such an equation arecalled �xpoints of the operator f . In general an equation as the one above may haveeither no solution, a �nite number of solutions, or in�nite number of them. Amongthe various solutions, the smallest and the greatest solutions (with respect to set-inclusion) have a prominent position, if they exist. A fundamental result due toTarski [123] guarantees the existence and the uniqueness of both such solutions incase f is monotonic wrt set-inclusion (�), where f is monotonic wrt � wheneverE1 � E2 implies f(E1) � f(E2). 101



CHAPTER 8Theorem 50 (Tarski) Let S be a set, and f an operator from 2S to 2S that ismonotonic wrt �. Then, there is a unique least �xpoint of f given by\fE � S j f(E) � Egand a unique greatest �xpoint of f given by[fE � S j E � f(E)g:8.2 Concept de�nitions as equationsIt is widely recognized that the notion of TBox as introduced in Chapter 2 can bemade more powerful if we allow some sort of concept de�nitions to be expressed. Letus call de�nition statement (or simply de�nition), statements of the form:A =def Cwhere A is an atomic concept and C is a concept expression (A cannot occur in theleft-hand part of more then one de�nition). Intuitively, the above de�nition statementis intended to provide a precise account of A in terms of C. When we specify thesemantics of de�nitions, we need to distinguish between two di�erent types of atomicconcepts, namely, primitive concepts and de�ned concepts: given a set D of de�nitions,primitive concepts are the atomic concepts that do not appear on the left of anyde�nition of D, whereas de�ned concepts are those that have an associated de�nitionin D. An interpretation I satis�es a set of de�nitions if, for each A =def C in the set,I assigns the same subset of �I to the de�ned concept A and to concept C.We call recursive de�nition statements1 (or simply recursive de�nitions), de�nitionstatements of the form A =def F (A);where F (A) stands for a concept that has A as a subconcept2 . From a semanticalpoint of view, a recursive de�nition A =def F (A) is a sort of equation specifying that,for any interpretation I, the subset of �I that can be tied to the concept A mustsatisfy the equation AI = (F (A))I , i.e. must be one of its solutions. Notice that,in general, either none, one, or several subsets of �I may exist which are solutionsof the above equation. For example, it is easy to see that two interpretations thatsatisfy the statement A =def P u 8R.A and that agree on both the concept P andthe role R, may di�er in the extension assigned to the de�ned concept A. Notice alsothat we can associate to a de�nition statement an operator from subsets of �I tosubsets of �I , such that the solutions of the equation correspond to the �xpoints ofthe operator. For example to the de�nition A =def P u8R.A we can associate, for anyinterpretation I, the operator �S:fs 2 �I j s 2 P I and 8t:(s; t) 2 RI implies t 2 Sg.In the literature on concept languages, three semantics for recursive de�nitions,have been proposed (see [84]):1Terminological cycles in [2, 3, 84]. Note that, for the moment, we do not consider mutualrecursive de�nitions, as A =def F (B), B =def F 0(A).2A subconcept of a conceptC is any substring of C (includingC itself) that is a concept, accordingto the syntax rules.102



Concept de�nitions as equations� the descriptive semantics,� the least �xpoint semantics,� the greatest �xpoint semantics.Let us recall their properties using some examples. According to the descriptivesemantics, a recursive de�nition A =def F (A) is a constraint stating that, for any Isatisfying the de�nition, AI has to be any solution of the equation AI = (F (A))I . Inother words, the meaning assigned to A =def F (A) is the same as that assigned tothe equivalence assertion A � F (A). In our example, A =def P u 8R.A states thatthe individuals in the class A are those in the class P that are related by means of Rto individuals in A itself, and vice versa, where A is no better speci�ed. In fact, thedescriptive semantics is not appropriate to properly de�ne recursive concepts. Instead,it is suitable to specify a set of necessary and su�cient conditions that individualsmust satisfy in order to be instances of a concept. For example [84], we can expressthe fact that humans are mammals having two parents that are humans, and, on theconverse, that mammals having two parents that are humans are humans themselves,in terms of the equivalence assertionhuman � mam u (� 2 par:>)u (� 2 par:>)u 8par.human:It is interesting to observe that we may state an analogous property for horseshorse � mamu (� 2 par:>)u (� 2 par:>)u8par.horse without implying any mutualrelationship between human and horse. We will see later on, this is not true if weuse a �xpoint semantics for de�ning these two concepts.According to the least (greatest) �xpoint semantics, a de�nition statement of theform A =def F (A) speci�es that, in any interpretation I, A is to be interpreted asthe smallest (greatest) solution, if it exists, of AI = (F (A))I . In other words, inorder to consider an interpretation I adequate to give a meaning to A =def F (A),any other interpretation J , agreeing with I on the primitive concepts and roles, mustassign to A a superset (subset) of AI . Let us consider some examples illustrating thedi�erences in the two �xpoint semantics. In our running example A =def P u 8R.A,the least �xpoint semantics leads to identify A with ?, (indeed the empty set satis�esthe statement, and it is obviously the smallest solution), while the greatest �xpointsemantics interprets A as the largest class satisfying the de�nition, which can beproven to be equivalent to 8R�.P , where R� denotes the re
exive and transitiveclosure of R.Although the least �xpoint semantics does not help in the above example, it isparticularly suitable for providing inductive de�nitions of concepts. Consider the caseof a single source �nite directed acyclic graph (DAG) de�ned as follows3:� an EMPTY-DAG is a DAG (base step);3We assume that a leaf of a DAG is a NODE with all arcs leading to a special node calledEMPTY-DAG, as opposed to a NODE having no connection at all. Indeed, in the latter case, thede�nition of dag would simplify to dag =def node u 8arc.dag, hiding the general form of inductivede�nitions, i.e. base case and inductive case. 103



CHAPTER 8� a NODE that has connections and all connections are DAGs, is a DAG (induc-tive step);� nothing else is a DAG.We can write a natural de�nition statement denoting the class of DAGs, namelydag =def emptydag t (node u 9arc.>u 8arc.dag);as long as we interpret it according to the least �xpoint semantics. Similarly, wecan model the class of LISTs (de�ned inductively as: an EMPTY-LIST is a LIST;a NODE that has exactly one successor that is a LIST is a LIST; nothing else is aLIST) by list =def emptylist t (node u (� 1succ:>)u 9succ.list):The greatest �xpoint semantics is well suited for de�ning classes of individualswhose structure is non-well-founded or co-inductive. An example is the class ofSTREAMs, modeling the well-known linear data structure having a NODE as �rstelement, and such that the rest of the structure is a STREAM itself. Note thatstreams, di�erently from lists, are in�nite sequences of nodes. A natural statementfor the de�nition of stream isstream =def node u (� 1 succ:>)u 9succ.streamwith the proviso that, for every I, we need to associate to streamI the greatestsolution of the corresponding equation.Notice however that, if we interpret the de�nition statementshuman=def mam u (� 2 par:>)u (� 2 par:>)u 8par.human;horse =def mam u (� 2 par:>)u (� 2 par:>)u 8par.horseby the greatest �xpoint semantics, as well as with least �xpoint semantics, we obtaina rather non-intuitive result: for any interpretation I satisfying the above de�nitionstatements, humanI = horseI .The above considerations show that the three semantics capture di�erent intu-itions, and hence we may need all of them in the same TBox in order to properlymodel di�erent concepts. Our proposal in this paper is exactly in the direction ofreconciling the various semantics in the same TBox. This is pursued by means ofa language that incorporates two constructs, �X:F (X) and �X:F (X) (the symbolsX;Y; : : : stand for concept variables), denoting, respectively, the least �xpoint and thegreatest �xpoint of the operator associated with the de�nition X =def F (X), that is,for every I satisfying the de�nition, the smallest solution and the greatest solution ofthe equation XI = (F (X))I .In our approach, de�nition statements will never appear in a TBox. Instead, asusual a TBox will be simply a set of inclusion assertions that may involve �xpointconstructs. For example, in order to specify the properties of the concepts of human,horse, dag, list and stream, we can use the equivalence assertions:44Notice that, if we add to this TBox the equivalence assertion sm � �X : mamu(� 2 par:>)u(�2 par:>) u 8par.X , de�ning the concept sm (sexual mammal), then it turns out that both humanand horse are subsumed by sm.104



The description logic �ALCdag � �X : emptydag t (node u 9arc.>u 8arc.X)list � �X : emptylist t (node u (� 1 succ:>)u 9succ.X)stream� �X:nodeu (� 1 succ:>)u 9succ.Xhuman�mam u (� 2 par:>)u (� 2 par:>)u 8par.humanhorse �mam u (� 2 par:>)u (� 2 par:>)u 8par.horse:The availability of least and greatest �xpoint constructs not only allows di�erentsemantics to be used in the same TBox, but also increases the expressive power ofconcept de�nitions. On the one hand, it makes it possible to model not only ab-stract classes, but also inductively and co-inductively de�ned data structures, suchas dags, lists and streams. This is particularly important if our objective is to in-tegrate class-based representation formalisms and programming systems (declarativeor procedural), in order to make these formalisms more useful in practice. On theother hand, we have the possibility of nesting �xpoints, thus going beyond the simpleequational format by which we motivated their introduction. As an example, considerthe following: Among the inhabitants of the planet \Plonk", a disease called \foo"is quite common. Such a disease manifests itself in two forms: a \visible" one anda \latent" (not visible) one, and it has a rather intricate hereditary pattern. Indi-viduals that have the visible form transmit the visible form to at least one directdescendant (obviously, if there is any direct descendant), these ill descendants in turndo the same, and so on, until someone transmits the latent form of the disease. Alldirect descendants (if any) of an individual that has the latent form inherit the visi-ble form. The pattern goes on like this, generation after generation, forever. Noticethat, along any chain of descendants, the visible form of the disease sooner or latteris interrupted, because either an individual has no direct descendant or an individualtransmits to some descendant the latent form. The hereditary pattern (foo hp) ofthe above disease can be de�ned as follows:foo hp � �X:�Y:((visible u (9child.Y t 8child.?))t(:visible u 8child.(visible uX)))where visible denotes the visible form of the disease, while :visible denotes the latentform.8.3 The description logic �ALCThe �rst description logic involving �xpoints that we shall study is called �ALC, andis obtained by adding the �xpoint constructs to ALC.In the sequel we make use of notions of scope, bound and free occurrences ofvariables, closed formulas, etc. The de�nitions of these notions are the same as theanalogues in �rst-order logic, treating � and � as quanti�ers.The primitive symbols in �ALC are atomic concepts, (concept) variables (denotedby X;Y; : : :), and atomic roles which are the only roles admitted in the language.Concepts in �ALC are formed inductively according to the following abstractsyntax:C ::= A j > j ? j :C j C1 u C2 j C1 t C2 j 9R.C j 8R.C j �X:C j �X:C j X 105



CHAPTER 8where A denotes an atomic concept, R an atomic role, X a variable. We implicitlyassume the restriction that every free occurrence of a variable X is in the scope of aneven number of negation signs (:).Not all the constructs introduced are independent. The following equalities hold:? = :>, 8R.C = :9R.:C, > = �X:X, �X:C = :�X::C[X=:X] (where C[X=:X]is the concept obtained substituting all free occurrences of X by the concept :X).As usual, an interpretation I = (�I ; �I) consists of a domain of interpretation �I,and a interpretation function �I , which maps every atomic concept to a subset of �I,and every atomic role to a subset of �I ��I. But the presence of free variables doesnot allow us to extend the interpretation function �I directly to every concept of thelanguage. For this reason we introduce valuations. A valuation � on an interpretationI, is a mapping from variables to subsets of �I .Given a valuation �, we denote by �[X=E ] the valuation identical to � except for�[X=E ](X) = E . In other words, for every variable Y ,�[X=E ](Y ) = � E if Y = X�(Y ) if Y 6= XLet I be an interpretation and � a valuation on I. We assign meaning to conceptsof the language by associating to I and � an extension function �I� , mapping conceptsto subsets of �I, de�ned as follows:XI� = �(X) � �IAI� = AI � �I>I� = �I?I� = ;(:C)I� = �I � CI�(C1 u C2)I� = (C1)I� \ (C2)I�(C1 t C2)I� = (C1)I� [ (C2)I�(9R.C)I� = fs 2 �I j 9s0: (s; s0) 2 RI and s0 2 CI� g(8R.C)I� = fs 2 �I j 8s0: (s; s0) 2 RI implies s0 2 CI� g(�X:C)I� = TfE � �I j CI�[X=E] � E g(�X:C)I� = SfE � �I j E � CI�[X=E] gWe remark that, in the last two cases CI�[X=E] is interpreted as an operator fromsubsets E of �I to subsets of �I. By the syntactic restriction enforced on variables,such an operator is guaranteed to be monotonic wrt �. Notice also that free variablesappearing in a concept are interpreted more or less as atomic concepts.A concept C is satis�able, if there exists an interpretation I and a valuation � onI such that CI� 6= ;, otherwise the concept is unsatis�able. A concept C1 is subsumedby a concept C2, written as C1 v C2, if for every interpretation I and every valuation� on I, (C1)I� � (C2)I� .A �ALC TBox is a �nite set (possibly empty) of inclusion assertions C1 v C2where C1 and C2 are closed concepts of �ALC. 55As usual, we use equivalence assertions of the form C1 � C2 as an abbreviation for fC1 vC2;C2 v C1g.106



Properties of the �xpoint constructsAn interpretation I satis�es an inclusion assertion C1 v C2, if (C1)I� � (C2)I� ,where � is any valuation on I (being C1 and C2 closed, and hence independent fromvaluations). I is a model of a TBox K, if I satis�es all inclusion assertions in K. Wesay that a TBox K is satis�able, if it has a model. Observe that inclusion assertionsin K are interpreted according to the descriptive semantics.We say that a TBox K logically implies an inclusion assertion C1 v C2, writtenK j= C1 v C2, if for every model I of K and every valuation � on I, (C1)I� � (C2)I� .8.4 Properties of the �xpoint constructsIn the following, we use the notation C(X) to indicate that the variable X occursfree in the concept C (other variables could occur free in C as well), and the notationC(D), where D is a concept, as a shorthand for C(X)[X=D]. In addition, we use thesymbol � as an abstraction for either � or �.Let us comment brie
y on some simple properties of the logic. First, the con-cept �X:C(X) is equivalent to the concept �Y:C(Y ), as long as Y is free for X inC(X). Second, the extension function �I� gives to a closed concept a value which isindependent of the actual valuation �. Hence �X:C, where X does not occur in C,is equivalent to C. Third, since �X:C(X) is a �xpoint we have that C(�X:C(X)) isequivalent to �X:C(X). Furthermore, we have that the concept �X:C(X) is alwayssubsumed by the concept �X:C(X).The next property is more substantial. Consider a �ALC TBox K containing thetwo equivalence assertionsdag of student � �X : emptydag t (student u 9arc.>u 8arc.X)dag of person � �X : emptydag t (person u 9arc.>u 8arc.X)de�ning the concepts dag of student and dag of person as the classes of DAGs whosenodes are students and persons respectively. Assuming that students are persons, wewant to be able to infer that DAGs of students are DAGs of persons as well. That iswe wantK j= student v person implies K j= dag of student v dag of person:It turns out that for �ALC such a property holds. To prove this we introduce thefollowing lemma, �rst.Lemma 51 Let K be a �ALC TBox, and C and D two �ALC concepts in which avariable X may occur free. ThenK j= C v D implies K j= �X:C v �X:D:Proof We proceed by contradiction.6 Assume that CI� � DI� holds for all models Iof K and all valuations � on I. And suppose that there exists a model I of K and avaluation � on I such that (�X:C)I� 6� (�X:D)I� .6For uniformity, we do not distinguish if X occurs free or not. Obviously if X does not occurfree, the result is trivial. 107



CHAPTER 8First we prove the result for � = �. Let s be an individual in (�X:C)I� but not in(�X:D)I� . Now, we haves 2 (�X:C)I� i� 8E � �I : (CI�[X=E] � E implies s 2 E) (8.1)s 62 (�X:D)I� i� 9E 0 � �I : (DI�[X=E0 ] � E 0 and s 62 E 0): (8.2)For the set E 0 in (8.2), the following expression holds:CI�[X=E0 ] � DI�[X=E0 ] � E 0hence by (8.1) we have s 2 E 0 and by (8.2) we have s 62 E 0, which is impossible.The proof for � = � is similar. Let s be an individual in (�X:C)I� but not in(�X:D)I� . Now, we haves 2 (�X:C)I� i� 9E 00 � �I : (E 00 � CI�[X=E00] and s 2 E 00) (8.3)s 62 (�X:D)I� i� 8E � �I : (E � DI�[X=E] implies s 62 E): (8.4)For the set E 00 in (8.3), the following expression holds:E 00 � CI�[X=E00] � DI�[X=E00 ]hence by (8.3) we have s 2 E 00 and by (8.4) we have s 62 E 00, which is impossible. 2By using this lemma we can prove the result we are looking for.Theorem 52 Let K be a �ALC TBox, and D(X) a �ALC concept such that everyoccurrence of the variable X in D(X) is in the scope of an even number of negationsigns. Then, for any �ALC concepts C1 and C2:K j= C1 v C2 implies K j= D(C1) v D(C2):Proof First, we transform D(X) in \negation normal form", that is we push thenegations occurring in D(X) all way in, getting an equivalent concept Dn(X) wherenegations occur only in front of atomic concepts and no negation occur in front X.Now we prove the result by induction on the formation of Dn(X). Base case. IfDn(X) = X, the result holds trivially.Inductive case. We assume that the result holds for every subconcept of Dn(X),and we show that K j= Dn(C1) v Dn(C2) holds as well. Indeed this easily followsfrom the semantics, for Dn(X) of the formsDn1 (X) uDn2 (X) j Dn1 (X) tDn2 (X) j 9R.Dn1 (X) j 8R.Dn1 (X):It remains to prove the result for Dn(X) = �Y:Dn1 (X) (Y 6= X), but by Theorem 51we have K j= Dn1 (C1) v Dn1 (C2) implies K j= �Y:Dn1 (C1) v �Y:Dn1 (C2);108



Reasoning in �ALChence we are done. 2Going back to our the example, we can, in fact, infer that DAGs of students arealso DAGs of persons. Indeed, by Theorem 52, we have that K j= student v personimpliesK j= �X:emptydagt(studentu9arc.>u8arc.X) v �X:emptydagt(personu9arc.>u 8arc.X).Even though it does not include any role construct, �ALC is actually an extensionof C. Indeed we can translate a C concept into a �ALC concept by resorting to thefollowing equivalences: 9R1 �R2.C = 9R1.9R2.C9R1 tR2.C = 9R1.C t 9R2.C9R�.C = �X:(C t 9R.X)9id(D).C = C uD:Note that 8R�.C = �X:(C u 8R.X).8.5 Reasoning in �ALCIn this section, we focus on the problem of reasoning in �ALC TBoxes. We startour discussion by showing that logical implication in �ALC TBoxes (thus also satis-�ability of �ALC TBoxes) is reducible to unsatis�ability of a single �ALC concept.To prove this result, we introduce the notions of generated sub-interpretation andsub-valuation.7Let I = (�I ; �I) be an interpretation, � a valuation on I, and s 2 �I an indi-vidual. We de�ne the interpretation Is = (�Is ; �Is), and the valuation �s on Is, asfollows:� �Is = fs0 2 �I j (s; s0) 2 (RI1 [ : : :[RIm)�g.� For each atomic role Ri, we have RIsi = RIi \ (�Is ��Is).� For each atomic concept A, we have AIs = AI \�Is.� For each variable X, we have �s(X) = �(X) \�Is .We call Is the sub-interpretation of I generated by s, and �s the sub-valuation of �generated by s.For generated sub-interpretations and sub-valuations we can state the followinglemma.Lemma 53 Let C be a �ALC concept. Then for any interpretation I, any valuation� on I, and any individual s 2 �I, we have: s 2 CI� i� s 2 CIs�s :Proof Without loss of generality, we consider concepts formed according to thefollowing simpli�ed abstract syntax: C ::= A j ? j :C j C1 u C2 j 9R.C j �X:C j X:7Together these notions play the same role as that of generated sub-model in modal logics. 109



CHAPTER 8We prove the result by induction on the number of nested �xpoint constructs. Basecase. If in C there are no �xpoint constructs, the thesis can be proven by inductionon the formation of C.Inductive case. We assume that the thesis holds for concepts C with n nested�xpoint constructs, and we prove it for concepts �X:C with n+1. We recall that, byTarski-Knaster Theorem on �xpoints [123], s 2 (�X:C)I� i� there exists an ordinal �such that s 2 (��X:C)I� , where (��X:C)I� is de�ned by trans�nite induction as� (�0X:C)I� = ;� (��+1X:C)I� = CI�[X=(��X:C)I� ]� (��X:C)I� = S�<�(��X:C)I� , if � is a limit ordinal.Hence we proceed by trans�nite induction on ordinals �.Base case of the trans�nite induction. �0X:C is de�ned as ?, thus trivially wehave s 2 (�0X:C)I� i� s 2 (�0X:C)Is�s .Successor case of the trans�nite induction. We want to show that s 2(��+1X:C)I� i� s 2 (��+1X:C)Is�s , which reduces tos 2 CI�[X=(��X:C)I� ] i� s 2 CIs�s[X=(��X:C)Is�s ]: (8.5)To prove this, we start by showing thats 2 CIs�s[X=(��X:C)Is�s ] i� s 2 CIs(�[X=(��X:C)I� ])s : (8.6)Notice that the two valuations above may di�er only on the value of X. If it holdsthat s 2 XIs�s [X=(��X:C)Is�s ] i� s 2 XIs(�[X=(��X:C)I� ])s ; (8.7)then by straightforward induction on the formation of C we have that (8.6) holds aswell. Let us prove (8.7). We can write it ass 2 �s[X=(��X:C)Is�s ](X) i� s 2 (�[X=(��X:C)I� ])s(X);and since s 2 �Is, this reduces tos 2 (��X:C)Is�s i� s 2 (��X:C)I� :which holds by trans�nite inductive hypothesis.Now, since C contains n �xpoint constructs, by inductive hypothesis on n, wehave s 2 CI�[X=(��X:C)I� ] i� s 2 CIs(�[X=(��X:C)I� ])s :Hence, considering (8.5) and (8.6), it follows that indeed s 2 (��+1X:C)I� i� s 2(��+1X:C)Is�s .110



Reasoning in �ALCLimit case of the trans�nite induction. Let � be a limit ordinal, then s 2 (��X:C)I�i� there exists an ordinal � < � such that s 2 (��X:C)I� . By trans�nite inductionhypothesis, it holds that s 2 (��X:C)I� i� s 2 (��X:C)Is�s , and thuss 2 (��X:C)I� i� s 2 (��X:C)Is�s :This completes the trans�nite induction. So for all ordinals � it holds thats 2 (��X:C)I� i� s 2 (��X:C)Is�s :The induction on the nesting of �xpoint constructs is completed as well, hence wehave proven the lemma. 2Now we are ready to state the result mentioned above.Theorem 54 Let K = fC1 v D1; : : : ; Cn v Dng be a �ALC TBox, and C and Dtwo �ALC concepts. Then K j= C v D if and only if the �ALC concept�X:(8R1.X u : : :u 8Rm.X u CK) u C u:D (8.8)is unsatis�able, where R1; : : : ; Rm are all the atomic roles appearing in K, and CK =(:C1 tD1) u : : :u (:Cn tDn).Proof If part. By contradiction. Assume that (8.8) is not satis�able, and supposethat K 6j= C v D, i.e. there exists an interpretation I, and a valuation � on I, suchthat I is a model of K and CI� 6� DI� . It follows that, there exists an individual s 2 �Isuch that s 2 CI� and s 2 (:D)I� . On the other hand, the fact that I is a model of Kimplies that (CK)I� = �I , and thus that (�X:(8R1.X u : : :u 8Rm.X u CK))I� = �I.So we have s 2 (�X:(8R1.X u : : :u 8Rm.X uCK)uC u:D)I� , i.e. (8.8) is satis�able,contradicting the hypotheses.Only If part. Again we proceed by contradiction. Assume K j= C v D. Andsuppose that (8.8) is satis�able, i.e. there exists an interpretation I, a valuation � onI, and an individual s 2 �I, such that s 2 (�X:(8R1.Xu: : :u8Rm.XuCK)uCu:D)I� .Now consider the sub-interpretation Is = (�Is ; �Is�s ) and the sub-valuation �s onIs generated by s. On the one hand, we clearly have that (CK)Is�s = �Is, hence Isis a model of K. On the other hand by Lemma 53 s 2 (�X:(8R1.X u : : :u 8Rm.X uCK)uC u:D)Is�s , so it follows that Is and �s do not satisfy the subsumption C v D,contradicting the hypotheses. 2This result allows us to limit our attention to concept unsatis�ability only. Inorder to devise a method to check a �ALC concept for unsatis�ability, we exhibita correspondence between �ALC and a well-known logic of programs called modalmu-calculus ([71, 73, 121, 122]), which has been recently investigated for expressingtemporal properties of reactive and parallel processes ([118, 75, 28, 132, 31]).Formulas �;	; : : : of modal mu-calculus are formed inductively from atomic for-mulas A; : : : and variables X; : : : according to the following abstract syntax:�;	 ::= A j > j ? j :� j � ^	 j � _	 j< a > � j [a]� j �X:� j �X:� j X 111



CHAPTER 8where a is the generic element of a set of labels L, and every occurrence of any variableX must be in the scope of an even number of negation signs. The semantics of modalmu-calculus is based on the notions of (Kripke) structure and valuation. A Kripkestructure M is a triple (S; fRi j i 2 Lg;V), where S is a set of states, each Ri is abinary relation, and V is a mapping from atomic formulas to subsets of S. A valuation� on M is a mapping from variables to subsets of S. To a Kripke structure M anda valuation � on M, we associate an extension function �M� de�ned inductively asfollows: XM� = �(X) � SAM� = V(A) � S>M� = S?M� = ;(:�)M� = S ��M�(� ^	)M� = �M� \	M�(� _	)M� = �M� [	M�(< a > �)M� = fs 2 S j 9s0: (s; s0) 2 Ra and s0 2 �M� g([a]�)M� = fs 2 S j 8s0: (s; s0) 2 Ra implies s0 2 �M� g(�X:�)M� = TfE � S j �M�[X=E] � E g(�X:�)M� = SfE � S j E � �M�[X=E] gA formula � is satis�able if there exists a Kripke structure M and a valuation � onM such that �M� 6= ;.The following theorem is the basis for the correspondence between �ALC and themodal mu-calculus.Theorem 55 There exists a one-to-one linear-time function q mapping concepts of�ALC to formulas of modal mu-calculus such that for any �ALC concept C, C issatis�able if and only if q(C) is satis�able.Proof We can de�ne q in the following way: q(A) = A (atomic concepts are mappedto atomic formulas), q(X) = X, q(>) = >, q(?) = ?, q(:C) = :q(C), q(9R.C) =<R > q(C) (atomic roles are mapped to labels), q(8R.C) = [R]q(C), q(�X:C) =�X:q(C), and q(�X:C) = �X:q(C).An interpretation I = (�I ; �I) is equivalent to a Kripke structure M = (S; fRi ji 2 Lg;V) such that: S = �I; fRi j i 2 Lg is equal to the part of �I interpretingatomic roles; and V is equal to the part of �I interpreting atomic concepts. We alsohave that a valuation � on I is equivalent to a valuation �0 on M. Now both theextension function associated with I and �, and the extension function associatedwithM and �0 map, respectively, any concept C and the corresponding formula q(C)to the same subset of �I = S. Hence the thesis follows. 2It follows that we may transfer both decidability and complexity results ([73, 51,106]) for the modal mu-calculus to �ALC. Thus, we can immediately state what isthe complexity of reasoning with �ALC concepts and �ALC TBoxes.Theorem 56 Satis�ability of �ALC concepts, satis�ability of �ALC TBoxes, andlogical implication in �ALC TBoxes are EXPTIME-complete problems.112



The description logic �ALCNProof Since the satis�ability problem for modal mu-calculus is EXPTIME-complete([51]), by Theorem 55 the satis�ability of �ALC concepts can be checked in deter-ministic exponential time (tight bound). Hence, by Theorem 54, the thesis follows.28.6 The description logic �ALCNIn this section, study the description logic �ALCN , obtained from �ALC by includingquali�ed number restrictions (see Chapter 4).Concepts in �ALCN are formed inductively according to the following abstractsyntax: C ::= A j > j ? j :C j C1 u C2 j C1 t C2 j 9R.C j 8R.C j(� nR:C) j (� nR:C) j �X:C j �X:C j Xwhere A denotes an atomic concept, R an atomic role, X a variable. We implicitlyassume the restriction that every free occurrence of variables X is in the scope of aneven number of negations, considering concepts C in (� nR:C) in the scope of onenegation.Quali�ed number restrictions are interpreted as follows. Let I be an interpretationand � a valuation on I, and �I� the extension function associated with I and �.(� nR:C)I� = fs 2 �I j there exists at most n s0 such that(s; s0) 2 RI and s0 2 CI� g;(� nR:C)I� = fs 2 �I j there exists at least n s0 such that(s; s0) 2 RI and s0 2 CI� gThe other constructs are interpreted as in �ALC.Next we investigate the decidability and the complexity of satis�ability of �ALCNconcepts and logical implication in �ALCN TBoxes (and thus of satis�ability of�ALCN TBoxes). As for �ALC these two reasoning tasks are not distinct. Indeed,we can prove the analogue of Theorem 54.Theorem 57 Let K = fC1 v D1; : : : ; Cn v Dng be a �ALCN TBox, and C and Dtwo �ALCN concepts. Then K j= C v D if and only if the �ALCN concept�X:(8R1.X u : : :u 8Rm.X u CK) u C u:Dis unsatis�able, where R1; : : : ; Rm are all the roles appearing in K, and CK = (:C1 tD1) u : : :u (:Cn tDn).In order to devise a (e�ective) method for checking a �ALCN concept for un-satis�ability, we exhibit a correspondence between �ALCN and a variant of modalmu-calculus, called deterministic modal mu-calculus, which has the same syntax asthe modal mu-calculus, but is interpreted on deterministic Kripke structures, that isKripke structures in which the relations Ri are partial functions ([121]).We show that there is a function t mapping concepts of �ALCN to deterministicmodal mu-calculus formulae, such that C is satis�able if and only if t(C) is satis�able.113



CHAPTER 8The function t is de�ned inductively. The mapping fromA, X, CuD, CtD, :C, and�X:C is simply t(A) = A, t(X) = X, t(C uD) = t(C)^ t(D), t(CtD) = t(C)_ t(D),t(:C) = :t(C), t(�X:C) = �X:t(C). The mapping form 8R.C and 9R.C is based ona technique developed for propositional dynamic logic to map non-deterministic PDLformulae to deterministic PDL formulae preserving satis�ability ([87, 121]), namely:t(9R.C) = < R > (�X:(t(C)_ < Rnew > X));t(8R.C) = [R](�X:(t(C)^ [Rnew]X));where Rnew is a new role. Finally, (� nR:C) and (� nR:C) are mapped to thefollowing formulae (we use the abbreviations [R�]� for �X:(� ^ [R]X), [R+]� for[R][R�]�, < R� > � for �X:(�_ < R > X), and < R+ > � for < R >< R� > �):t((� nR:C)) =[R][R�new](t(C)) [R+new](t(C))[R+new](: : : (t(C)) [R+new]:t(C)) : : :))where the number of nested formulae of the form t(C)) [R+new]� is n, andt((� nR:C)) =< R >< R�new > (t(C)^ < R+new > (t(C)^< R+new > (: : : (t(C)^ < R+new > t(C)) : : :))where the number of nested formulae of the form t(C)^ < R+new > � is n� 1. Theseformulae express constraints on the number of states satisfying C along the chainR�R�new. For example, consider the concept (� 2R:A), where A is an atomic concept,t((� 2R:A)) = [R][R�new](A ) [R+new](A ) [R+new]:A)) that means \everywherealong the chain R�R�new there are at most two states where A holds" (see Chapter 4).Theorem 58 Let C be a �ALCN concept, and t the function de�ned above. Then,C is satis�able if and only if t(C) is satis�able.It is known that satis�ability in deterministic modal mu-calculus is an EXPTIME-complete problem ([121, 51, 106]). Since t(C) is clearly polynomial in the size of C(assuming numbers in C coded in unary), from the above theorem we can derive thedecidability and the computational complexity of reasoning with �ALCN TBoxes.Theorem 59 Satis�ability of �ALCN concepts, satis�ability of �ALCN TBoxes,and logical implication in �ALCN TBoxes are EXPTIME-complete problems.8.7 DiscussionWe already noticed that �xpoint constructs allow for representing not only abstractclasses, but also several data structures extensively used in application programs. Webelieve that this characteristic is an important step towards a satisfactory integrationof concept languages with both traditional and declarative programming systems.Indeed the description logics introduced in this chapter provide powerful mecha-nisms for data structure modeling. In particular, the properties stated in Section 8.4114



Discussioncan be the base to formulate a notion of parametric concept8. For instance, theexpression (named dag of [Z])�X : emptydag t (Z u 9arc.>u 8arc.X)where Z is a formal parameter, denotes the class of DAGs whose nodes are leftunspeci�ed. This class can be used in several ways in the TBox. For example, it canbe instantiated by binding the formal parameter to actual parameters, thus getting,say, dag of [student]; dag of [person]; : : :, which are concepts inheriting the propertiesof dag of [Z].Our proposal of allowing for �xpoint construct explicitly in the formalism is sharedby a recent work independently carried out by Schild [109].9 The main goal of thatwork is to study both the expressive power and the computational complexity ofsubsumption and satis�ability for TBoxes expressed in ALC (no �xpoint constructs),that allow for mutually recursive de�nitions. To this end, a concept language isde�ned that corresponds to a variant of the modal mu-calculus ([130]) in whichmutual�xpoints are allowed but some restrictions on nested �xpoints are enforced. It is wellknown that mutual �xpoints can be re-expressed by means of nested ones (see, forexample, [33, 109]). As a consequence of this observation it follows that both logicsintroduced in this chapter, are actually more expressive than the one analyzed in[109].We conclude by noting that although the proposed language is very powerful, itlacks the construct for inverse roles which is needed for example to correctly capturethe notions of (�nite) TREE, BINARY-TREE, etc. Indeed, to de�ne the concept ofTREE (an EMPTY-TREE is a TREE; a NODE that has at most one parent, somechildren, and all children are TREEs, is a TREE; nothing else is a TREE) we canwrite tree � �X : empty treet (nodeu (� 1 child�:>)u9child.>u8child.X. Noticethat the introduction of inverse roles does not pose any di�culty from the semanticalpoint of view; however, its impact on the reasoning method needs to be investigated.
8Note that parametric concepts can be introduced also in simpler logics which do not include�xpoint constructs.9In [109] number restrictions are not considered. 115



CHAPTER 8

116



AppendixEliminating I from DIIn this appendix we consider two well known propositional dynamic logics, namely Dand DI. D is the original propositional dynamic logic de�ned in [56], whereas DI,also de�ned in [56], extends D by including the construct to denote the \converse" ofa program.We show that is possible to eliminate the \converse" operator from DI, withoutcompromising the soundness and completeness of inference for it. Speci�cally wepresent an elegant reduction of DI formulae into D formulae that eliminates the con-verse programs from a DI formula but adds enough information so as not to destroyits original meaning with respect to satis�ability, validity, and logical implication.Notably the resulting formula, which is a D formula, is polynomially related to theoriginal one.This reduction on the one hand helps in better understanding the nature of theconverse operator. On the other hand it puts the basis to build e�cient -in practicalcases- inference procedures for DI. In fact the reduction, being polynomial, allowsone to build e�cient inference procedures for DI, by translating DI formulae into D,and then running an e�cient inference procedure for D. We discuss this issue furtherat the end of the appendix.The general technique used for deriving the reduction is analogous to the oneintroduced in Chapter 3 and used to prove many results in this thesis. However thepresent reduction is probably the best illustration of the technique, since every stepis intuitive, and proofs go through without major complexities, thus exhibiting thekey features of the technique in a neat way.A.1 Reducing DI to DWe now show the reduction from DI to D. More precisely, we exhibit a mapping �from DI formulae to D formulae such that, for any DI formula �, � is satis�able ifand only if �(�) is satis�able. The formula �(�), whose size is polynomial in the sizeof �, is said to be the D-counterpart of �.We assume without loss of generality that in � the converse operator is applied117



APPENDIXto atomic programs only. It is easy to check that any DI formula can be transformedin linear time in the size of the formula so that such an assumption is ful�lled.De�nition Let � be a DI formula with the converse operator applied to atomicprograms only. We de�ne the D-counterpart �(�) of � as the conjunction of twoformulae, �(�) = �1(�) ^ �2(�), where:� �1(�) is obtained from the original formula � by replacing each occurrence ofP� with a new atomic program P c, for all atomic programs P occurring in �.� �2(�) = [(P1 [ : : :[Pm [P c1 [ : : :[P cm)�]�12 ^ : : :^ �g2 , where P1; : : : ; Pm are allatomic programs appearing in �, and with one conjunct �i2 of the form(�) [P ] < P c > �) ^ (�) [P c] < P > �)for every � 2 CL(�1(�)) and P 2 fP1; : : : ; Pmg.2Theorem 60 Let � be a DI formula, and �(�) its D-counterpart. Then �(�) is aD formula, and its size is polynomially related to the size of �.Proof Straightforward. 2The purpose of �1(�) it to replace the converse of atomic programs (the onlyconverse programs) in � with new atomic programs. Each new atomic program P cis intended to represent P� (the converse of the atomic program P ) in �1(�).The purpose of �2(�) is to force the models M of �(�) so that, for all � 2CL(�1(�)), for all states s of M , if � holds in s then all the P -successors of s havea P c-successor in which � holds, and similarly all the P c-successors of s have a P -successor in which � holds. We shall show that, as far as satis�ability (but alsovalidity and logical implication) is concerned, this allows us to faithfully representthe converse of P by means of P c.First of all, observe that if instead of �2(�), we imposed the two axiom schemas(� any formula): �) [P ] < P c > ��) [P c] < P > �then the models of �1(�) would be isomorphic to the models of �. In fact, the aboveaxiom schemas are identical to the ones used in the axiomatization of DI to forceprograms P� to be the converse of the programs P . However the resulting logicswould not be D but trivially DI.Instead, �2(�) can be thought as a �nite instantiation of the above two axiomschemas: one instance for each formula in CL(�)1. Although imposing the validity ofsuch a �nite instantiation does not su�ce to guarantee the isomorphism of the models1Actually, �2(�) already takes into account the reduction from logical implication to satis�abilityof Theorem 1.118



Reducing DI to Dof �1(�) and �, we show that it su�ces to guarantee that �1(�) has a model if andonly if � has a model.It is a standard result that if a DI-formula � has a model, then it has a connectedmodel, where a modelM = (S; fRPg;�) of � is a connected model, if for some ss 2 S:� M; ss j= �;� S = ft j (ss; t) 2 (SP RP [RP� )�g.Let � be either a DI formula or a D formula. We call a structure M =(S; fRP g;�) a structure of �, if every atomic program P and every atomic proposi-tion A occurring in � is interpreted in M , i.e. RP appears in M , and A appears inthe co-domain of �, respectively.In the following we use � as an abstraction for both P and P c. Moreover, �cdenotes P c if � = P , and it denotes P if � = P c.Let M = (S; fR�g;�) be a connected model of �(�). We call the c-closure ofM ,the structure M 0 = (S 0; fR0�g;�0) of �(�), de�ned as follows:� S0 = S;� R0� = R� [ f(t; s) j (s; t) 2 R�cg, for each atomic program � in �(�);� �0 = �.Note that in the c-closure M 0 of a modelM , each R0P of M 0 is obtained from RP ofM by including, for each pair (s; t) in RP c , the pair (t; s) in R0P , and similarly eachR0P c is obtained from RP c by including, for each pair (s; t) in RP , the pair (t; s) inR0P c . As a result in the c-closure of a model each atomic program P c is interpretedas the converse of P .The next lemma is the core of the results in the present section. Intuitively it saysthat the c-closure of a connected model is equivalent to the original model wrt theformulae in CL(
1(�)).Lemma 61 Let M = (S; fRPg;�) be a connected model of �(�), and M 0 =(S0; fR0Pg;�0) its c-closure. Then, for every s 2 S (= S 0), and every � 2 CL(�1(�)):M; s j= � i� M 0; s j= �:Proof We prove the lemma by induction on the formation of � (called formulainduction in the following).� � = A.M; s j= A i� A 2 �(s) i�, by construction of M 0, A 2 �0(s) i� M 0; s j= A.� � = :�0.M; s j= :�0 i� M; s 6j= �0 i�, by formula induction hypothesis, M 0; s 6j= �0 i�M 0; s j= :�0. 119



APPENDIX� � = �1 ^ �2.M; s j= �1^�2 i�M; s j= �1 andM; s j= �2 i�, by formula induction hypothesis,M 0; s j= �1 and M 0; s j= �2 i� M 0; s j= �1 ^ �2.� � =< r > �0.). M; s j=< r > �0 i� there is a path (s = s0; : : : ; sq) 2 PathsM (r) such thatM; sq j= �0. We show that M 0; s j=< r > �0, by induction on the length of thepath (called path induction in the following).q = 0. In this case (s = s0) 2 PathsM(r) and M; s j= �0. Then, by Proposi-tion 4, there exists a formula < �1?; : : : ;�g? > �0 such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M; s j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : : ; �g; �0g, we have thatM; s j= �x i� M 0; s j= �x. Hence M 0; s j=< r > �0.q > 0. In this case, by Proposition 5, there exists a formula< �1?; : : : ;�g?;� ><r0 > �0 such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r0 2 Post(r), and hence < r0 > �0 2 CL(< r > �0) � CL(�1(�));{ (s0; s1) 2 R� ;{ M; s1 j=< r0 > �0;{ (s1; : : : ; sq) 2 PathsM (r0);{ < �1?; : : : ;�g?;� >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : : ; �gg, we have M; s0 j=�x i� M 0; s0 j= �x.By construction of M 0, (s0; s1) 2 R� implies (s0; s1) 2 R0�.Considering that < r0 > �0 2 CL(< r > �0) � CL(�1(�)), by path inductionhypothesis, M; s1 j=< r0 > �0 and (s1; : : : ; sq) 2 PathsM (r0) impliesM 0; s1 j=<r0 > �0.Hence M 0; s j=< r > �0.(. M 0; s j=< r > �0 i� there is a path (s = s0; : : : ; sq) 2 PathsM 0(r) such thatM 0; sq j= �0. We prove that M; s j=< r > �0, by induction on the length of thepath (called path induction in the following).q = 0. In this case (s = s0) 2 PathsM 0(r) and M 0; s j= �0. Then, by Proposi-tion 4, there exists a formula < �1?; : : : ;�g? > �0 such that:120



Reducing DI to D{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ M 0; s j=< �1?; : : : ;�g? > �0;{ < �1?; : : : ;�g? > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : : ; �g; �0g, we have thatM 0; s j= �x i� M; s j= �x. Hence M; s j=< r > �0.q > 0. In this case, by Proposition 5, there exists a formula< �1?; : : : ;�g?;� ><r0 > �0 such that:{ all tests �i? occur in r, and hence all �i are subformulae of < r > �0;{ r 2 Post(r), and hence < r0 > �0 2 CL(< r > �0) � CL(�1(�));{ (s0; s1) 2 R0� ;{ M 0; s1 j=< r0 > �0;{ (s1; : : : ; sq) 2 PathsM 0(r0);{ < �1?; : : : ;�g?;� >< r0 > �0 )< r > �0 is valid.By formula induction hypothesis, for every �x 2 f�1; : : : ; �gg, we haveM 0; s0 j=�x i� M; s0 j= �x.Considering that < r0 > �0 2 CL(< r > �0) � CL(�1(�)), by path inductionhypothesis,M 0; s1 j=< r0 > �0 and (s1; : : : ; sq) 2 PathsM 0(r0) impliesM; s1 j=<r0 > �0.Since (s0; s1) 2 R0�, by construction of M 0, we have that either (s0; s1) 2 R� ,or (s0; s1) 62 R� and (s1; s0) 2 R�c .{ If (s0; s1) 2 R�, then we can immediately conclude that M; s0 j=< r > �0.{ If (s0; s1) 62 R� and (s1; s0) 2 R�c , then considering that < r0 > �0 isequivalent to a formula  2 CL(�1(�)), by �2(�) we have thatM; s1 j=< r0 > �0 ) [�c] < � >< r0 > �0:Thus there exists a state s01 2 S (di�erent from s1) such that (s0; s01) 2R� and M; s01 j=< r0 > �0. Hence, also this case, we can conclude thatM; s0 j=< r > �0.2 The previous lemma has the following consequence.Lemma 62 Let M be a connected model of �(�) and M 0 its c-closure. Then M 0 isa model of �(�) as well.Proof Let M = (S; fR�g;�) and M 0 = (S0; fR0�g;�0). By Lemma 61, for alls 2 S = S0 and all � 2 CL(�1(�)):M; s j= � i� M 0; s j= �: 121



APPENDIXFurthermore, by de�nition of M 0, (s; s0) 2 R0� implies (s0; s) 2 R0�c . Thus, for alls 2 S0 and all � 2 CL(�1(�)) :M 0; s j= �) [P ] < P c > �M 0; s j= �) [P c] < P > �:Hence we can conclude that the thesis holds. 2We can now formulate the main result of this appendix.Theorem 63 A DI formula � is satis�able i� its D-counterpart �(�) is satis�able.Proof ). Let MDI = (SDI ; fRDIP g;�DI) be a model of �. We de�ne a structureMD = (SD; fRD� g;�D) of �(�) as follows:� SD = SDI ;� RDP = RDIP and RDP c = f(t; s) j (s; t) 2 RDIP g, for all atomic programs Poccurring in �;� �D = �DI .It is easy to verify that MD is a model of �(�).(. Let MD = (SD; fRD� g;�D) be connected model of �(�) and MD0 =(SD0; fRD� 0g;�D0) its c-closure. By Lemma 62, M 0 is a model of �(�) as well.Observe that, by de�nition, M 0 is such that, for each atomic program �, RD�c 0 =(RD� 0)�. We de�ne a structure MDI = (SDI ; fRDIP g;�DI) of �(�) as follows:� SDI = SD0;� RDIP = RDP 0 for all atomic programs P occurring in �;� �DI = �D0.It is easy to verify that MDI is a model of �. 2A.2 DiscussionThe logics D and DI share many characteristics, and many results for D extend to DIwith no di�culties. For instance the proofs of �nite model property and decidabilityfor D in [56] are easily extended to DI, as well as the proof of EXPTIME-completenessin [94]. However, while e�cient { in practical cases { inference procedures have beensuccessfully developed for D, extending them to DI has proved to be a di�cult task,and to the best of our knowledge has been unsuccessful till now.To be more precise, the inference procedures for D based on the enumeration ofmodels such as those in [56, 94] can be easily modi�ed to accommodate converseprograms. But these procedures are better suited for proving theoretical results thanfor being used in practice, since they are inherently exponential, not only in theworst-case.122



DiscussionIn contrast, inference procedures for D such as those in [93, 95], based on tableauxmethods, which are much more e�cient in practical cases, are di�cult to modify tocope with converse programs.The di�culty can be intuitively grasped by observing how these procedures at-tempt to build a model of a D formula in order to check its satis�ability. They startby introducing an initial state, and try to make it satisfy the formula. At �rst, reason-ing is carried out locally, i.e. considering subformulae that involve state transitions,simply as atomic propositions. Next, when no more local reasoning is possible, thesuccessor states, introduced by atomic programs, are generated, and the relevant for-mulae that these states ought to satisfy are propagated. The two steps above arerecursively repeated for each successor state until certain termination conditions aremet. The key point is that once the successors of a given state have been generated,no more reasoning involving that state will be carried out. Thus, to check satis�abilityof a D formula, a tableaux based procedure can be organized so as to work \forward"only. This feature turns out to be essential in order to ensure e�cient terminationcriteria.The presence of converse programs does not allow us to extend the above approachin an obvious way. Indeed, reasoning on a state may not be completely carried outlocally, i.e. without generating its successors, because, through converse programs,some successors may require further properties to be satis�ed by the original state.Therefore, to check satis�ability of a DI formula, a procedure has to work both\forward" and \backward", thus losing e�ciency, since at any point reasoning mayinvolve the whole piece of model built so far.Is there a way out of this problem? One possible solution is trying to single outa small set of additional formulae to be checked in every state, that, in some sense,anticipate the properties its successors may require at a later stage of the computation.The reduction from DI to D presented in this appendix singles out a set of addi-tional formulae of the kind mentioned above. Hence the reduction can be used as thebasis to develop better reasoning procedure for DI, on top of inference procedures forD. In fact, the reduction allows us to build a satis�ability procedure for DI by simplytranslating a DI formula to a D formula and then running on it a D satis�abilityprocedure. Therefore, considering that the reduction is polynomial, by employing ane�cient satis�ability procedure for D we get an e�cient satis�ability procedure forDI.
123



APPENDIX

124



Bibliography[1] G. Attardi and M. Simi. Consistency and completeness of omega, a logicfor knowledge representation. In Proceedings of the 7th International JointConference on Arti�cial Intelligence (IJCAI-81), pages 504{510, 1981.[2] F. Baader. Terminological cycles in KL-ONE-based knowledge representationlanguages. In Proceedings of the 8th National Conference on Arti�cial Intelli-gence (AAAI-90), pages 621{626, 1990.[3] F. Baader. Augmenting concept languages by transitive closure of roles: analternative to terminological cycles. In Proceedings of the 12th InternationalJoint Conference on Arti�cial Intelligence (IJCAI-91), 1991.[4] F. Baader and B. Hollunder. A terminological knowledge representation systemwith complete inference algorithm. In Proc. of the Workshop on ProcessingDeclarative Knowledge (PDK-91), Lecture Notes In Arti�cial Intelligence 567,pages 67{86. Springer-Verlag, 1991.[5] C. Beeri. A formal approach to object-oriented databases. Data and KnowledgeEngineering, 5:353{382, 1990.[6] D. Bell and R. Greenes. Building a semantic network for radiologic records.In Proceedings of 1993 Spring Congress of the American Medical InformaticsAssociation, volume 58, 1993.[7] M. Ben-Ari, J. Y. Halpern, and A. Pnueli. Deterministic propositional dynamiclogic: �nite models, complexity, and completeness. Journal of Computer andSystem Sciences, 25:402{417, 1982.[8] D. Beneventano and S. Bergamaschi. Subsumption for complex object datamodels. In Proceedings of the 4th International Conference on Database Theory,Lecture Notes in Computer Science 646, pages 357{375. Springer-Verlag, 1992.[9] J. Bernauer. Conceptual graphs as an operational model for descriptive �ndings.In Proceedings of the 15th Annual Symposium on Computer Applications inMedical Care, pages 214{218. McGraw-Hill, 1991.[10] P. Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic,34(1):56{83, 1993. 125



BIBLIOGRAPHY[11] P. Blackburn and E. Spaan. A modal perspective on computational complexityof attribute value grammar. Journal of Logic, Language and Information, 2:129{169, 1993.[12] Board of Directors of the American Medical Informatics Association. Standardsfor medical identi�ers, codes, and message needed to create e�cient computer-stored medical records. Journal of the American Medical Informatics Associa-tion, 1(1):1{7, 1994.[13] A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm forsubsumption in the CLASSIC description logic. Journal of Arti�cial IntelligenceResearch, 1:277{308, 1994.[14] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-based description languages. In Proceedings of the 4th National Conference onArti�cial Intelligence (AAAI-84), pages 34{37, 1984.[15] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, L. Alperin Resnick,and A. Borgida. Living with CLASSIC: when and how to use a KL-ONE-likelanguage. In J. F. Sowa, editor, Principles of Semantic Networks, pages 401{456. Morgan Kaufmann, Los Altos, 1991.[16] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledgerepresentation system. Cognitive Science, 9(2):171{216, 1985.[17] R. Bull. An approach to tense logic. Theoria, 12:171{182, 1970.[18] D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed framework for class basedrepresentation formalisms. In Proceedings of the 4th International Conferenceon the Principles of Knowledge Representation and Reasoning (KR-94), pages109{120, 1994. Morgan Kaufmann, Los Altos.[19] K. Campell, A. Das, and M. Musen. A logical foundation for representationof clinical data. Journal of the American Medical Informatics Association,1(3):218{232, 1994.[20] K. Campell and M. Musen. Creation of a systematic domain for medical care:the need for a comprehensive patient-description vocabulary. In Proceedings ofMEDINFO-92, pages 1437{1442. North-Holland: Elsevier Science Publishers,1992.[21] T. Catarci and M. Lenzerini. Representing and using interschema knowledge incooperative information systems. Journal of Intelligent and Cooperative Infor-mation Systems, 2(4):375{398, 1993.[22] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.[23] J. Cimino. Controlled medical vocabulary construction: methods from theCanon group. Journal of the American Medical Informatics Association,1(3):296{297, 1994.126



[24] J. Cimino and G. Barnett. Automated translation between terminologies usingsemantic de�nitions. MD Comput., 7:104{109, 1990.[25] J. Cimino, R. Barrows, and B. Allen. Adapting ICD9-CM for clinical decisionsupport (abstract). In Proceedings of 1992 Spring Congress of the AmericanMedical Informatics Association, 1992.[26] J. Cimino, P. Clayton, G. Hripcsak, and S. Johonson. Knowledge based ap-proaches to the mantainance of a large controlled medical terminology. Journalof the American Medical Informatics Association, 1(1):35{50, 1994.[27] J. Cimino, G. Hripcsak, S. Johonson, and P. Clayton. Designing an intro-spective, controlled medical vocabulary. In Proceedings of the 13th AnnualSymposium on Computer Applications in Medical Care, pages 513{518. IEEEComputer Society Press, 1989.[28] R. Cleaveland. Tableaux-based model checking in the propositional mu-calculus.Acta Informatica, 27:725{747, 1990.[29] R. Ĉot�e, D. Protti, and J. Scherrer. Role of Informatics in health data codingand classi�cation systems. North Holland, 1984.[30] R. Ĉot�e, D. Rothwell, J. Palotay, R. Beckett, and L. Broch (eds.). The System-atized Nomenclature of Medicine: SNOMED International. College of AmericanPathologists, 1993.[31] M. Dam. CTL* and ECTL* as fragments of the modal mu-calculus. LectureNotes in Computer Science 581, pages 145{164. Springer-Verlag, 1992.[32] R. Danecki. Nondeterministic propositional dynamic logic with intersectionis decidable. In Proceedings of the 5th Symposium on Computational Theory,Lecture Notes in Computer Science 208, pages 34{53. Springer-Verlag, 1984.[33] J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall,1980.[34] G. De Giacomo. Reconciling di�erent semantics for concept de�nition (extendedabstract). In Proceedings of the 1st COMPULOG net Meeting on KnowledgeRepresentation and Reasoning Systems (CNKRR-93), pages 1{5, 1993.[35] G. De Giacomo. Decidibilit�a di formalismi per la rappresentazione dellaconoscenza basati su classi e loro applicazione ai Medical Terminology Server.PhD thesis, Universit�a di Roma \La Sapienza", 1995.[36] G. De Giacomo and M. Lenzerini. A uniform framework for concept de�nitions.Unpublished manuscript, July 1993.[37] G. De Giacomo and M. Lenzerini. Boosting the correspondence between de-scription logics and propositional dynamic logics. In Proceedings of the 12th Na-tional Conference on Arti�cial Intelligence (AAAI-94), pages 205{212. AAAI-Press/The MIT-Press, 1994. 127



BIBLIOGRAPHY[38] G. De Giacomo and M. Lenzerini. Concept language with number restrictionsand �xpoints, and its relationship with mu-calculus. In Proceedings of the 11thEuropean Conference on Arti�cial Intelligence (ECAI-94), pages 411{415. JohnWiley and Sons, 1994.[39] G. De Giacomo and M. Lenzerini. Converse, local determinism, and gradednondeterminism in propositional dynamic logics. Technical Report 11-94, Di-partimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza",June 1994.[40] G. De Giacomo and M. Lenzerini. Description logics with inverse roles, func-tional restrictions, and n-ary relations. In Proceedings of the 4th EuropeanWorkshop on Logics in Arti�cial Intelligence (JELIA-94), Lecture Notes in Ar-ti�cial Intelligence 838, pages 332{346. Springer-Verlag, 1994.[41] G. De Giacomo and M. Lenzerini. On the correspondence between descriptionlogics and logics of programs (position paper). In Proceedings of the DescriptionLogics Workshop 1994 (DL-94), pages 1{4, 1994.[42] G. De Giacomo and M. Lenzerini. Enhanced propositional dynamic logic forreasoning about concurrent actions (extended abstract). In Proceedings of theAAAI 1995 Spring Symposium on Extending Theories of Action: Formal Theoryand Practical Applications, pages 62{67, 1995.[43] G. De Giacomo and M. Lenzerini. Making CAT S out of kittens: descriptionlogics with aggregates. In Proceedings of the Description Logics Workshop 1995(DL-95), pages 85{87, 1995.[44] G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning aboutactions. In Proceedings of the 4th Congress of the Italian Association for Arti-�cial Intelligence (AIIA-95), Lecture Notes in Arti�cial Intelligence 992, pages103{114. Springer-Verlag, 1995.[45] G. De Giacomo and M. Lenzerini. What's in an aggregate: foundations fordescription logics with tuples and sets. In Proceedings of the 14th InternationalJoint Conference on Arti�cial Intelligence (IJCAI-95), pages 801{807, 1995.[46] M. de Rijke. Extending Modal Logic. PhD thesis, Institute for Logic, Languageand Computation, University of Amsterdam, 1993.[47] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of conceptlanguages. In Proceedings of the 2nd International Conference on the Principlesof Knowledge Representation and Reasoning (KR-91), pages 151{162. MorganKaufmann, Los Altos, 1991.[48] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable concept lan-guages. In Proceedings of the 12th International Joint Conference on Arti�cialIntelligence (IJCAI-91), pages 458{463, 1991.128



[49] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. Adding epis-temic operators to concept languages. In Proceedings of the 3rd InternationalConference on the Principles of Knowledge Representation and Reasoning (KR-92), pages 342{353. Morgan Kaufmann, Los Altos, 1992.[50] J. Doyle and R. Patil. Two theses of knowledge representation: language re-strictions, taxonomic classi�cation, and the utility of representation services.Arti�cial Intelligence Journal, 48:261{297, 1991.[51] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics ofprograms. In Proceedings of the 20th Annual Symposium on the Foundations ofComputer Science, pages 328{337, 1988.[52] D. Evans, C. Chute, J. Cimino, et al. CANON: towards a medical conceptrepresentation language for electronic medical records (abstract). In Proceed-ings of 1993 Spring Congress of the American Medical Informatics Association,page 26, 1993.[53] D. Evans, J. Cimino, W. Hersh, S. Hu�, D. Bell, and for the Canon Group.Towards a medical concept representation language. Journal of the AmericanMedical Informatics Association, 1(3):207{217, 1994.[54] M. Fattorosi-Barnaba and F. De Caro. Graded modalities I. Studia Logica,44:197{221, 1985.[55] K. Fine. In so many possible worlds. Notre Dame Journal of Formal Logic,13(4):516{520, 1972.[56] N. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs.Journal of Computer and System Sciences, 18:194{211, 1979.[57] C. Friedman, P. Alderson, A. Austin, J. Cimino, and S. Johonson. A generalnatural-language text processor for clinical radiology. Journal of the AmericanMedical Informatics Association, 1(2):161{174, 1994.[58] G. Gargov and V. Goranko. Modal logic with names. Journal of PhilosophicalLogic, 22:607{636, 1993.[59] G. Gargov and S. Passy. Determinism and looping in combinatory PDL. The-oretical Computer Science, 61:259{277, 1988.[60] R. Goldblatt. Logics of time and computation, volume 7 of Lecture Notes. Centerfor the Study of Language and Information, second edition, 1992.[61] B. Gordon (ed.). Current Medical Information and Terminology. AMA, 1970.[62] I. Haimowitz, R. Patil, and P. Szolovits. Representing medical knowledge in aterminological language is di�cult. In Proceedings of the 12th Annual Sympo-sium on Computer Applications in Medical Care, pages 101{105. IEEE Com-puter Science Press, 1988. 129



BIBLIOGRAPHY[63] J. Halpern and Y. Moses. A guide to completeness and complexity for modallogics of knowledge and belief. Arti�cial Intelligence, 54:319{379, 1992.[64] D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner, editors, Handbookof Philosophical Logic, pages 497{603. D. Reidel Publishing Company, Oxford,1984.[65] B. Hollunder and F. Baader. Qualifying number restrictions in conceptlanguages. Technical Report RR-91-03, Deutsches Forschungszentrum f�urK�unstliche Intelligenz (DFKI), Kaiserslautern, Germany, 1991. An abridgedversion appeared in Proc. of the 2nd Int. Conf. on Principles of KnowledgeRepresentation and Reasoning (KR-91).[66] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen,London, 1968.[67] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen,London, 1984.[68] R. B. Hull and R. King. Semantic database modelling: survey, applications andresearch issues. ACM Computing Surveys, 19(3):201{260, Sept. 1987.[69] S. Johonson, C. Friedman, J. Cimino, A. Clark, G. Hripcsak, and P. D. Clayton.A conceptual schema for a central patient database. In Proceedings of the 15thAnnual Symposium on Computer Applications in Medical Care, pages 381{387.McGraw-Hill, 1991.[70] S. Johonson, C. Friedman, J. Cimino, T. Clark, G. Hripcsak, and P. Clayton.Conceptual data model for a central patient database. In Proceedings of 1992Spring Congress of the American Medical Informatics Association, pages 381{385, 1992.[71] D. Kozen. Results on the propositional mu-calculus. Theoretical ComputerScience, 27:333{355, 1983.[72] D. Kozen and R. Parikh. An elementary proof of the completeness of PDL.Theoretical Computer Science, 14:113{118, 1981.[73] D. Kozen and R. Parikh. A decision procedure for the propositional mu-calculus.In Proceedings of the 2nd Workshop on Logic of Programs, Lecture Notes inComputer Science 164, pages 313{325. Springer-Verlag, 1983.[74] D. Kozen and J. Tiuryn. Logics of programs. In J. Van Leeuwen, editor,Handbook of Theoretical Computer Science, pages 790{840. Elsevier SciencePublishers, 1990.[75] K. J. Larsen. Proof systems for satis�ability in Hennessy-Milner logic withrecursion. Theoretical Computer Science, 72:265{288, 1990.[76] H. J. Levesque and R. J. Brachman. Expressiveness and tractability in knowl-edge representation and reasoning. Computational Intelligence, 3:78{93, 1987.130



[77] D. Lindberg, B. Humphreys, and A. McClay. The Uni�ed Medical LanguageSystem. Methods in Inf. Med., 32:281{291, 1993.[78] R. MacGregor. The evolving technology of classi�cation-based knowledge rep-resentation systems. In J. F. Sowa, editor, Principles of Semantic Networks,pages 385{400. Morgan Kaufmann, Los Altos, 1991.[79] F. Masarie, R. Miller, O. Bouhaddou, N. Guise, and H. Warner. An interlinguafor electronic interchange of medical information: using frames to map clinicalvocabularies. Comput. Biomed. Res., 24(4):379{400, 1991.[80] National Library of Medicine. Medical Subject Headings. 1989.[81] B. Nebel. Computational complexity of terminological reasoning in BACK.Arti�cial Intelligence Journal, 34(3):371{383, 1988.[82] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. LectureNotes In Arti�cial Intelligence. Springer-Verlag, 1990.[83] B. Nebel. Terminological reasoning is inherently intractable. Arti�cial Intelli-gence Journal, 43:235{249, 1990.[84] B. Nebel. Terminological cycles: semantics and computational properties. InJ. F. Sowa, editor, Principles of Semantic Networks, pages 331{361. MorganKaufmann, Los Altos, 1991.[85] W. Nowlan and A. Rector. Medical knowledge representation and predictivedata entry. In Proceedings of the 2nd Arti�cial Intelligence in Medicine Europe,Lecture Notes In Medical Informatics 44, pages 105{116. Springer-Verlag, 1991.[86] R. Parikh. The completeness of propositional dynamic logic. Lecture Notes inComputer Science 64, pages 403{415. Springer-Verlag, 1978.[87] R. Parikh. Propositional dynamic logic of programs: a survey. In Proceedingsof the 1st Workshop on Logic of Programs, Lecture Notes in Computer Science125, pages 102{144. Springer-Verlag, 1981.[88] D. Park. Fixpoint induction and proofs of program properties. In MachineIntelligence, volume 5, pages 59{78. Edinburgh University Press, 1970.[89] S. Passy and T. Tinchev. PDL with data constraints. Information ProcessingLetters, 20:35{41, 1985.[90] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Informationand Computation, 93:263{332, 1991.[91] P. F. Patel-Schneider. A hybrid, decidable, logic-based knowledge representationsystem. Computational Intelligence, 3(2):64{77, 1987.[92] C. Peltason. The BACK system { an overview. SIGART Bulletin, 2(3):114{119,1991. 131



BIBLIOGRAPHY[93] V. R. Pratt. A practical decision method for propositional dynamic logic. InProceedings of the 10th Annual Symposium on Theory of Computing, pages326{337, 1978.[94] V. R. Pratt. Models of program logics. In Proceedings of the 20th IEEE Sym-posium on the Foundations of Computer Science, pages 115{122, 1979.[95] V. R. Pratt. A near-optimal method for reasoning about action. Journal ofComputer and System Sciences, 20:231{255, 1980.[96] A. Prior. Past, Present and Future. Oxford University Press, 1967.[97] A. Rassinoux, R. Baud, and J. Scherrer. Conceptual graphs model extensionfor knowledge representation of medical text. In Proceedings of MEDINFO-92,pages 1368{1374. North-Holland: Elsevier Science Publishers, 1992.[98] A. Rector et alt. GALEN: Generalized Architecture for Language Encyclopediasand Nomenclatures in Medicine, the master notation, version 1, 1993.[99] A. Rector, W. Nowlan, and A. Glowinski. Goals for concept representation inthe GALEN project. In Proceedings of the 17th Annual Symposium on ComputerApplications in Medical Care, pages 414{418. McGraw-Hill, 1993.[100] A. Rector, W. Nowlan, and S. Kay. Conceptual knowledge: the core of medicalinformation systems. In Proceedings of MEDINFO-92, pages 1420{1426. North-Holland: Elsevier Science Publishers, 1992.[101] A. Rector, W. Solomon, W. Nowlan, and T. Rush. A terminology server formedical language and medical information systems. In IMIA-94, page 14, 1994.[102] A. Rossi Mori, J. Bernauer, V. Pakarinen, A. Rector, P. Robb�e, W. Ceusters,P. Hurlen, A. Ogonowski, and H. Olsen. Models for representation of termi-nologies and coding systems in medicine. In Proceedings of the Seminar Oppor-tunities for European and U.S.Cooperation in Standardization in Health CareInformatics, pages 1368{1374, 1992.[103] A. Rossi Mori et alt. Medical Informatics - Categorial structure of conceptsystems - Guideline and vocabularies (CEN/TC251/PT003), 1994.[104] A. Rossi Mori, A. Gangemi, and M. Galanti. The coding cage. In Proceedingsof Medical Informatics Europe, 1993.[105] A. Rossi Mori, A. Thornton, and A. Gangemi. An entity-relationship model fora European machine-dictionary of medicine. In Proceedings of the 14th AnnualSymposium on Computer Applications in Medical Care, pages 185{189. IEEEComputer Society Press, 1990.[106] S. Safra. On the complexity of !-automata. In Proceedings of the 20th AnnualSymposium on the Foundations of Computer Science, pages 319{327, 1988.[107] A. Schaerf. Reasoning with individuals in concept languages. Data and Knowl-edge Engineering, 13(2):141{176, 1994.132



[108] K. Schild. A correspondence theory for terminological logics: preliminary re-port. In Proceedings of the 12th International Joint Conference on Arti�cialIntelligence (IJCAI-91), pages 466{471, 1991.[109] K. Schild. Terminological cycles and the propositional �-calculus. In Proceedingsof the 4th International Conference on the Principles of Knowledge Represen-tation and Reasoning (KR-94), pages 509{520, 1994. Morgan Kaufmann, LosAltos.[110] M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions withunions and complements. Technical Report SR-88-21, FB Informatik, Univer-sit�at Kaiserslautern, Kaiserslautern, Germany, 1988.[111] A. Schmiedel. Modeling the medical data of the heart catheter report. Technicalreport, Project GroupMedicine-Informatics, GermanHeart Center Berlin, 1991.[112] A. Schmiedel. Using BACK in a medical domain. In Terminological Logic UsersWorkshop. KIT-report 95, University of Berlin, 1991.[113] A. Schmiedel. Persistent maintenance of object descriptions using BACK. Tech-nical Report KIT 112, University of Berlin, 1993.[114] J. G. Schmolze. Terminological knowledge representation systems supporting n-ary terms. In Proceedings of the 1st International Conference on the Principlesof Knowledge Representation and Reasoning (KR-89), pages 432{443. MorganKaufmann, Los Altos, 1989.[115] G. Schreiber, B. Wielinga, and J. Breuker. KADS: A principled approach toknowledge-based system development. Academic Press, 1993.[116] E. Shortli�e and O. Barnett. Medical data: their acquisition, storage, anduse. In E. Shortli�e and L. Perreault, editors, Medical Informatics: ComputerApplications in Health Care. Readings, pages 37{69. Addison-Wesley, 1990.[117] E. Spaan. Complexity of Modal Logics. PhD thesis, University of Amsterdam,1993.[118] C. Stirling. Modal and temporal logic. In S. Abramsky, D. M. Gabbay, andT. S. E. Maibaum, editors, Handbook of Logic in Computer Science, pages 477{563. Clarendon Press, Oxford, 1992.[119] R. S. Streett. Propositional dynamic logic of looping and converse is elementarilydecidable. Information and Control, 54:121{141, 1982.[120] R. S. Streett. Fixpoints and program looping: reductions from the propositionalmu-calculus into propositional dynamic logics of looping. In Proceedings of the4th Workshop on Logic of Programs, Lecture Notes in Computer Science 193,pages 359{372. Springer-Verlag, 1985. 133



BIBLIOGRAPHY[121] R. S. Streett and E. A. Emerson. The propositional mu-calculus is elementary.In Proceedings of the 6th International Colloquium on Automata, Languages andProgramming, Lecture Notes in Computer Science 172, pages 465{472. Springer-Verlag, 1984.[122] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure forthe propositional mu-calculus. Information and Control, 81:249{264, 1989.[123] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�cJournal of Mathematics, 5:285{309, 1955.[124] United States National Center for Health Statistics. International Classi�cationof Diseases, Ninth Revision, with Clinical Manifestation. 1980.[125] J. Van Benthem and J. Bergstra. Logic of transition systems. Journal of Logic,Language and Information, 3(4):247{283, 1995.[126] J. Van Benthem, J. Van Eijck, and V. Stebletsova. Modal logic, transitionsystems and processes. Journal of Logic and Computation, 4(5):811{855, 1994.[127] W. Van der Hoek. On the semantics of graded modalities. Journal of AppliedNon-Classical Logics, 2(1):81{123, 1992.[128] W. Van der Hoek and M. de Rijke. Counting objects. Journal of Logic andComputation, 5(3):325{345, 1995.[129] M. Y. Vardi. The taming of converse: reasoning about two-way computation.In Proceedings of the 4th Workshop on Logic of Programs, Lecture Notes inComputer Science 193, pages 413{424. Springer-Verlag, 1985.[130] M. Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics ofprograms. In Proceedings of the 16th Annual Symposium on the Foundations ofComputer Science, pages 446{456, 1984.[131] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics ofprograms. Journal of Computer and System Sciences, 32:183{221, 1986.[132] G. Winsket. A note on model checking the modal �-calculus. In Proceedings ofthe 11th International Colloquium on Automata, Languages and Programming,Lecture Notes in Computer Science 372, pages 761{772. Springer-Verlag, 1989.
134


