Available online at www.sciencedirect.com

SCIENCE@DIRECT" Artificial
Intelligence

N
ER Artificial Intelligence 160 (2004) 79-104

ELSEVI

www.elsevier.com/locate/artint

Decidability of SHZ O with complex role
inclusion axioms"

lan Horrocks*, Ulrike Sattler

Department of Computer Science, University of Manchester, Kilburn Building, Manchester M13 9PL, UK

Received 2 January 2004; accepted 17 June 2004

Abstract

Motivated by medical terminology applications, we investigate the decidability of an expressive
and prominent description logic (DL), SHZ Q, extended with role inclusion axioms of the form
Ro SET. Itiswell known that a naive such extension leads to undecidability, and thus we restrict
our attention to axioms of theform R o S R or S o R E R, which isthe most important form of ax-
iomsin the applications that motivated this extension. Surprisingly, thisextension isstill undecidable.
However, it turns out that by restricting our attention further to acyclic sets of such axioms, weregain
decidability. We present a tableau-based decision procedure for this DL and report on itsimplemen-
tation, which promises to behave well in practice and provides important additional functionality in
amedical terminology application.
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1. Motivation

The description logic (DL) SHZQ [14,17] is an expressive knowledge representation
formalism that extends ALC [29] with qualifying number restrictions, inverse roles, role
inclusion axioms, and transitive roles. The development of SHZ Q was motivated and in-
spired by several applications, one of which was the representation of knowledge about
complex physicaly structured domainsfound, e.g., in chemical engineering [26] and med-
ical terminology [25].

For example, in SHZ Q, we can describefractures of thefemur by thefollowing concept
which, intuitively, denotes fracturesthat are located in the femur or the neck of the femur:

Ferrur Fract ure =Fract uren3dhasLocati on. (Femur uFenur Neck).

To make this definition work, we aso should describe the neck of the femur, e.g., as fol-
lows:

Femur Neck =BodyPart mProxi man3di sbhi vi si onOf . Fenur .

SHZQ dlows many important properties of application domains to be captured: e.g.,
we can state that hasLocat i on is transitive, and that Locat ed| n is the inverse of
hasLocat i on. However, there is one extremely useful feature that SHZ Q cannot ex-
press, namely the “ propagation” of one property along another property [21,23,31]. Com-
ing back to our example above, to capture that also a fracture of the shaft of the femur
is a fracture of the femur, we need to add this information explicitly the definition of
Femur Fr act ur e. As such, this is easily feasible. A more elegant approach would be
to change our definition to

Fermur Fract ure =Fracturen3dhaslLocati on
. (Fermur udi sDi vi si onOf . Fenur).

Still, we haveto have asimilar disiunction in the definition of afracture of thetibia, and all
other fractures. Thus, it would be useful if we could express, in general, the fact that certain
locative properties are transfered across certain partonomic properties so that afracture or
trauma located in a part of a body structure is recognised as being located in the body
structure as awhole. Thiswould yield highly desirable inferences such as a fracture of the
shaft of the femur being inferred to be a kind of fracture of the femur, or an ulcer located
in the gastric mucosa being inferred to be a kind of stomach ulcer—without the necessity
to repeat this statement in the definition of every single such concept.

The importance of these kinds of inferences, particularly in medical terminology ap-
plications, is illustrated by the fact that three different such applications provide means
to express propagation. The Grail DL [24], which was specifically designed for use with
medical terminology, is able to represent these kinds of propagation (although it is quite
weak in other respects). In another medical terminology application using the compara-
tively inexpressive DL ALC, a rather complex “work around” is performed in order to
represent similar propagations [30]: so-called SEP-triplets are used both to compensate
for the absence of transitive roles in ALC, and to express the propagation of properties
across a distinguished “part-of ” role. In athird application, useis made of so-called right-
identities, which correspond to our complex role inclusion axioms [31]. Finaly, similar
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expressiveness was also provided in the CycL language by thet r ansf er sThr o state-
ment [19]. To the best of our knowledge, however, thereis no proof of the correct treatment
of propagation in any of these applications.

It is quite straightforward to extend SHZQ so that this kind of propagation can be
expressed: simply allow for role inclusion axioms (RIAS) of the form R o S P, which
then forces all models 7 to interpret the composition of RZ with ST as a sub-relation of
PZ . E.g., the above examplestrandate into

hasLocati onoi sDi vi si onOf ChasLocat i on,
which implies that
Fract urenmn3dhasLocati on.(Neckm3i shi vi si onOf . Fenur),

i.e., a concept describing fractures of the neck of the femur, is indeed subsumed by (is a
specialisation of)

Fracturen3dhasLocati on.Fenur,

i.e., aconcept describing fractures of the femur.

Unfortunately, this extension leads to the undecidability of interesting inference prob-
lems such as concept satisfiability and subsumption [33]. This undecidability is not sur-
prising once we observe the close relationship between RIAs, Grammar Logics [3,4,8],
and role value maps [6,28]. This relationship is discussed in more detail in Section 2.1.
Here, it should suffice to mentionthat aRIA R ST T can be viewed as anotational variant
of the productionrule 7 — R S of Grammar Logics or the concept inclusion T = (R SET)
of adescription logic allowing for role value maps.

On closer inspection of our motivating examples, we observethat only RIAs of theform
RSC S orSRLC S arerequired in order to express propagation. To the best of our knowl-
edge, no (un)decidability results are known for similar restrictions of the above mentioned
Grammar Logics or DLs with role value maps. In this paper, we will show that SHZQ
extended with thisrestricted form of RIAsis still undecidable. Due to the syntactic restric-
tions imposed on RIAs, we cannot re-use techniques employed to prove undecidability
of Grammar Logics or DLs with role value maps. Instead, our proof is by reduction of
the undecidable domino problem [5], and uses a rather specia technique to ensure a grid
structure.

Decidability can be regained, however, by further restricting the set of RIAs to be reg-
ular, and the logic obtained by restricting RIAs to regular ones is called RZQ. From a
practical point of view, the restrictions imposed by regularity do not seem to be severe:
regular RIAs should suffice for many applications, and non-regular RIAs may even be an
indicator of modelling flaws [23].

We prove the decidability of SHZQ with regular RIAS via a tableau-based decision
procedure for the satisfiability of concepts. We first trandate regular RIAs into non-
deterministic automata, and then use these automata in the tableau algorithm. More pre-
cisely, the tableau agorithm replaces concepts of the form VR . C (where R is arole)
with expressions of the form VB . C, where By is a non-deterministic finite automaton
(NFA) capturing exactly the restrictions imposed on R by RIAs. Using these expressions,
we ensure that the concept C is indeed “pushed” to al those nodes it has to be pushed
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to, even if they are far away from a node that has to satisfy VR . C. The algorithm is of
the same complexity as the one for SHZ Q—in the size of Bg and the length of the in-
put concept—but, unfortunately, B can be exponentia in the “depth” of R, i.e., in the
length of chains of roles depending on each other. We also present a syntactic restriction
that avoids this blow-up; investigating whether this blow-up can be avoided in general will
be part of future work.

Aswe have discussed above, the interaction between rolesin regular RIAs can be cap-
tured by NFAs, but we have not yet explained which RIAs are regular. Thisis so because,
in the presence of inverse roles, the definition of regularity becomes dightly tricky: each
“left-linear” RIA of the form R SC S is equivalent to a “right-linear” RIA ST R~ 5.
Thus each left-linear RIA has consequencesthat are inherently amixture of right- and left-
linear RIAS. Now it iswell known that grammarswith a such alinear mixture are stronger
than right-linear grammars or left-linear grammars[11], and thisis true aso for RIAS, as
our undecidability result shows. Thus, to enable the transformation into an automaton, we
impose an additional restriction, which we have chosen to be acyclicity in a rather loose
sense, i.e.,, we gtill allow for RIASSSC S, RSE S, and S R S, but we do not allow for
combinationsof RIAssuchas R S S and S RC R.

Finally, in order to evaluate the practicability of this algorithm, we have extended the
DL system FaCT [12] to deal with RZQ. We discuss how the properties of NFAs are
exploited in the implementation, and we present some preliminary results showing that
the performance of the extended system is comparable with that of the original, and that
it is able to compute inferences of the kind mentioned above w.r.t. the well-known Galen
medical terminology knowledge base [12,25].

2. Preliminaries

In this section, we introduce the DL SH*Z Q. This includes the definition of syntax,
semantics, and inference problems.

Definition 1. Let C be aset of concept namesand R a set of role names. The set of rolesis
RU{R™ | R e R}. A roleinclusion axiomis an expression of one of the following forms;
R1E Ry, RiR>ER1, of RiR2C Ry,

for roles R; (each of which can be inverse). A generalised role hierarchy is a set of role
inclusion axioms.

An interpretation Z = (AZ, .Z) associates, with each role name R, a binary relation
RT c AT x AT, Inverserolesareinterpreted asusual, i.e.,

(RHT ={(y,x) | (x,y) e R} foreachrole R eR.

Aninterpretation Z isamodel of ageneralised rolehierarchy R if it satisfieseach inclusion
assertionin R, i.e., if

RF CR? foreachRiCR2eR, and
RY o RY C RI foreech RiR2ER3e R,

where o stands for the composition of binary relations.
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Note that we did not introduce transitive role names since adding R R = R to the gener-
alised role hierarchy is equivalent to saying that R isatransitive role.

To avoid considering roles such as R~—, we define a function Inv on roles such that
Inv(R) =R~ if Risarolename, andInv(R) =S if R=S5".

Since we will often work with a string of roles, it is convenient to extend both -Z and
Inv(-) to such strings: if w = R1... R, for R; roles, thenw? = RZ o---o R and Inv(w) =
Inv(R,) ...Inv(Ry). It followsimmediately from the definition of the semantics that

s

(x,yyew” iff (y,x)e Inv(w)Z.

Next, since each model satisfying w = S also satisfies Inv(w) C Inv(S) (and vice versa),
we can restrict generalised role hierarchies to those with role names on their right-hand
side without any effect on the expressivity. For better readability, we will not do thisin the
undecidability proof of SHTZQ, but we will do it for the decidable logic RZQ since it
makes the construction in the proofs easier.

Finally, for ageneralised role hierarchy R, we definetherelation = to bethetransitive—
reflexiveclosureof = over {RC S, Inv(R) C Inv(S) | R, S rolesand RC S e R}. AroleR
iscalled a sub-role (respectively super-role) of arole S if R £ S (respectively S E R). Two
rolesR and S areequivalent (R=S)if RES and S ER.

Now we are ready to define the syntax and semantics of SH+Z Q-concepts.

Definition 2. Let R be a generalised role hierarchy. A role R issimplein R if, for each
R’ &R, R containsno RIA of theform R1 R, R’ or R1 R = Inv(R’). If R isclear from
the context, we often use “simple” instead of “ssimplein R”.

The set of SH+Z Q-conceptsisthe smallest set such that

e every concept nameand T, L are concepts, and,

e if C, D areconcepts, R isarole(possibly inverse), S isasimplerole (possibly inverse),
and n isanon-negativeinteger,thenCn D, CuD,—-C,VYR.C,3R.C, (=nS.C),
and (< nS.C) are aso concepts.

A general concept inclusion axiom (GCl) is an expression of the form C C D for two
SH*ZQ-concepts C and D. A terminology is aset of GCls.

An interpretation Z = (AZ, .T) consists of a set AZ, called the domain of Z, and a
valuation -Z which maps every concept to a subset of AZ and every role to a subset of
AT x AT such that, for all concepts C, D, roles R, S, and non-negative integers n, the
following equations are satisfied, where M denotesthe cardinality of aset M:

TZ_AT 1 T_y (top and bottom),
cnb?t=ctnpt (conjunction),
«cub¥=ctupt (disiunction),
=0t =aT\c* (negation),
@R.O)F ={x|3y.(x,y) e RT and y e €T} (exists restriction),

VR.COF ={x|V¥y.(x,y) e RT impliesy € ¢7} (value restriction),
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CnR.OF={x1tly. (x,y) e RT andy e T} > n} (atleast regtriction),
(<nR.OF={x1tfy. (x,y) e RT andy e T} <n} (at most restriction).

An interpretation Z is a model of aterminology 7~ (written Z = 7) iff CZ < DZ for
eachGCI CCDinT.

A concept C iscalled satisfiableiff thereisan interpretation Z with CZ + (3. A concept
D subsumes a concept C (written C C D) iff CZ < DZ holdsfor each interpretation. Two
concepts are equivalent (written C = D) if they are mutually subsuming. The above infer-
ence problems can be defined w.r.t. ageneralised role hierarchy R and/or aterminology 7°
in the usual way, i.e., by replacing interpretation with model of R and/or 7.

ForIan interpretation Z, an element x € AZ is called an instance of a concept C iff
xeC*.

Please note that number restrictions (= rnR . C) and (< nR . C) arerestricted to simple
roles. Intuitively, these are (possibly inverse) roles that are not implied by the compo-
sition of other roles. The reason for this restriction is that, without it, satisfiability of
SHZ Q-conceptsis undecidable [16], even for alogic without inverse roles and with only
unqualifying number restrictions (these are number restrictions of theform (= nR . T) and
(£nR.T).

For DLs that are closed under negation, subsumption and (un)satisfiability can be mu-
tually reduced: C C D iff C m—D isunsatisfiable, and C is unsatisfiable iff CC L. Itis
straightforward to extend these reductions to generalised role hierarchies and terminolo-
gies. In contrast, the reduction of inference problemsw.r.t. a terminology to pure concept
inference problems (possibly w.r.t. arole hierarchy), deserves special care: in[1,2,27], the
internalisation of GCls is introduced, a technique that realises exactly this reduction. For
SHTIQ, thistechnique only needs to be dightly modified. The following lemma shows
how general concept inclusion axioms can be internalised using a“ universal” role U, that
is, atransitive super-role of all roles occurringin 7 or R and their respective inverses.

Lemma 3. Let C, D beconcepts, 7 aterminology, and R a generalised role hierarchy. We
define

cr= [] -Gub.
C;CD;eT
Let U bearolethat doesnot occur in7, C, D, or R. We set
Ry :=RU{UUC U}
U{REU,Inv(R)C U | R occursin7,C, D, or R}.
e Cissatisfiablew.rt. 7 and R iff Cm Cy VU . Cr issatisfiablew.r.t. Ry.

e D subsumes C withrespectto 7 and R iff Cm—D nCy nVU . Cr isunsatisfiable
wrt. Ry.

The proof of Lemma 3 is similar to the ones that can be found in [1,27]. Most impor-
tantly, it must be shown that, (a) if a SH*Z Q-concept C is satisfiable with respect to a
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terminology 7 and a generalised role hierarchy R, then C,7 have a connected model,
i.e., amodel where any two elements are connect by arole path over those roles occurring
in C and 7, and (b) if y is reachable from x via arole path (possibly involving inverse
roles), then (x, y) € UZ. These are easy consequences of the semantics and the definition
of U.

Theorem 4. Satisfiability and subsumption of SH*Z Q-concepts w.r.t. terminologies and
generalised role hierarchies are polynomially reducible to (un)satisfiability of SH*Z Q-
conceptsw.r.t. generalised role hierarchies.

2.1. Relationship with grammar logics

Itiswell known that description and modal logicsare closely related: for example, ALC
can be viewed as a notational variant of the multi modal logic K [7,27]. Related to the
logicsinvestigated here are grammar logics[9], aclass of propositional multi modal logics
where the accessibility relations are “ axiomatised” through a grammar. More precisely, for
o;, Tj modal parameters, the production rule o1...0, — 11...7, Can be viewed as an
abbreviation for the axioms

[o1]...[omlp = [url...[wlp,
or as being anotational variant for the role inclusion axiom
rl...rnéal...am.

Analogously to the description logic case, the semantics of a grammar logic is defined by
taking into account only those frames/relational structuresthat “satisfy the grammar”.

Grammars are traditionally organised in (refinements of) the Chomsky hierarchy (see
any textbook on formal languages, e.g., [11]), which also induces classes of grammar log-
ics. For example, the class of context free grammar logicsisthe class of those propositional
multi modal logics where the accessibility relations are axiomatised through a context
free grammar. Unsurprisingly, the expressiveness of the grammars influences the expres-
siveness of the corresponding grammar logics. It was shown that satisfiability of regular
grammar logicsis ExpTime-complete[8], whereas this problem is undecidablefor context
free grammar logics[3,4]. The latter result is closely related to the undecidability proof in
[33]. In this paper, we are concerned with

e grammarsthat are not regular, but we do not allow for arbitrary context-free grammars
(or any known normal forms thereof), and

e multi modal logics that provide a converse operator on modal parameters. That is,
for o a modal parameter, both [o]¢ and [0 ¢ are formulae of our logic, and we
allow mixtures of converse and atomic modal parametersin the rules of the grammar.
Moreover, SH*ZQ provides graded modalities that restrict the number of accessible
worlds, see, e.g., [18,32].

As aconsequence of thefirst point, we could not re-use the technique from [3,4] for our
undecidability proof: we could not reduce the emptiness problem for the intersection of
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context-free grammars to the satisfiability of SH*Z Q-concepts because SHTZQ's syn-
tactic restriction on role inclusion axioms means that we cannot capture all context-free
grammars. However, we can capture “some” context-freeness: our undecidability proof in
Section 3 is by areduction of the undecidable domino problem [5], and is heavily based
on the language {(ab)" (cd)™ | n > 0} to enforce amodel with a“grid” structure. Although
we were not able to construct a grammar for this language directly using only productions
of theform R — RS or R — SR, we used agrammar G such that the language generated
by G, when intersected with (ab)*(cd)*, equas {(ab)"(cd)" | n > 0}. This grammar G
contains the four production rules

D— AD,
A— AC,
C — BC,
B — BD, A—a,...,.D—d,

and can be found in four versions as the last axioms of Rp in Fig. 2, where we use x;, y;,
and their inversesinstead of A, ..., B.

2.2. Rolevalue maps

The role inclusion axioms we investigate here are closely related to role value maps
[6,28], i.e., concepts of theform R1... R, C S1...S, for R;, S; roles. The semantics of
these conceptsis defined as follows:

(R1...RpC 81...5)%
={xre AT |(R1... R)T(x) S (S1...S) (D)},

where (Ry... Rw)% (x) denotesthe set of those y € A that are reachable from x via RY o
.--oRL,

Thus the role inclusion axiom RS T is equivalent to the general concept inclusion
axiom T C (RS E T), i.e., both axioms have the same models. The role value maps used
to show the undecidability of KL-ONE [28] are of a more general form than (RS C T),
i.e., they use role chains of unbounded Iength on both sides of =, and there is no direct
trandation of the undecidability proof in [28] to our logic.

3. SHtZ Q isundecidable

Due to the syntactic restriction on role inclusion axioms, neither the undecidability
proof for ALC with context-free or linear grammarsin [3,4,8] nor the one for ALC with
role boxes [33] can be adapted to prove undecidability of SHTZQ satisfiahility. In the
following, we reduce the (undecidable) domino problem [5] to SHTZ Q satisfiability. This
problem asks whether, for a set of domino types, there exists a tiling of an N? grid such
that each point of the grid is covered with exactly one of the domino types, and adjacent
dominoes are “ compatible” with respect to some predefined criteria.
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Fig. 1. A staircase model and the implications of the last group of axiomsin Rp.

Definition 5. A domino system D = (D, H, V) consists of a non-empty set of domino
types D = {D1, ..., D,}, and of sets of horizontally and vertically matching pairs H C
D x DandV C D x D. Theproblemisto determineif, for agiven D, there exists atiling
of an N x N grid such that each point of the grid is covered with a domino typein D and
al horizontally and vertically adjacent pairs of dominotypesarein H and V, respectively,

i.e., amapping
t:NxN— D suchthat, foralm,neN,
(tGm,n),t(m+1,n))eH and
(t(m,n),t(m,n—i—l))e V.

Given a domino system D, the problem of determining if there exists atiling for D is
known to be undecidable [5].

InFig. 2, for adomino system D, we definea SH+Z Q-concept Cp, aterminology 7p
(that can be internalised, see Theorem 4), and ageneralised role hierarchy R p such that D
hasatiling iff Cp issatisfiablew.r.t. Rp and 7p. For better readability, weuse C = D as
an abbreviation for =C u D.

Ensuring that a point is associated with exactly one domino type, that it has at most
one vertical and at most one horizontal successor, and that these successors satisfy the
horizontal and vertical matching conditions induced by H and V is standard and is done
inthefirst GCI of 7p.

The next step is rather special: we do not force a grid structure, but a structure with
“staircases’, which isillustrated in Fig. 1. To this purpose, we introduce four sub-roles
vo, ..., v3 Of v and four sub-roles ko, ..., h3 of h (seefirst line of Rp), and ensure that
we only have “staircases’. For each i € {0, ..., 3}, an i-staircase is an alternating chain of



88 I. Horrocks, U. Sattler / Artificial Intelligence 160 (2004) 79-104

Tp =(T=C U4 ppnC [T =nbDjn

1<i<n I<i<j<n
[1 Di=(<w.HNnM. [ Dj)n
1<i<n (D;,Dj)eV
[1 Di= (<. T)n(vh. || Dy,
I<isn (D;,Dj)eH
I=HIuVI,
T= [1 @ .Tn=D=@h;.~In[1vv;. Ln[1Vh;. )N
0<i<3 J J#
@h7 . Tn=D= Fv;.~In[1vv;. Ln[1vh;. )N
J# i

Gh; . TNHI)= (v .~IN3hjg1. HIN
[1 vhj.Ln[1ve;.1)n
j#iel J#i

@v; . TNV = (3 . ~INTvgy. VIN
[T vv;.Ln[1vh;. 1),
j#ieL J#E

x. Tﬁ(D./‘ = Vy; D/)}

= M .
o<i<3igj<n ot
Cp = HINVIN3hgHIN3v. VI
Rp = {viCv, i Th, v; Ey;, hi Ex; |0<i <3}V
(Xig1yi E Vis
Yig1i & Xigr
yi@lxi C x,
VigrVi E Yig110<i<3}

Fig. 2. Reduction terminology, generalised role hierarchy, and concept.

v; and h; edges, without any other v;- or & ;-successors. We use concepts HI and VI for
pointsonthe x-axisand y-axisrespectively. At each point on the x -axis, two staircases start
that need not meet again, one i-staircase starting with v; and one i © 1-staircase starting
with ;51 (we use @ and & to denote addition and subtraction modul o four); points on the
y-axis exhibit a symmetrical behaviour. The second GCI in 7p introduces the concept 1
for al “initial” points, and then the third GCI ensures the staircase structure. It contains
four implications: one for the vertical and one for the horizontal successorships, and these
two implications once for the “non-initial” points (i.e., instances of —1), and once for the
“initial points’ (i.e., instances of HI or VI).

It remains to make sure that two elements b, b’ representing the same point in the grid
have the same domino type associated with them, where b and b’ “represent the same
point” if thereisan n and an instance a of I such that each of them is reachable following
astaircase starting at a for n steps, i.e,, if thereis

e auv;h;-path (respectively h; v;-path) of length 2n from a to b, and
e ah;c1vic1-path (respectively v;g1hig1-path) of length 2 froma to &',

To this purpose, we add super roles x; of #; and y; of v; (for which we use dashed
arrowsin Fig. 1), and the last group of roleinclusion axiomsin Rp. These roleinclusion
axioms ensure appropriate, additional role successorships between elements, and we use
the additional roles x; and y; since we only want to have at most one v; or h;-SUccessor.
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For each 2 staircases starting at the same element on one of the axes, these role inclusions
ensure that each pair of elements representing the same point isrelated by y;. That is, each
element on an i @ 1-staircase that is an x;g1-successor is related via y; to the element on
the i-staircase (which is a v; -successor) representing the same point (see Fig. 1).

To see this, start by considering the consequences of the role inclusion axioms for
elements representing the four points (1, 0), (2,0), (1,1) and (2, 1). The elements rep-
resenting (1, 0) and (2, 1) arerelated via hzvz and vohg, and as we cannot force these two
paths to end in the same element, we might have two elements representing (2, 1). From
the axioms h3C x3, va = y3, vo = yg and ko xo, We see that (1,0) and (2, 1) are also
related via x3y3 and yoxo. Using the axiom yg x3C x3 first, then x5 x3C xg, and finally
X ¥3 C y3, we also see that, if there are two elements representing the point (2, 1), then
they arerelated via y3. Next, consider elements representing the four points (2, 1), (2, 2),
(3,1) and (3, 2), start with the axiom y, v3 = ¥ » and then continue to work through the
same role inclusion axioms as above. Repeating this argumentation, all elements on these
two staircases that represent the same point can be seen to be related via the relation ys.
From an analogous argumentation for other pairs of staircases, using corresponding sets of
role inclusion axioms, it follows that the last GCI in 7p ensures that two elements repre-
senting the same point in the grid do indeed have the same domino type associated with
them.

The above observationsimply that the concept Cp is satisfiablew.r.t. 7p and Rp iff D
has a solution. Hence, together with Theorem 4, we have the following:

Theorem 6. Satisfiability of SH™Z Q-conceptsw.r.t. generalized role hierarchiesis unde-
cidable.

As mentioned above, the usage of inverse roles on the right-hand side in RIAs of Rp
is of no importance: we can replace these RIAs with eguivalent ones with role names on
their right-hand side, e.g., we can replace x; g, x; & x;; With x; x;e1 E x;g1. However, we
have chosen the representation in Fig. 2 to make the relationship with the grammar from
Section 2.1 more clear.

4, RTQ isdecidable

In this section, we show that SHZ Q with regular role hierarchies is decidable, where
“regular” is both arestriction and a generalisation of “generalised”. On the one hand, we
restrict role hierarchies to be acyclic, where acyclic role hierarchies till allow for RIAs
of theform RSC S, SRC S, SSC S, and R~ C R. Moreover, for convenience of proofs,
we restrict our attention to RIAs with a role name on their right-hand side. As mentioned
above, thisis of no importance. On the other hand, we also allow for axioms of the form
Ry...R,SESandSR1...R,CS (for SHTZQ, werestricted n to be 1). Finally, we also
allow for statements that force roles to be symmetric, i.e., in contrast to the decidable case
in [15], regularity also allows for RIAs of the form Inv(S) C S.

We present a tableau-based algorithm that decides satisfiability of RZ Q-conceptsw.r.t.
regular role hierarchies, and thereforeal so subsumptionin RZ Q and, with Theorem 4, both
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inferences w.r.t. terminologies. The FaCT system [12] was extended to use the algorithm
presented in this section, and the empirical results are reported in Section 5.

The algorithm tries to construct, for a RZ Q-concept C, a tableau for C, that is, an
abstraction of a model of C. Given the appropriate notion of a tableay, it is then quite
straightforward to prove that the algorithm is a decision procedure for RZ Q-satisfiability.
Before specifying this algorithm, we trandate the role hierarchy into non-deterministic
automata which are used both in the definition of a tableau and in the tableau algorithm.
Intuitively, an automaton is used to memorise the path between an object x that has to
satisfy a concept of the form VR . C and other objects, and then to determine which of
these objects must satisfy C.1

In the following definition of general role hierarchies, we use a strict partial order <
(irreflexive, transitive, and antisymmetric) on roles to ensure acyclicity.

Definition 7. Let < beastrict partial order on role names. A RIA w = R is <-regular if

R isarole name,
w = RR,
w=R",

w=_51...5,and S; < R, foral 1<i <n,
w=RS1...S,andS; <R, foral 1<i <n,or
w=_581...5,Rand S; <R, foral 1<i <n.

A role hierarchy R isregular if there exists a strict partial order < such that each RIA in
R is <-regular. The semantics is defined analogoudly to the semantics of generalised role
hierarchies, i.e,, 7 satisfiesaRIA w = R if w? € RT.

RIQ isobtained from SH*ZQ by replacing generalised role hierarchies with regular
role hierarchies, where simple role names are inductively defined as follows:?

e every role name that does not occur on the right-hand side of aRIA issimple,
e arole name S is simple if, for each w= S € R, w = R for R a simple role or the
inverse of asimplerole.

Aninverserole S~ issimpleif S issmple.

Please note that, due to the third restriction in the definition of R-compatibility, we also
restrict = to be acyclic. However, thisis not a serious restriction since, for R containing
= cycles, we can simply choose onerole R from each cycle and replace al other roles on
this cyclewith R, both in the input role hierarchy and the input concept.
For the following considerations, it is worthwhile to recall that, for w = R1... R, and
R; roles, Inv(w) = Inv(Ry,) ...Inv(R1). The following lemma is a direct consequence of
the definition of the semantics.

1 This technique together with the relationship between automata and regular languages is the reason why we
called these role hierarchies “regular”.
2 We need to re-define “simple” roles because of the more general form of RIAs.
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Lemma8. If Z isamodel of R with S" =S e R and w = S € R, then Inv(w)Z < SZ.
4.1. Trandating RIAsinto automata

Next, wewill define, for aregular role hierarchy R and a(possibly inverse) role S occur-
ring in R, anon-deterministic finite automaton (NFA) B which captures all implications
between (paths of) roles and S that are consequences of R. To make this clear, before we
define By, we formulate the lemma which we are going to provefor it.

Proposition 9. Z isamodel of R if and only if, for each (possibly inverse) role S occurring
in R, eachword w € L(Bs), and each (x, y) € w’, we have (x, y) € §.

In[15], to construct asimilar automaton for amorerestricted logic, wefirst unfolded R
into a set of implications between regular expressions, and then constructed the automata
from these implications. Here, we show how to build these automata directly, which yields
an easier construction.

Inthefollowing, we use NFAswith e-transitionsin arather informal way (see, e.g., [11]

for more details), e.g., we use p £ g to denote that thereis atransition from a state p to a
state g with the letter R instead of introducing transition relations formally. The automata
Bs are defined in three steps.

Definition 10. Let Cp be aRZ Q-concept and R aregular role hierarchy.
For each role name R occurring in R or Co, we first define the NFA Ay as follows:

Apg containsastate i g and astate fz with the transition ig X fr. The state ig istheonly
initial state and f isthe only final state. Moreover, for each w = R € R, Ag containsthe
following states and transitions:

(1) if w= RR, then Ag contains fz — ig, and
(2) ifw=Ry---R, and R1 # R # R,, then Ag contains

. . R R R R,
iR > iy fE3 233 M5 fp

(3) if w=RR2---R,, then Ag contains

e . Ry R3 R4 R e
fR— iw— u%—)fﬁ—)—">f£—>fR,

(4) ifw=R1---R,_1R, then Ay contains

3 R Rn— — .
in 5w f S RS S T S i,
whereall fi, i, are assumed to be distinct.
In the next step, we use amirrored copy of NFAs: thisis acopy of an NFA in which we

have carried out the following modifications: we

o make final states to non-final but initial states,
e makeinitial statesto non-initial but final states,
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o replace each transition p 5 q for S a(possibly inverse) role S with ¢ v p, and

e replace each transition p - g with ¢ - p.
Secondly, we define the NFAs Ay as follows:

e if RTCR ¢ R, then Ag := A,

e if RTC R e R, then Ay is obtained as follows: first, take the disoint union® of Ag
with amirrored copy of As. Secondly, makeig the only initial state, f the only final
state. Finally, for fj the copy of fz and i}, the copy of ig, add transitions iz 5 frs

fr > iRy i > froand fr > if.
Thirdly, the NFAs By are defined inductively over <:
o if Risminimal w.rt. < (i.e, thereisno R’ with R’ < R), we set Bg := A,

e otherwise, By is the digoint union of AR with a copy B’S of Bs for each transition

p 3 g in Ag with S # R. Moreover, for each such transition, we add e-transitions
from p totheinitial state in B and from the final state in B to ¢, and we make i the
only initial state and fz the only final statein Bg.

Finally, the automaton By- isamirrored copy of Bx.

Please note that the inductive definition 5 is well-defined since the acyclic relation <
is used to restrict the dependencies between roles.

We have kept the construction of B as simple as possible. If one wantsto construct an
equivalent NFA without e-transitions or which is deterministic, then there are well-known
techniquesto do this[11]. Recall that elimination of e-transitions can be carried out without
increasing the number of an automaton’s states, whereas determinisation might yield an
exponential blow-up.

Lemma 11. For R arole, the size of By is bounded exponentially in the depth
dr :=max{n |thereare S1 < --- < Sy, u;, v; With u; S; _1v; CS eR)
and thus in the size of R. Moreover, there are R and R such that the number of statesin
Bris 24R
Proof. Obviously, thesize of A and Ay islinear in
br = max{|wi|+ -+ |wy| | thereis S withw; ES e R foral 1<i <n}.
Each automaton By isa“treg” of automata .45 whose

e outdegreeis bounded by b and
e whose depth is bounded by dx.

3 A disjoint union of two automata is the disjoint union of their states, transition relations, etc.
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Hence the number of Bg’'s statesis bounded exponentialy in dr and, sincedy islinear in
the size of R, also bounded exponentially in the size of R.

Next, itiseasily verified that, for the following regular role hierarchy R ,,, the automaton
Bs, has 2"+1 states and the size of R, islinear in n:

Ry ={Si—1SiCSi, SiSi—1C S [1<i<n}. O

We will consider ways to avoid this exponential blow-up in Section 4.4, and continue
with the proof of Proposition 9. In this proof, we will use the following lemma, which is
an immediate consequence of the definition of Bs and of mirrored copies of Bs.

Lemma 12.

(1) SeL(Bs)and,ifwCS e R, thenw € L(Bs).
2 If .(Slisasimplerole, then L(Bs) ={R | R ES(};
(3) If Aisamirrored copy of an NFA A, then L(A) = {Inv(w) | w € L(A)}.

Proof of Proposition 9. The“if” direction is easily proved by contraposition. If Z is not
amodel of R, then thereissomeRIA w = S € R not satisfied by 7. Hence there are some
x,y suchthat (x, y) € w? but (x, y) ¢ S$Z. By Lemma12.1, w € L(Bs), and we are done.

For the“only-if” direction, let Z beamodel of R, S arole, w € L(Bs), and (x, y) € wZ.
We prove (x, y) € ST by well-founded induction on <. Obviously, we can restrict our
attention to arole name S dueto Lemma 12.3 and since - is defined as a mirrored copy
of Bs.

First, we observe that w € L(Bs) induces a decomposition w = wj ... w; and word
w = 81...8; such that

. Si<Squ,»=SforaII1<i<k,
e weL(Ag),and
e w; € L(Bs;).

Next, (x, y) € w? impliesthat there are x; with x = xq, y = x¢, and (x;, xj41) € w’, ., for

i+1’
each 0 <i < k. By induction, (x;, y;) € SZ and thus (x, y) € %7.

(D) If SSCES¢Rand S~ CS ¢ R, then, by construction, o is of the form

~

W=u1...upxvy...v, and u;SCSeR, foreachl<i<m
xCSeRorx=S

Sv,CESeR, foreachl< j<n

Thus Z being amodel of R impliesthat (x, y) € SZ.
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(2 If SSESeRand S~ CS ¢ R, then, by construction, o is of the form
~ 1 1.1, 1 1 14 4 0), (£ 14
w:(u(l)...u,(nix( )vg)...v,(ll))...(u(l)...u,(w)x( )U§)~~Ur(z@)) and
uVStSeR, foreachl<i<m, 1<k<t
xPEseRorx® =5, foreachl<k<¢
svVEseR, foreach1<j<n, 1<k<t
Again, Z being amodel of R impliesthat (x, y) € SZ.

(3 If SSES ¢ R and S™C S € R, then By is the digjoint union of Ag with a mirrored
copy of Ag and additional e-transitions between the final and initial state and their
copies. By construction, we have

W=ui...uyxvi...v, and
w;,SCSeRorSInvu,)ESeRforeachl<i<m
xCSeRorinvx)CSeRorx=Sorx=S"
Sv;ESeRorinv(v;))SESeR, foreachl< j<n

In both cases, Z being amodel of R impliesthat (x, y) € SZ.
(4) If SSCSeRandS™ CS e R, thenwearein amixture of the cases (2) and (3), i.e,

W=w1... W
and each w; is accepted by a run through Bs which neither uses the e-transition from
fs to is nor the corresponding one in the mirrored copy of As. We can decompose

each w; aswe have decomposed w in case (3), and conclude that 7 being a model of
R impliesthat (x, y) € ST. O

4.2. Atableaufor RZQ

In the following, if not stated otherwise, C, D (possibly with subscripts) denote RZ Q-
concepts, R, S (possibly with subscripts) roles, and ‘R aregular role hierarchy.

We start by defining fclos(Co, R), the closure of a concept C w.r.t. aregular role hier-
archy R. Intuitively, this contains all relevant sub-concepts of C together with universal
value restrictions over sets of role paths described by an NFA. We use NFAs in universal
value restrictions to memorise the path between an object that has to satisfy a value re-
striction and other objects. To do this, we “push” this NFA-valuerestriction along this path
while the NFA gets “updated” with the path taken so far. For this “update”’, we use the
following definition.

Definition 13. For B an NFA and ¢ a state of BB, B(g) denotes the NFA obtained from 53
by making ¢ the (only) initial state of 5, and we use ¢ 3 q' € B to denote that 5 has a
transition ¢ 3 q'.

Without loss of generality, we assume all concepts to be in NNF, that is, negation oc-
cursin front of concept names only. Any RZ Q-concept can easily be transformed into an
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equivalent one in NNF by pushing negationsinwards using a combination of DeMorgan’s
laws and the following equivalences:

—(3R.C)= (YR .—-0), —~(YR.C)= (3R .-0),
—(<nR.C)=(>m+DR.C), =(>(+1DR.C)=(<nR.C),
—~(>0R.C)= L.

We use —C for the NNF of —C. Obviously, the length of —C islinear in the length of C.
For a concept Co, clos(Co) is the smallest set that contains Cg and that is closed under
sub-conceptsand —. The set fclos(Cp, R) isthen defined as follows:

fclos(Co, R) := clos(Co) U {VBs(g) . D | VS . D € clos(Co) and Bs hasastate ¢ }.

Itisnot hard to show and well knownthat the size of clos(Cp) islinear inthesize of Cq. For
the size of fclos(Cop, R), we have seen in Lemma 11 that, for arole S, the size of Bg can be
exponential in the depth of R. Since there are at most linearly many concepts VS . D, this
yields abound for the cardinality of fclos(Co, R) that is exponential in the depth of R and
linear in the size of Cp. Investigating whether this exponential blow-up can be avoided will
be part of future work. So far, we only define in Section 4.4 a further syntactic restriction
which avoids this exponential blow-up.
We are now ready to define tableaux as a useful abstraction of models.

Definition 14. T = (S, L, £€) isatableau for Co w.r.t. R iff

e Sisanon-empty set,
o L:S—> 2f0s(Co.R) maps each element in Sto a set of concepts, and
e £:Rcy, R — 255 maps each roleto aset of pairs of elementsin S.

Furthermore, for al s,z € S, C, C1, C2 € fclos(Co, R), and R, S € Re, ., T satisfies:

(PO) thereissomes € Swith Co € L(s),

(PY) if C € L(s), then =C ¢ L(s),

(P2) if C1nCoe L(s),thenC1 € L(s) and C2 € L(s),
(P3) if CruCoe L(s),thenC1 € L(s) or C2 € L(s),

(P4a) if YB(p) . C € L(s), (s,1) € £(S), and p => g € B(p), thenVB(q) . C € L(1),
(P4b) if VB.C € L(s) and e € L(B), then C € L(s),

(P5) if 35 .C € L(s), thenthereissome ¢ with (s, ) € £(S) and C € L(1),

(P6) if VS .C e L(s),thenVBs . C € L(s),

(P7) (x,y) € E(R) iff (y,x) € E(INV(R)),

(P8) if (<nS.C)eL(s), thentST(s,C) <n,

(P9) if (=nS.C)eL(s), thentST(s,C) >n,
(P10) if (< nS.C) € L(s) and (s5,1) € E(S") for some S’ € L(Bs), then C € L(¢) or

=C e L(1),

where ST (s, C) :={t € S| (s, 1) € £(S’) for some §’ € L(Bs) and C € L(1)}.
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Lemma 15. A RZQ-concept Cq is satisfiable w.r.t. R iff there exists a tableau for Co
wrt. R.

Proof. For theif direction, let T = (S, £, £) be atableau for Cgo w.r.t. R. We extend the
relational structure of T and then prove that this indeed gives a model. More precisely, a
model Z = (AZ, Z) of D and R can be defined as follows: we set AZ :=S, AT := {s |
A € L(s)} for concept names A in clos(Cop), and for roles names R, we set

RT :={(s0, ) € (AT)?| therea@ress, ..., s,_1 With {s;, 5;11) € E(Si11)
forO<i<n—1landSi---S, € L(Br)}.

The semantics of complex conceptsis given through the definition of the RZQ semantics.
Dueto Lemma12.3 and (P7), the semantics of inverse roles can either be given directly as
for role names, or by setting (R™)Z = {(y, x) | (x, y) € RZ}.

First, we show that Z is a model of R and Cp. Due to Proposition 9, it suffices to
provethat, for each (possibly inverse) role S, each word w € L(Bs), and each (x, y) € w?,
we have (x, y) € $T. Let w € L(Bs) and (x, y) € w’. For w = S1...S,, thisimplies the
existence of y; suchthat yo = x, y, =y, and (y;_1, y;i) € SZ.I for each 1 <i < n. For each
i, we define aword w; asfollows:

o if (yi—1,yi) € £(Si), thenset w; :=S;, ‘

o otherwise, thereissomev; = T\ ... T,\!’ € L(Bs,) and there are y](.’) suchthat y;_1 =
v,y =y, and (y;fjl, y;f')) c g(Tj(")) for each 1 < j < n;. In this case, we set
Wi ‘= "V;.

Let w:=wj...w,. By construction of Bg from As, w € L(Bs) impliesthat w € L(By).
For w = U;...U, , we can thus re-name the y; and y](.’) to z; such that we have zg = x,

zn =y, and (zi_1, zi) € E(U;). Hence, by definition of -Z, we have (x, y) € ST.

Secondly, we provethat Z isamodel of Co. We show that C € £(s) impliess € CZ for
each s € Sand each C € clos(Cp). Together with (P0), thisimpliesthat Z isamodel of Co.
This proof can be given by induction on the length of concepts, where we count neither
negation nor integersin number restrictions. The only interesting casesare C = (< nS. E)
and C =VS . E (for the other cases, see[14,17]):

o If (<nS.E)eL(s), then (P8) impliesthat #S” (s, E) < n. Moreover, since S issim-
ple, Lemma 12.2 impliesthat L(Bs) = {S’ | §' S}, and thus (P10) implies that, for
al 7, if (s,7) € S, then E € L(t) or —E € L(r). By induction EZ = {r | E € L(1)},
andthuss € (<nS. E)L.

o LetVS.E € L(s)and (s, r) € SZ. From (P6) we havethat VBs . E € L(s). By definition
of $Z, thereare S1...S, € L(Bs) and s; with s = sq, 1 = s,,, and (s;_1, 5;) € E(S;).
Applying (P4a) n times, thisyields VBs(q) . E € L(¢) for g afinal state of Bs. Thus
(P4b) impliesthat E € £(¢). By induction, r € EZ, and thus s € (VS . E)Z.

For the converse, for Z = (AZ, . T) amode of Co w.rt. R, we define a tableau 7 =
(S, L, &) for Coand R asfollows:



I. Horrocks, U. Sattler / Artificial Intelligence 160 (2004) 79-104 97

S.= AI,
ER) :=R%, and
L(s) :={C e clos(Co) | s € C*}
U{VBs.C |VS.C €clos(Co) and s € (VS C)I}

U{VBr(q) . C efclos(Co,R) | foral S1...S, € L(Br(q)).
se(VS1.VS....¥S,.C)  and
ifee L(BR(q)), thens e CI}

We have to show that T satisfies each (Pi). We restrict our attention to the only new cases
(P4) and (P6).

For (P6), if VS . C € L(s), then s € (VS . C)T and thus VBs . C € L(s) by definition
of T.

For (P4a), let VB(p) . C € L(s) and (s, t) € £(S) = ST. Assumethat thereisatransition

p 3 g inB(p)andVB(q) . C ¢ L(¢). By definition of T, this can have two reasons:

e thereisaword S»...S, € L(B(q)) and t ¢ (¥S>....VS, . C)L. However, thisimplies
that §S>...S, € L(B(p)) andthusthat s € (VS .VS2....VS. C)Z, which contradicts,
together with (s, 7) € S, the definition of the semantics of RZQ concepts.

e ¢ eIL(B(q)) andr ¢ CZ. Thisimpliesthat S € L(B(p)) and thus contradictss € (VS .
).

HenceVB(q) . C ¢ L(1).
For (P4b), ¢ € L(B(p)) impliess € CZ by definition of 7', andthus C € L(s). O

4.3. Thetableau algorithm

In this section, we present a tableau algorithm that triesto construct, for an input RZ Q-
concept Co and aregular role hierarchy R, a tableau for Cp w.r.t. R. We prove that this
algorithm constructs atableau for Co and R iff thereexistsatableau for Co and R, and thus
decides satisfiability of RZ Q conceptsw.r.t. regular role hierarchies and, using Lemma 3,
also w.r.t. terminologies.

This agorithm generates a completion tree, a structure that will be unravelled to an
(infinite) tableau for the input concept. As usual, in the presence of transitiveroles, blocking
is employed to ensure termination of the algorithm. In the additional presence of inverse
roles, blocking is dynamic, i.e., blocked nodes (and their sub-branches) can be un-blocked
and blocked again later. In the further, additional presence of number restrictions, pairs
of nodes are blocked rather than single nodes [17]. The blocking conditions as they are
presented here are, clearly, too strict. As a consequence, blocking may occur later than
necessary, and thus we end up with a search space that islarger than necessary. In[14], we
have shown how to loosen the blocking condition for SHZ Q while retaining correctness
of the algorithm. Here, we focus on the decidability of RZ Q, and defer asimilar loosening
for RZQ to future work.
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Definition 16. A completion tree T for a RZQ concept Co and a regular role hierarchy
R is atree, where each node x is labelled with a set £(x) C fclos(Cp, R) and each edge
(x, y) from anode x to its successor y is labelled with a non-empty set £({x, y)) of (pos-
sibly inverse) roles occurringin Co and R. Finally, completion trees come with an explicit
inequality relation £ on nodes which isimplicitly assumed to be symmetric.

If R e L({x,y)) for anode x and its successor y, then y is called an R-successor of x
and x iscalled an Inv(R)-predecessor of y. If y isan R-successor or an Inv(R)-predecessor
of x, then y is called an R-neighbour of x. Finally, ancestor is the transitive closure of
predecessor and descendant is the transitive closure of successor.

For arole S, aconcept C and anodex in T we define ST (x, C) by

ST(x,C):={y|forsome s €S, yisan S'-neighbour of x and C € L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is directly
blocked iff none of its ancestors are blocked, and it has ancestors x’, y and y’ such that

(1) x isasuccessor of x” and y isa successor of y’ and
() Lx)=L(y)and L(x") = L(y") and
(3) LU, x)) =LAy, y))-

If there are no descendants x”, y” of x” and y’ with these properties, then we say that y
blocks x.

A node y isindirectly blocked if one of its ancestorsis blocked.

For anode x, £(x) issaid to contain aclash if

o Ll eL(x)or

o for some concept name A, {A, —=A} C L(x) or

e thereissomeconcept (< nS.C) € L(x) and {yo, ..., y»} € ST (x, C) with y; # y; for
dlogi<j<n.

A completion tree is clash-free if none of its nodes contains a clash, and it is complete if
no rule from Fig. 3 can be applied to it.

Given Cp (in NNF) and R, the algorithm initialises a completion tree consisting only
of aroot node xg labelled with {Co}. Thenthistreeis expanded by repeatedly applying the
expansion rules from Fig. 3, stopping when a clash occurs. The agorithm answers “Co is
satisfiable w.r.t. R” iff the expansion rules can be applied in such a way that they yield a
complete and clash-free completion tree, and “ Cg is unsatisfiable w.r.t. R” otherwise.

All but the V;-rules have been used beforefor fragmentsof RZQ, e.q., SHZQ [14,16],
and the three V; -rules are the obvious counterparts to the tableau conditions (P4a), (P4b),
and (P6).

As usual, we prove termination, soundness, and completeness of the tableau algorithm
to show that it indeed decides satisfiability of RZ Q-conceptsw.r.t. regular role hierarchies.

Lemma 17. Let Co be a RZ Q-concept and R a regular role hierarchy. The tableau algo-
rithm terminates when started for Co and R.
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m-rule: if

then

C1MCo € L(x), x isnot indirectly blocked, and
{C1,C2} Z L(x)
L(x) = L(x) U{Cq, C2}

U-rule: if

then

C1uCo € L(x), x isnot indirectly blocked, and
{C1,C}NL(x)=0
L(x) = L(x) U{E} for some E € {Cq, C5}

I-rule: if

then

3§ . C € L(x), x isnot blocked, and

x has no S-neighbour y with C € L(y)
create anew node y with

L({x, y)) = {S}and L(y) := {C}

Vq-rule: if

then

VS .C e L(x), x isnot indirectly blocked, and
VBs.C & L(x)
L(x) = L(x)U{VBg.C}

Vo-rule: if

then

VB(p).C € L(x), x isnot indirectly blocked, p —S> qinB(p),
and there isan S-neighbour y of x withVB(g) . C ¢ L(y),
L(y)— L(y)U{VB(g).C}

Va-rule: if

then

VB.C € L(x), x isnot indirectly blocked, ¢ € L(B),
and C & L(x)
L(x)—> Lx)U{C}

X-rule: if

then

(<nS.C) e L(x), xisnotindirectly blocked, and
thereisan S’-neighbour y of x with S’ = §

and {C,~C}NL(y) =¥

L(y) = L(y) U{E} for someE € {C, —C}

>-rule if

then

(=nS.C) e L(x), x isnot blocked, and
thereareno yq, ..., yun € ST (x, C)

with y; # yj foreach1<i<j<n

create n new nodes y1, ..., yp With L((x, y;)) = {S},
L(y;)={C}andy; #yjforl<i <j<n.

<-rule if

then

(€nS.C) e L(x), x isnotindirectly blocked, and

#ST(x,C) > n, thereare y, z € ST (x, C) with

not y # z and y is not an ancestor of z,

1. L(z) > L(z)UL(y) and

2. if zisan ancestor of x
then L((z,x)) = L({z,x) UInv(L({x, y)))
ese  L((x,z)) > L{{x,z) UL(x,y)

3. remove y and the sub-tree below y

Fig. 3. The expansion rules for the RZ Q tableau algorithm.

Proof. Letm = tfclos(Co, R), n the number of roles occurringin Cp and R, and nmax :=
max{n | (=nR . C) € clos(Cp)}. Termination is a consequence of the following properties

of the expansion rules:

(1) Nodes arelabelled with subsets of fclos(Co, R) and edges with sets of roles occurring
in Co and R, so there are at most 22" different possible labellings for a pair of nodes
and an edge. Therefore, if a path p is of length at least 22", the pair-wise blocking
condition implies the existence of anode x on p such that x is blocked. Since a path
on which nodes are blocked cannot become longer, paths are of length at most 227,
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(2) The expansion rules never remove labels from nodesin the tree, and the only rule that
removes anode from the tree is the <-rule.

(3) Only the 3- or the >-rule generate new nodes, and each generation is triggered by
a concept of the form AR . C or (= nR . C) in the label of a node x. Each of these
concepts triggers at most once the generation of at most nmax R-successors y; of x:
note that if the <-rule subsequently causes an R-successor y; of x to be removed, then
x will have some R-neighbour z with £(z) 2 L(y;). This, together with the definition
of a clash, implies that the rule application which led to the generation of y; will not
be repeated. Since fclos(Co, R) contains atotal of at most m 3R . C, the out-degree of
thetreeisbounded by mnmax. O

Lemma 18. Let Co be a RZQ-concept and ‘R a regular role hierarchy. The expansion
rulescan beappliedto Co and R such that they yield a complete and clash-free compl etion
treeif and only if Co has a tableau w.r.t. R.

For the if direction, we can unravel a complete and clash-free completion tree T in a
standard way into a tableau T, where the same technique as for SHZ Q is used to make
sure that (P9) is satisfied even if two “sibling” nodes are blocked by the same node. It is
easily seen that the V; expansion rules make sure that the resulting structureindeed satisfies
the new tableau condition (P4a), (P4b), and (P6).

For the only-if direction, we take atableau 7 of Co and R and use it to steer the appli-
cation of the non-deterministic rules, i.e., the u-, the X- and the <-rule. To do this, while
building the completion tree, we define amapping 7 from the nodes of the compl etion tree
into the tableau which satisfies the following three conditions:

L(x) € L(m(x)),
if y isan S-neighbour of x, then (7 (x), 7 (y)) € £(S), and (%)
x # yimpliesm(x) # w(y).

We start with = mapping the root node to some tableau element sg with Co initslabel, and
prove that, if an expansion rule is applicable to T, then this rule can be applied in such a
way that (%) is preserved. As a consequence of this claim, (P1), (P8), and Lemma 17, we
thus end with a complete and clash-free completion tree. For afull proof, see[13].

From Theorem 4, Lemmas 15, 17, and 18, we thus have the following theorem:

Theorem 19. The tableau algorithm decides satisfiability and subsumption of RZ Q-
concepts with respect to regular role hierarchies and terminologies.

4.4. Avoiding the blow-up

In the previous section, we have presented an algorithm that decides satisfiability and
subsumption of RZ Q-concepts with respect to regular role hierarchies and terminologies.
Unfortunately, compared to similar algorithms that are implemented in state-of-the-art
description logic reasoners[10,12,22] and behave well in many cases, we have here an ex-
ponential blow-up: the closure fclos(Co, R) isexponential in the depth of R since we have
“unfolded” the regular role hierarchy R into trees of NFAs. While investigating whether
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and how this exponential blow-up can be avoided, we observe that a further restriction of
the syntax of regular role hierarchies avoids this blow-up:

A regular role hierarchy R is called simple when, for all S;, T;, n, m, 1 <i <n, and
1<j<m,if

(1) u;S;v; E Sit1 € R and M/J-TjU;- E Tj+1 eR,
(2 Si#Sivaand T #Tja,
(3 Sw=T, andu, #u,,

then S; #* Tj.
For a simple regular role hierarchy R, the size of each NFA B is only polynomial in
the size of R since each NFA Bg occurs at most oncein Bg.

Lemma 20. For a RZQ-concept Co and a simple regular role hierarchy R, the size of
fclos(Co, R) is polynomial in the size of Cp and R.

Thus, for simple role hierarchies, the tableau agorithm presented here is of the same
worst case complexity asfor SHZQ, namely 2NExpTime. A detailed investigation of the
exact complexity will be part of future work.

5. Evaluation of the RZ Q algorithm in FaCT

In order to evaluate the practicability of the above algorithm, we have extended the DL
system FaCT [12] to deal with RZQ, and we have carried out a preliminary empirical
evaluation.

From a practical point of view, one potential problem with the RZQ algorithm is that
the number of states of automata, and hence the number of different V5. C concepts, could
be very large. Moreover, many of these automata could be equivalent (i.e., accept the same
languages). As blocking depends on finding ancestor nodes labelled with the same set of
concepts, the discovery of blocks could be unnecessarily delayed, and this can lead to a
serious degradation in performance[14].

The FaCT implementation addresses these possible problems by transforming all of
theinitial NFAsinto minimal deterministic finite automata (DFAS), using the AT& T FSM
Library™ for this purpose [20]. A minimal DFA is constructed for each role, the states
in each DFA are uniquely numbered, and the implementation uses concepts of the form
VB . C, where B is the number of a state in one of the DFAs. Determinising the automata
alows standard minimisation techniques to be used [11], and because the automata are
minimal, if VB . C leads to the presence of VB'.C in some successor node (as a result of
repeated applications of the Vo-rule), then VB . C isequivalentto VB'.C iff B= B (and as
B and B’ are numbers, such comparisons are very easy). Unnecessary blocking delays are
thus avoided.

The implementation is ill at the “beta” stage, but it has been possible to carry out
some preliminary tests using the well-known Galen medical terminology KB [12,25]. This
KB contains 2,740 named concepts and 413 roles, 26 of which are transitive. The roles



102 I. Horrocks, U. Sattler / Artificial Intelligence 160 (2004) 79-104

are arranged in arelatively complex hierarchy with a maximum depth of 10. Classifying
this KB using FaCT’'s SHZ Q reasoner takes 116 s on an 800 MHz Pentium 111 equipped
Linux PC. Classifying the same KB using the new RZQ reasoner took a total of 275 s
on the same machine. This result is encouraging as it shows that, in the case of the Galen
KB at least, using automata in VB . C concepts does not lead to a serious degradation
in performance. Moreover, the time taken by the RZQ reasoner includes approximately
100 sto compute the minimal deterministic automatafor the role box. This overhead could
become important if optimisations of the RZ Q reasoner result in even better performance,
but it should be noted that (a) thisis a preprocessing step that will not need to be repeated
when the remainder of the KB is extended, modified or queried, and (b) compared to other
KBswe have seen, the Galen KB involves an unusually large and complex role box.

The KB was then extended with several roleinclusion axiomsthat express the propaga-
tion of location across various partonomic roles. These included

hasLocationisSolidDivi si onOf ChasLocati on
and
hasLocati oni sLayer Of ChasLocat i on.

Classifying the extended KB took 280 s, an increase of only 2% (3.5% if we exclude the
NFA computation time). Subsumption queries w.r.t. this KB revealed that, e.g.,

FracturemnidhasLocati on.NeckOf Fenmur
was implicitly akind of

Fractureni3dhasLocati on.Femur
(NeckOf Fenur isasolid division of Ferrur ), and

U cer n3hasLocation.Gastri cMicosa
was implicitly akind of

U cer nm3hasLocati on. St onach

(Gastri cMucosaisalayer of St onmach). Noneof these subsumption relationshipsheld
w.r.t. the original KB. The times taken to compute these relationships w.r.t. the classified
KB could not be measured accurately as they were of the same order as a system clock tick
(10 ms).

6. Summary and outlook

Motivated (primarily) by medical terminology applications, we have investigated the
decidability of the well-known expressive DL, SHZ Q, extended with RIAs of the form
RS E P. We have shown that this extension is undecidable even when RIAs are restricted
totheforms RS = R or SR C R, but that decidability can be regained by further restricting
sets of RIAsto regular ones. In the presence of inverseroles, thisis dlightly tricky, and is
realised here using a partial order on role names to prevent cyclic dependencies between
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roles. The definition of regular sets of RIAs aimed at being as general as possible, and till
alowsfor RIAsof theform RSC S, SRC S, SSC S, and R~ C R.

We have presented a tableau algorithm for this DL and reported on its implementation
inthe FaCT system. A preliminary evaluation suggeststhat the algorithm will performwell
in realistic applicationsand demonstratesthat it can provide important additional function-
aity in amedical terminology application.

Acknowledgements

We would like to thank Stephane Demri for useful suggestions and discussions.

References

[1] F. Baader, Augmenting concept languages by transitive closure of roles: An alternative to terminological
cycles, in: Proc. of the 12th Int. Joint Conf. on Artificial Intelligence, 1JCAI-91, Sydney, 1991.

[2] F. Baader, H.-J. Burckert, B. Nebel, W. Nutt, G. Smolka, On the expressivity of feature logics with negation,
functional uncertainty, and sort equations, J. Logic Language Inform. 2 (1993) 1-18.

[3] M. Badoni, Norma multimodal logics: Automatic deduction and logic programming extension. Ph.D. The-
sis, Dipartimento di Informatica, Universita degli Studi di Torino, Italy, 1998.

[4] M. Badoni, L. Giordano, A. Martelli, A tableau calculus for multimodal logics and some (un)decidability
results, in: H.C.M de Swart (Ed.), Automated Reasoning with Analytic Tableaux and Related Methods, Inter-
national Conference, Tableaux-98, Oisterwijk, The Netherlands, in: Lecture Notesin Artif. Intell., vol. 1397,
Springer, Berlin, 1998, pp. 44-59.

[5] R. Berger, The Undecidability of the Dominoe Problem, Mem. Amer. Math. Soc., vol. 66, AMS, Providence,
RI, 1966.

[6] R.J. Brachman, J. Schmolze, An overview of the KL-ONE knowledge representation system, Cognitive
Science 9 (2) (1985) 171-216.

[7] G. De Giacomo, M. Lenzerini, Boosting the correspondence between description logics and propositional
dynamic logics (extended abstract), in: Proc. of the 12th Nat. Conf. on Artificia Intelligence, AAAI-94,
Sesattle, WA, AAAI Press, 1994, pp. 205-212.

[8] S. Demri, The complexity of regularity in grammar logics and related modal logics, J. Logic Comput. 11 (6)
(2001) 933-960.

[9] L. Farinds del Cerro, M. Penttonen, Grammar logics, Logique et Analyse 121-122 (1988) 123-134.

[10] V. Haardlev, R. Mdller, RACER system description, in: Proc. of the Int. Joint Conf. on Automated Reason-
ing, IJCAR-01, Siena, Italy, in: Lecture Notes in Artif. Intell., vol. 2083, Springer, Berlin, 2001, pp. 701—
706.

[11] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley, Reading, MA, 1997.

[12] I. Horrocks, Using an expressive description logic: FaCT or fiction?, in: Proc. of the 6th Int. Conf. on
the Principles of Knowledge Representation and Reasoning, KR-98, Trento, Italy, Morgan Kaufmann, Los
Altos, 1998, pp. 636-649.

[13] I. Horrocks, U. Settler, Decidability of SHZQ with complex role inclusion axioms, Tech. Rep. LTCS-
Report 02-06, TU-Dresden, Germany, 2002.

[14] 1. Horrocks, U. Sattler, Optimised reasoning for SHZ Q, in: Proc. of the 15th European Conf. on Atrtificial
Intelligence, Lyon, France, ECAI 2002, 2002, pp. 277-281.

[15] I. Horrocks, U. Sattler, Decidability of SHZQ with complex role inclusion axioms, in: Proc. of the
17th Int. Joint Conf. on Artificia Intelligence, 1JCAI-03, Acapulco, Mexico, Morgan Kaufmann, Los
Altos, 2003, pp. 343-348; along version is available as technica report LTCS 02-06 at http:/lat.inf.tu-
dresden.de/research/reports.html.



104 I. Horrocks, U. Sattler / Artificial Intelligence 160 (2004) 79-104

[16] 1. Horrocks, U. Settler, S. Tobies, Practical reasoning for expressive description logics, in: H. Ganzinger,
D. McAllester, A. Voronkov (Eds.), Proc. of the 6th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR ’99), in: Lecture Notesin Artif. Intell., vol. 1705, Springer, Berlin, 1999, pp. 161-180.

[17] I. Horrocks, U. Settler, S. Tobies, Reasoning with individuals for the description logic SHIQ, in:
D. MacAllester (Ed.), Proc. of the 17th Conf. on Automated Deduction, CADE-17, Pittsburgh, PA, in: Lec-
ture Notes in Comput. Sci., vol. 1831, Springer, Berlin, 2000, pp. 482-496.

[18] O. Kupferman, U. Settler, M.Y. Vardi, The complexity of the graded p-calculus, in: Proc. of the 18th Conf.
on Automated Deduction, CADE-18, Copenhagen, Denmark, in: Lecture Notes in Artif. Intell., vol. 2392,
Springer, Berlin, 2002, pp. 423-437.

[19] D.B. Lenat, R.V. Guha, Building Large Knowledge-Based Systems, Addison-Wesley, Reading, MA, 1989.

[20] M. Mohri, F.C.N. Pereira, M. Riley, A Rational Design for a Weighted Finite-State Transducer Library,
Lecture Notes in Comput. Sci., vol. 1436, Springer, Berlin, 1998.

[21] L. Padgham, P. Lambrix, A framework for part-of hierarchiesinterminological logics, in: J. Doyle, E. Sande-
wall, P. Torasso (Eds.), Proc. of the 4th Int. Conf. on the Principles of Knowledge Representation and
Reasoning, KR-94, Bonn,Germany, 1994, pp. 485—496.

[22] PF. Patel-Schneider, |. Horrocks, DLP and FaCT, in: Proc. of the Int. Conf. on Automated Reasoning with
Analytic Tableaux and Related Methods, Tableaux-99, Saratoga Springs, NY, in: Lecture Notes in Artif.
Intell., vol. 1397, Springer, Berlin, 1999, pp. 19-23.

[23] A. Rector, Analysisof propagation along transitive roles: Formalisation of the galen experience with medical
ontologies, in: Proc. of the 2001 Description Logic Workshop, DL 2002, CEUR, 2002, http://ceur-ws.org/.

[24] A. Rector, S. Bechhofer, C.A. Goble, I. Horrocks, W.A. Nowlan, W.D. Solomon, The GRAIL concept mod-
elling language for medical terminology, Al in Medicine 9 (1997) 139-171.

[25] A. Rector, |. Horrocks, Experience building a large, re-usable medical ontology using a description logic
with transitivity and concept inclusions, in: Proc. of the WS on Ontological Engineering, AAAI Spring
Symposium, AAAI *97, AAAI Press, 1997.

[26] U. Sattler, Description logics for the representation of aggregated objects, in: W. Horn (Ed.), Proc. of the
14th European Conf. on Artificia Intelligence, Berlin, Germany, ECAI 2000, 10S Press, Amsterdam, 2000,
pp. 239-243.

[27] K. Schild, A correspondence theory for terminological logics: Preliminary report, in: Proc. of the 12th Int.
Joint Conf. on Artificial Intelligence, IJCAI-91, Sydney, 1991, pp. 466-471.

[28] M. Schmidt-Schauss, Subsumption in KL-ONE is undecidable, in: Proc. of the 1st Int. Conf. on the Princi-
ples of Knowledge Representation and Reasoning, KR-89, Toronto, ON, 1989, pp. 421-431.

[29] M. Schmidt-Schau3, G. Smolka, Attributive concept descriptions with complements, Artificia Intelli-
gence 48 (1) (1991) 1-26.

[30] S. Schulz, U. Hahn, Parts, locations, and holes—formal reasoning about anatomical structures, in: Proc. of
AIME 2001, Cascais, Portugal, in: Lecture Notes in Artif. Intell., vol. 2101, Springer, Berlin, 2001, pp. 293—
303.

[31] K. Spackman, Managing clinical terminology hierarchies using agorithmic calculation of subsumption:
Experience with SNOMED-RT, Journal of the American Medical Informatics Association (2000), Special
Issue.

[32] S. Tobies, PSPACE reasoning for graded modal logics, J. Logic Comput. 11 (1) (2001) 85-106.

[33] M. Wessel, Obstacles on the way to qualitative spatial reasoning with description logics: Some undecidabil-
ity results, in: Proc. of the 2001 Description Logic Workshop, DL 2001, CEUR, 2001, http://ceur-ws.org/.



