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Abstract

Motivated by medical terminology applications, we investigate the decidability of an expressive
and prominent description logic (DL), SHIQ, extended with role inclusion axioms of the form
R ◦ S �̇T . It is well known that a naive such extension leads to undecidability, and thus we restrict
our attention to axioms of the form R ◦ S �̇R or S ◦ R �̇R, which is the most important form of ax-
ioms in the applications that motivated this extension. Surprisingly, this extension is still undecidable.
However, it turns out that by restricting our attention further to acyclic sets of such axioms, we regain
decidability. We present a tableau-based decision procedure for this DL and report on its implemen-
tation, which promises to behave well in practice and provides important additional functionality in
a medical terminology application.
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1. Motivation
The description logic (DL) SHIQ [14,17] is an expressive knowledge representation
formalism that extends ALC [29] with qualifying number restrictions, inverse roles, role
inclusion axioms, and transitive roles. The development of SHIQ was motivated and in-
spired by several applications, one of which was the representation of knowledge about
complex physically structured domains found, e.g., in chemical engineering [26] and med-
ical terminology [25].

For example, in SHIQ, we can describe fractures of the femur by the following concept
which, intuitively, denotes fractures that are located in the femur or the neck of the femur:

FemurFracture
.= Fracture� ∃hasLocation . (Femur� FemurNeck).

To make this definition work, we also should describe the neck of the femur, e.g., as fol-
lows:

FemurNeck
.= BodyPart� Proxima� ∃isDivisionOf . Femur.

SHIQ allows many important properties of application domains to be captured: e.g.,
we can state that hasLocation is transitive, and that LocatedIn is the inverse of
hasLocation. However, there is one extremely useful feature that SHIQ cannot ex-
press, namely the “propagation” of one property along another property [21,23,31]. Com-
ing back to our example above, to capture that also a fracture of the shaft of the femur
is a fracture of the femur, we need to add this information explicitly the definition of
FemurFracture. As such, this is easily feasible. A more elegant approach would be
to change our definition to

FemurFracture
.= Fracture� ∃hasLocation

. (Femur� ∃isDivisionOf . Femur).

Still, we have to have a similar disjunction in the definition of a fracture of the tibia, and all
other fractures. Thus, it would be useful if we could express, in general, the fact that certain
locative properties are transfered across certain partonomic properties so that a fracture or
trauma located in a part of a body structure is recognised as being located in the body
structure as a whole. This would yield highly desirable inferences such as a fracture of the
shaft of the femur being inferred to be a kind of fracture of the femur, or an ulcer located
in the gastric mucosa being inferred to be a kind of stomach ulcer—without the necessity
to repeat this statement in the definition of every single such concept.

The importance of these kinds of inferences, particularly in medical terminology ap-
plications, is illustrated by the fact that three different such applications provide means
to express propagation. The Grail DL [24], which was specifically designed for use with
medical terminology, is able to represent these kinds of propagation (although it is quite
weak in other respects). In another medical terminology application using the compara-
tively inexpressive DL ALC , a rather complex “work around” is performed in order to
represent similar propagations [30]: so-called SEP-triplets are used both to compensate
for the absence of transitive roles in ALC , and to express the propagation of properties
across a distinguished “part-of” role. In a third application, use is made of so-called right-
identities, which correspond to our complex role inclusion axioms [31]. Finally, similar
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expressiveness was also provided in the CycL language by the transfersThro state-

ment [19]. To the best of our knowledge, however, there is no proof of the correct treatment
of propagation in any of these applications.

It is quite straightforward to extend SHIQ so that this kind of propagation can be
expressed: simply allow for role inclusion axioms (RIAs) of the form R ◦ S �̇P , which
then forces all models I to interpret the composition of RI with SI as a sub-relation of
PI . E.g., the above examples translate into

hasLocation ◦ isDivisionOf�̇hasLocation,

which implies that

Fracture� ∃hasLocation . (Neck� ∃isDivisionOf . Femur),

i.e., a concept describing fractures of the neck of the femur, is indeed subsumed by (is a
specialisation of)

Fracture� ∃hasLocation . Femur,

i.e., a concept describing fractures of the femur.
Unfortunately, this extension leads to the undecidability of interesting inference prob-

lems such as concept satisfiability and subsumption [33]. This undecidability is not sur-
prising once we observe the close relationship between RIAs, Grammar Logics [3,4,8],
and role value maps [6,28]. This relationship is discussed in more detail in Section 2.1.
Here, it should suffice to mention that a RIA R S �̇T can be viewed as a notational variant
of the production rule T → R S of Grammar Logics or the concept inclusion ��̇ (R S�̃T )

of a description logic allowing for role value maps.
On closer inspection of our motivating examples, we observe that only RIAs of the form

R S �̇S or S R �̇S are required in order to express propagation. To the best of our knowl-
edge, no (un)decidability results are known for similar restrictions of the above mentioned
Grammar Logics or DLs with role value maps. In this paper, we will show that SHIQ
extended with this restricted form of RIAs is still undecidable. Due to the syntactic restric-
tions imposed on RIAs, we cannot re-use techniques employed to prove undecidability
of Grammar Logics or DLs with role value maps. Instead, our proof is by reduction of
the undecidable domino problem [5], and uses a rather special technique to ensure a grid
structure.

Decidability can be regained, however, by further restricting the set of RIAs to be reg-
ular, and the logic obtained by restricting RIAs to regular ones is called RIQ. From a
practical point of view, the restrictions imposed by regularity do not seem to be severe:
regular RIAs should suffice for many applications, and non-regular RIAs may even be an
indicator of modelling flaws [23].

We prove the decidability of SHIQ with regular RIAs via a tableau-based decision
procedure for the satisfiability of concepts. We first translate regular RIAs into non-
deterministic automata, and then use these automata in the tableau algorithm. More pre-
cisely, the tableau algorithm replaces concepts of the form ∀R . C (where R is a role)
with expressions of the form ∀BR . C, where BR is a non-deterministic finite automaton
(NFA) capturing exactly the restrictions imposed on R by RIAs. Using these expressions,
we ensure that the concept C is indeed “pushed” to all those nodes it has to be pushed
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to, even if they are far away from a node that has to satisfy ∀R . C. The algorithm is of

the same complexity as the one for SHIQ—in the size of BR and the length of the in-
put concept—but, unfortunately, BR can be exponential in the “depth” of R, i.e., in the
length of chains of roles depending on each other. We also present a syntactic restriction
that avoids this blow-up; investigating whether this blow-up can be avoided in general will
be part of future work.

As we have discussed above, the interaction between roles in regular RIAs can be cap-
tured by NFAs, but we have not yet explained which RIAs are regular. This is so because,
in the presence of inverse roles, the definition of regularity becomes slightly tricky: each
“left-linear” RIA of the form R S �̇S is equivalent to a “right-linear” RIA S− R− �̇S−.
Thus each left-linear RIA has consequences that are inherently a mixture of right- and left-
linear RIAs. Now it is well known that grammars with a such a linear mixture are stronger
than right-linear grammars or left-linear grammars [11], and this is true also for RIAs, as
our undecidability result shows. Thus, to enable the transformation into an automaton, we
impose an additional restriction, which we have chosen to be acyclicity in a rather loose
sense, i.e., we still allow for RIAs S S �̇S, R S �̇S, and S R �̇S, but we do not allow for
combinations of RIAs such as R S �̇S and S R �̇R.

Finally, in order to evaluate the practicability of this algorithm, we have extended the
DL system FaCT [12] to deal with RIQ. We discuss how the properties of NFAs are
exploited in the implementation, and we present some preliminary results showing that
the performance of the extended system is comparable with that of the original, and that
it is able to compute inferences of the kind mentioned above w.r.t. the well-known Galen
medical terminology knowledge base [12,25].

2. Preliminaries

In this section, we introduce the DL SH+IQ. This includes the definition of syntax,
semantics, and inference problems.

Definition 1. Let C be a set of concept names and R a set of role names. The set of roles is
R ∪ {R− | R ∈ R}. A role inclusion axiom is an expression of one of the following forms:

R1 �̇R2, R1R2 �̇R1, or R1R2 �̇R2,

for roles Ri (each of which can be inverse). A generalised role hierarchy is a set of role
inclusion axioms.

An interpretation I = (�I, ·I) associates, with each role name R, a binary relation
RI ⊆ �I × �I . Inverse roles are interpreted as usual, i.e.,

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
for each role R ∈ R.

An interpretation I is a model of a generalised role hierarchy R if it satisfies each inclusion
assertion in R, i.e., if

RI
1 ⊆ RI

2 for each R1 �̇R2 ∈ R, and

RI
1 ◦ RI

2 ⊆ RI
3 for each R1R2 �̇R3 ∈R,

where ◦ stands for the composition of binary relations.
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Note that we did not introduce transitive role names since adding RR �̇R to the gener-

alised role hierarchy is equivalent to saying that R is a transitive role.

To avoid considering roles such as R−−, we define a function Inv on roles such that
Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−.

Since we will often work with a string of roles, it is convenient to extend both ·I and
Inv(·) to such strings: if w = R1 . . .Rn for Ri roles, then wI = RI

1 ◦ · · · ◦RI
n and Inv(w) =

Inv(Rn) . . . Inv(R1). It follows immediately from the definition of the semantics that

〈x, y〉 ∈ wI iff 〈y, x〉 ∈ Inv(w)I .

Next, since each model satisfying w �̇S also satisfies Inv(w) �̇ Inv(S) (and vice versa),
we can restrict generalised role hierarchies to those with role names on their right-hand
side without any effect on the expressivity. For better readability, we will not do this in the
undecidability proof of SH+IQ, but we will do it for the decidable logic RIQ since it
makes the construction in the proofs easier.

Finally, for a generalised role hierarchy R, we define the relation �* to be the transitive–
reflexive closure of �̇ over {R �̇S, Inv(R) �̇ Inv(S) | R,S roles and R �̇S ∈R}. A role R

is called a sub-role (respectively super-role) of a role S if R �* S (respectively S �* R). Two
roles R and S are equivalent (R ≡ S) if R �* S and S �* R.

Now we are ready to define the syntax and semantics of SH+IQ-concepts.

Definition 2. Let R be a generalised role hierarchy. A role R is simple in R if, for each
R′ �* R, R contains no RIA of the form R1 R2 �̇R′ or R1 R2 �̇ Inv(R′). If R is clear from
the context, we often use “simple” instead of “simple in R”.

The set of SH+IQ-concepts is the smallest set such that

• every concept name and �,⊥ are concepts, and,
• if C, D are concepts, R is a role (possibly inverse), S is a simple role (possibly inverse),

and n is a non-negative integer, then C � D, C � D, ¬C, ∀R . C, ∃R . C, (� nS . C),
and (� nS . C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C �̇D for two
SH+IQ-concepts C and D. A terminology is a set of GCIs.

An interpretation I = (�I, ·I) consists of a set �I , called the domain of I , and a
valuation ·I which maps every concept to a subset of �I and every role to a subset of
�I × �I such that, for all concepts C, D, roles R, S, and non-negative integers n, the
following equations are satisfied, where �M denotes the cardinality of a set M:

�I = �I ⊥I = ∅ (top and bottom),

(C � D)I = CI ∩ DI (conjunction),

(C � D)I = CI ∪ DI (disjunction),

(¬C)I = �I \ CI (negation),

(∃R . C)I = {
x | ∃y . 〈x, y〉 ∈ RI and y ∈ CI}

(exists restriction),

(∀R . C)I = {
x | ∀y . 〈x, y〉 ∈ RI implies y ∈ CI}

(value restriction),
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(� nR . C)I = {
x | �{y . 〈x, y〉 ∈ RI and y ∈ CI}

� n
}

(at least restriction),
(� nR . C)I = {
x | �{y . 〈x, y〉 ∈ RI and y ∈ CI}

� n
}

(at most restriction).

An interpretation I is a model of a terminology T (written I |= T ) iff CI ⊆ DI for
each GCI C �̇D in T .

A concept C is called satisfiable iff there is an interpretation I with CI �= ∅. A concept
D subsumes a concept C (written C � D) iff CI ⊆ DI holds for each interpretation. Two
concepts are equivalent (written C ≡ D) if they are mutually subsuming. The above infer-
ence problems can be defined w.r.t. a generalised role hierarchy R and/or a terminology T
in the usual way, i.e., by replacing interpretation with model of R and/or T .

For an interpretation I , an element x ∈ �I is called an instance of a concept C iff
x ∈ CI .

Please note that number restrictions (� nR . C) and (� nR . C) are restricted to simple
roles. Intuitively, these are (possibly inverse) roles that are not implied by the compo-
sition of other roles. The reason for this restriction is that, without it, satisfiability of
SHIQ-concepts is undecidable [16], even for a logic without inverse roles and with only
unqualifying number restrictions (these are number restrictions of the form (� nR .�) and
(� nR . �).

For DLs that are closed under negation, subsumption and (un)satisfiability can be mu-
tually reduced: C � D iff C � ¬D is unsatisfiable, and C is unsatisfiable iff C � ⊥. It is
straightforward to extend these reductions to generalised role hierarchies and terminolo-
gies. In contrast, the reduction of inference problems w.r.t. a terminology to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care: in [1,2,27], the
internalisation of GCIs is introduced, a technique that realises exactly this reduction. For
SH+IQ, this technique only needs to be slightly modified. The following lemma shows
how general concept inclusion axioms can be internalised using a “universal” role U , that
is, a transitive super-role of all roles occurring in T or R and their respective inverses.

Lemma 3. Let C,D be concepts, T a terminology, and R a generalised role hierarchy. We
define

CT :=
∏

Ci �̇Di∈T
¬Ci � Di.

Let U be a role that does not occur in T , C, D, or R. We set

RU :=R∪ {UU �̇U}
∪ {

R �̇U, Inv(R) �̇U | R occurs in T ,C,D, or R
}
.

• C is satisfiable w.r.t. T and R iff C � CT � ∀U . CT is satisfiable w.r.t. RU .
• D subsumes C with respect to T and R iff C � ¬D � CT � ∀U . CT is unsatisfiable

w.r.t. RU .

The proof of Lemma 3 is similar to the ones that can be found in [1,27]. Most impor-
tantly, it must be shown that, (a) if a SH+IQ-concept C is satisfiable with respect to a
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terminology T and a generalised role hierarchy R, then C,T have a connected model,

i.e., a model where any two elements are connect by a role path over those roles occurring
in C and T , and (b) if y is reachable from x via a role path (possibly involving inverse
roles), then 〈x, y〉 ∈ UI . These are easy consequences of the semantics and the definition
of U .

Theorem 4. Satisfiability and subsumption of SH+IQ-concepts w.r.t. terminologies and
generalised role hierarchies are polynomially reducible to (un)satisfiability of SH+IQ-
concepts w.r.t. generalised role hierarchies.

2.1. Relationship with grammar logics

It is well known that description and modal logics are closely related: for example, ALC
can be viewed as a notational variant of the multi modal logic K [7,27]. Related to the
logics investigated here are grammar logics [9], a class of propositional multi modal logics
where the accessibility relations are “axiomatised” through a grammar. More precisely, for
σi , τj modal parameters, the production rule σ1 . . . σm → τ1 . . . τn can be viewed as an
abbreviation for the axioms

[σ1] . . . [σm]p ⇒ [τ1] . . . [τn]p,

or as being a notational variant for the role inclusion axiom

τ1 . . . τn �̇σ1 . . . σm.

Analogously to the description logic case, the semantics of a grammar logic is defined by
taking into account only those frames/relational structures that “satisfy the grammar”.

Grammars are traditionally organised in (refinements of) the Chomsky hierarchy (see
any textbook on formal languages, e.g., [11]), which also induces classes of grammar log-
ics. For example, the class of context free grammar logics is the class of those propositional
multi modal logics where the accessibility relations are axiomatised through a context
free grammar. Unsurprisingly, the expressiveness of the grammars influences the expres-
siveness of the corresponding grammar logics. It was shown that satisfiability of regular
grammar logics is ExpTime-complete [8], whereas this problem is undecidable for context
free grammar logics [3,4]. The latter result is closely related to the undecidability proof in
[33]. In this paper, we are concerned with

• grammars that are not regular, but we do not allow for arbitrary context-free grammars
(or any known normal forms thereof), and

• multi modal logics that provide a converse operator on modal parameters. That is,
for σ a modal parameter, both [σ ]ϕ and [σ−]ϕ are formulae of our logic, and we
allow mixtures of converse and atomic modal parameters in the rules of the grammar.
Moreover, SH+IQ provides graded modalities that restrict the number of accessible
worlds, see, e.g., [18,32].

As a consequence of the first point, we could not re-use the technique from [3,4] for our
undecidability proof: we could not reduce the emptiness problem for the intersection of
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context-free grammars to the satisfiability of SH+IQ-concepts because SH+IQ’s syn-

tactic restriction on role inclusion axioms means that we cannot capture all context-free
grammars. However, we can capture “some” context-freeness: our undecidability proof in
Section 3 is by a reduction of the undecidable domino problem [5], and is heavily based
on the language {(ab)n(cd)n | n � 0} to enforce a model with a “grid” structure. Although
we were not able to construct a grammar for this language directly using only productions
of the form R → RS or R → SR, we used a grammar G such that the language generated
by G, when intersected with (ab)∗(cd)∗, equals {(ab)n(cd)n | n � 0}. This grammar G

contains the four production rules

D → AD,

A → AC,

C → BC,

B → BD, A → a, . . . ,D → d,

and can be found in four versions as the last axioms of RD in Fig. 2, where we use xi , yi ,
and their inverses instead of A, . . . ,B .

2.2. Role value maps

The role inclusion axioms we investigate here are closely related to role value maps
[6,28], i.e., concepts of the form R1 . . .Rm �̃ S1 . . . Sn for Ri , Si roles. The semantics of
these concepts is defined as follows:

(R1 . . .Rm �̃ S1 . . . Sn)
I

= {
x ∈ �I | (R1 . . .Rm)I(x) ⊆ (S1 . . . Sn)

I(x)
}
,

where (R1 . . .Rm)I(x) denotes the set of those y ∈ �I that are reachable from x via RI
1 ◦

· · · ◦ RI
m.

Thus the role inclusion axiom RS �̇T is equivalent to the general concept inclusion
axiom ��̇ (RS �̃ T ), i.e., both axioms have the same models. The role value maps used
to show the undecidability of KL-ONE [28] are of a more general form than (RS �̃ T ),
i.e., they use role chains of unbounded length on both sides of �̃, and there is no direct
translation of the undecidability proof in [28] to our logic.

3. SH+IQ is undecidable

Due to the syntactic restriction on role inclusion axioms, neither the undecidability
proof for ALC with context-free or linear grammars in [3,4,8] nor the one for ALC with
role boxes [33] can be adapted to prove undecidability of SH+IQ satisfiability. In the
following, we reduce the (undecidable) domino problem [5] to SH+IQ satisfiability. This
problem asks whether, for a set of domino types, there exists a tiling of an N

2 grid such
that each point of the grid is covered with exactly one of the domino types, and adjacent
dominoes are “compatible” with respect to some predefined criteria.
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Fig. 1. A staircase model and the implications of the last group of axioms in RD .

Definition 5. A domino system D = (D,H,V ) consists of a non-empty set of domino
types D = {D1, . . . ,Dn}, and of sets of horizontally and vertically matching pairs H ⊆
D × D and V ⊆ D × D. The problem is to determine if, for a given D, there exists a tiling
of an N × N grid such that each point of the grid is covered with a domino type in D and
all horizontally and vertically adjacent pairs of domino types are in H and V , respectively,
i.e., a mapping

t : N × N → D such that, for all m,n ∈ N,〈
t (m,n), t (m + 1, n)

〉 ∈ H and〈
t (m,n), t (m,n + 1)

〉 ∈ V.

Given a domino system D, the problem of determining if there exists a tiling for D is
known to be undecidable [5].

In Fig. 2, for a domino system D, we define a SH+IQ-concept CD , a terminology TD

(that can be internalised, see Theorem 4), and a generalised role hierarchy RD such that D
has a tiling iff CD is satisfiable w.r.t. RD and TD . For better readability, we use C ⇒ D as
an abbreviation for ¬C � D.

Ensuring that a point is associated with exactly one domino type, that it has at most
one vertical and at most one horizontal successor, and that these successors satisfy the
horizontal and vertical matching conditions induced by H and V is standard and is done
in the first GCI of TD .

The next step is rather special: we do not force a grid structure, but a structure with
“staircases”, which is illustrated in Fig. 1. To this purpose, we introduce four sub-roles
v0, . . . , v3 of v and four sub-roles h0, . . . , h3 of h (see first line of RD), and ensure that
we only have “staircases”. For each i ∈ {0, . . . ,3}, an i-staircase is an alternating chain of
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T := {� .= (
⊔

D ) � ( ¬(D � D )) �
D
1�i�n

i ⊔

1�i<j�n
i j

⊔

1�i�n
Di ⇒ ((� 1v . �) � (∀v .

⊔
(Di ,Dj )∈V

Dj ))�

⊔

1�i�n
Di ⇒ ((� 1h . �) � (∀h .

⊔
(Di ,Dj )∈H

Dj ),

I
.= HI � V I,

� .= ⊔

0�i�3
(∃v

−
i . � � ¬I ) ⇒ (∃hi . ¬I � ⊔

j
∀vj . ⊥ � ⊔

j �=i
∀hj . ⊥)

)�
(∃h−

i
. � � ¬I ) ⇒ (∃vi . ¬I � ⊔

j �=i
∀vj . ⊥ � ⊔

j
∀hj . ⊥)

)�
(∃h−

i
. � � HI) ⇒ (∃vi . ¬I � ∃hi�1 . H I �

⊔

j �=i�1
∀hj . ⊥ � ⊔

j �=i
∀vj . ⊥)�

(∃v−
i

. � � V I) ⇒ (∃hi . ¬I � ∃vi⊕1 . V I �

⊔

j �=i⊕1
∀vj . ⊥ � ⊔

j �=i
∀hj . ⊥)

,

� .= ⊔

0�i�3

⊔

1�j�n
∃x

−
i⊕1 . � ⇒ (Dj ⇒ ∀yi . Dj )}

CD := HI � V I � ∃h0.H I � ∃v1.V I

RD := {vi �̇v, hi �̇h, vi �̇yi , hi �̇xi | 0 � i � 3} ∪
{x−

i⊕1yi �̇ yi ,

x−
i⊕1xi �̇ x−

i⊕1,

y−
i⊕1xi �̇ xi ,

y−
i⊕1yi �̇ y−

i⊕1 | 0 � i � 3}

Fig. 2. Reduction terminology, generalised role hierarchy, and concept.

vi and hi edges, without any other vj - or hj -successors. We use concepts HI and VI for
points on the x-axis and y-axis respectively. At each point on the x-axis, two staircases start
that need not meet again, one i-staircase starting with vi and one i � 1-staircase starting
with hi�1 (we use ⊕ and � to denote addition and subtraction modulo four); points on the
y-axis exhibit a symmetrical behaviour. The second GCI in TD introduces the concept I

for all “initial” points, and then the third GCI ensures the staircase structure. It contains
four implications: one for the vertical and one for the horizontal successorships, and these
two implications once for the “non-initial” points (i.e., instances of ¬I ), and once for the
“initial points” (i.e., instances of HI or VI).

It remains to make sure that two elements b, b′ representing the same point in the grid
have the same domino type associated with them, where b and b′ “represent the same
point” if there is an n and an instance a of I such that each of them is reachable following
a staircase starting at a for n steps, i.e., if there is

• a vihi -path (respectively hivi -path) of length 2n from a to b, and
• a hi�1vi�1-path (respectively vi⊕1hi⊕1-path) of length 2n from a to b′.

To this purpose, we add super roles xi of hi and yi of vi (for which we use dashed
arrows in Fig. 1), and the last group of role inclusion axioms in RD . These role inclusion
axioms ensure appropriate, additional role successorships between elements, and we use
the additional roles xi and yi since we only want to have at most one vi or hi -successor.
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For each 2 staircases starting at the same element on one of the axes, these role inclusions

ensure that each pair of elements representing the same point is related by yi . That is, each
element on an i ⊕ 1-staircase that is an xi⊕1-successor is related via yi to the element on
the i-staircase (which is a vi -successor) representing the same point (see Fig. 1).

To see this, start by considering the consequences of the role inclusion axioms for
elements representing the four points (1,0), (2,0), (1,1) and (2,1). The elements rep-
resenting (1,0) and (2,1) are related via h3v3 and v0h0, and as we cannot force these two
paths to end in the same element, we might have two elements representing (2,1). From
the axioms h3 �̇x3, v3 �̇y3, v0 �̇y0 and h0 �̇x0, we see that (1,0) and (2,1) are also
related via x3y3 and y0x0. Using the axiom y−

0 x3 �̇x3 first, then x−
0 x3 �̇x−

0 , and finally
x−

0 y3 �̇y3, we also see that, if there are two elements representing the point (2,1), then
they are related via y3. Next, consider elements representing the four points (2,1), (2,2),
(3,1) and (3,2), start with the axiom y−

0 y3 �̇y−
0 , and then continue to work through the

same role inclusion axioms as above. Repeating this argumentation, all elements on these
two staircases that represent the same point can be seen to be related via the relation y3.
From an analogous argumentation for other pairs of staircases, using corresponding sets of
role inclusion axioms, it follows that the last GCI in TD ensures that two elements repre-
senting the same point in the grid do indeed have the same domino type associated with
them.

The above observations imply that the concept CD is satisfiable w.r.t. TD and RD iff D
has a solution. Hence, together with Theorem 4, we have the following:

Theorem 6. Satisfiability of SH+IQ-concepts w.r.t. generalized role hierarchies is unde-
cidable.

As mentioned above, the usage of inverse roles on the right-hand side in RIAs of RD
is of no importance: we can replace these RIAs with equivalent ones with role names on
their right-hand side, e.g., we can replace x−

i⊕1xi �̇x−
i⊕1 with x−

i xi⊕1 �̇xi⊕1. However, we
have chosen the representation in Fig. 2 to make the relationship with the grammar from
Section 2.1 more clear.

4. RIQ is decidable

In this section, we show that SHIQ with regular role hierarchies is decidable, where
“regular” is both a restriction and a generalisation of “generalised”. On the one hand, we
restrict role hierarchies to be acyclic, where acyclic role hierarchies still allow for RIAs
of the form RS �̇S, SR �̇S, SS �̇S, and R− �̇R. Moreover, for convenience of proofs,
we restrict our attention to RIAs with a role name on their right-hand side. As mentioned
above, this is of no importance. On the other hand, we also allow for axioms of the form
R1 . . .RnS �̇S and SR1 . . .Rn �̇S (for SH+IQ, we restricted n to be 1). Finally, we also
allow for statements that force roles to be symmetric, i.e., in contrast to the decidable case
in [15], regularity also allows for RIAs of the form Inv(S) �̇S.

We present a tableau-based algorithm that decides satisfiability of RIQ-concepts w.r.t.
regular role hierarchies, and therefore also subsumption in RIQ and, with Theorem 4, both
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inferences w.r.t. terminologies. The FaCT system [12] was extended to use the algorithm

presented in this section, and the empirical results are reported in Section 5.

The algorithm tries to construct, for a RIQ-concept C, a tableau for C, that is, an
abstraction of a model of C. Given the appropriate notion of a tableau, it is then quite
straightforward to prove that the algorithm is a decision procedure for RIQ-satisfiability.
Before specifying this algorithm, we translate the role hierarchy into non-deterministic
automata which are used both in the definition of a tableau and in the tableau algorithm.
Intuitively, an automaton is used to memorise the path between an object x that has to
satisfy a concept of the form ∀R . C and other objects, and then to determine which of
these objects must satisfy C.1

In the following definition of general role hierarchies, we use a strict partial order ≺
(irreflexive, transitive, and antisymmetric) on roles to ensure acyclicity.

Definition 7. Let ≺ be a strict partial order on role names. A RIA w �̇R is ≺-regular if

• R is a role name,
• w = RR,
• w = R−,
• w = S1 . . . Sn and Si ≺ R, for all 1 � i � n,
• w = RS1 . . . Sn and Si ≺ R, for all 1 � i � n, or
• w = S1 . . . SnR and Si ≺ R, for all 1 � i � n.

A role hierarchy R is regular if there exists a strict partial order ≺ such that each RIA in
R is ≺-regular. The semantics is defined analogously to the semantics of generalised role
hierarchies, i.e., I satisfies a RIA w �̇R if wI ⊆ RI .

RIQ is obtained from SH+IQ by replacing generalised role hierarchies with regular
role hierarchies, where simple role names are inductively defined as follows:2

• every role name that does not occur on the right-hand side of a RIA is simple,
• a role name S is simple if, for each w �̇S ∈ R, w = R for R a simple role or the

inverse of a simple role.

An inverse role S− is simple if S is simple.

Please note that, due to the third restriction in the definition of R-compatibility, we also
restrict �* to be acyclic. However, this is not a serious restriction since, for R containing
�* cycles, we can simply choose one role R from each cycle and replace all other roles on

this cycle with R, both in the input role hierarchy and the input concept.
For the following considerations, it is worthwhile to recall that, for w = R1 . . .Rm and

Ri roles, Inv(w) = Inv(Rm) . . . Inv(R1). The following lemma is a direct consequence of
the definition of the semantics.

1 This technique together with the relationship between automata and regular languages is the reason why we
called these role hierarchies “regular”.

2 We need to re-define “simple” roles because of the more general form of RIAs.
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Lemma 8. If I is a model of R with S− �̇S ∈ R and w �̇S ∈R, then Inv(w)I ⊆ SI .
4.1. Translating RIAs into automata

Next, we will define, for a regular role hierarchyR and a (possibly inverse) role S occur-
ring in R, a non-deterministic finite automaton (NFA) BS which captures all implications
between (paths of) roles and S that are consequences of R. To make this clear, before we
define BS , we formulate the lemma which we are going to prove for it.

Proposition 9. I is a model of R if and only if, for each (possibly inverse) role S occurring
in R, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI , we have 〈x, y〉 ∈ SI .

In [15], to construct a similar automaton for a more restricted logic, we first unfolded R
into a set of implications between regular expressions, and then constructed the automata
from these implications. Here, we show how to build these automata directly, which yields
an easier construction.

In the following, we use NFAs with ε-transitions in a rather informal way (see, e.g., [11]

for more details), e.g., we use p
R→ q to denote that there is a transition from a state p to a

state q with the letter R instead of introducing transition relations formally. The automata
BS are defined in three steps.

Definition 10. Let C0 be a RIQ-concept and R a regular role hierarchy.
For each role name R occurring in R or C0, we first define the NFA AR as follows:

AR contains a state iR and a state fR with the transition iR
R→ fR . The state iR is the only

initial state and fR is the only final state. Moreover, for each w �̇R ∈ R, AR contains the
following states and transitions:

(1) if w = RR, then AR contains fR
ε→ iR , and

(2) if w = R1 · · ·Rn and R1 �= R �= Rn, then AR contains

iR
ε→ iw

R1→ f 1
w

R2→ f 2
w

R3→ ·· · Rn→ f n
w

ε→ fR,

(3) if w = RR2 · · ·Rn, then AR contains

fR
ε→ iw

R2→ f 2
w

R3→ f 3
w

R4→ ·· · Rn→ f n
w

ε→ fR,

(4) if w = R1 · · ·Rn−1R, then AR contains

iR
ε→ iw

R1→ f 1
w

R2→ f 2
w

R3→ ·· · Rn−1→ f n−1
w

ε→ iR,

where all f i
w, iw are assumed to be distinct.

In the next step, we use a mirrored copy of NFAs: this is a copy of an NFA in which we
have carried out the following modifications: we

• make final states to non-final but initial states,
• make initial states to non-initial but final states,
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• replace each transition p
S→ q for S a (possibly inverse) role S with q

Inv(S)→ p, and

• replace each transition p

ε→ q with q
ε→ p.

Secondly, we define the NFAs ÂR as follows:

• if R− �̇R /∈R, then ÂR :=AR ,
• if R− �̇R ∈ R, then ÂR is obtained as follows: first, take the disjoint union3 of AS

with a mirrored copy of AS . Secondly, make iR the only initial state, fR the only final
state. Finally, for f ′

R the copy of fR and i ′R the copy of iR , add transitions iR
ε→ f ′

R ,

f ′
R

ε→ iR , i ′R
ε→ fR , and fR

ε→ i ′R .

Thirdly, the NFAs BR are defined inductively over ≺:

• if R is minimal w.r.t. ≺ (i.e., there is no R′ with R′ ≺ R), we set BR := ÂR ,
• otherwise, BR is the disjoint union of ÂR with a copy B′

S of BS for each transition

p
S→ q in ÂR with S �= R. Moreover, for each such transition, we add ε-transitions

from p to the initial state in B′
S and from the final state in B′

S to q , and we make iR the
only initial state and fR the only final state in BR .

Finally, the automaton BR− is a mirrored copy of BR .

Please note that the inductive definition BR is well-defined since the acyclic relation ≺
is used to restrict the dependencies between roles.

We have kept the construction of BS as simple as possible. If one wants to construct an
equivalent NFA without ε-transitions or which is deterministic, then there are well-known
techniques to do this [11]. Recall that elimination of ε-transitions can be carried out without
increasing the number of an automaton’s states, whereas determinisation might yield an
exponential blow-up.

Lemma 11. For R a role, the size of BR is bounded exponentially in the depth

dR := max{n | there are S1 ≺ · · · ≺ Sn,ui, vi with uiSi−1vi �̇Si ∈ R}
and thus in the size of R. Moreover, there are R and R such that the number of states in
BR is 2dR .

Proof. Obviously, the size of AR and ÂR is linear in

bR = max
{|w1| + · · · + |wk| | there is S with wi �̇S ∈R for all 1 � i � n

}
.

Each automaton BR is a “tree” of automata AS whose

• outdegree is bounded by bR and
• whose depth is bounded by dR.

3 A disjoint union of two automata is the disjoint union of their states, transition relations, etc.
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Hence the number of BR’s states is bounded exponentially in dR and, since dR is linear in

the size of R, also bounded exponentially in the size of R.

Next, it is easily verified that, for the following regular role hierarchyRn, the automaton
BSn has 2n+1 states and the size of Rn is linear in n:

Rn = {Si−1Si �̇Si, SiSi−1 �̇Si | 1 � i � n}. �
We will consider ways to avoid this exponential blow-up in Section 4.4, and continue

with the proof of Proposition 9. In this proof, we will use the following lemma, which is
an immediate consequence of the definition of BS and of mirrored copies of BS .

Lemma 12.

(1) S ∈ L(BS) and, if w �̇S ∈ R, then w ∈ L(BS).
(2) If S is a simple role, then L(BS) = {R | R �* S}.
(3) If

←−A is a mirrored copy of an NFA A, then L(
←−A) = {Inv(w) | w ∈ L(A)}.

Proof of Proposition 9. The “if” direction is easily proved by contraposition. If I is not
a model of R, then there is some RIA w �̇S ∈ R not satisfied by I . Hence there are some
x, y such that 〈x, y〉 ∈ wI but 〈x, y〉 /∈ SI . By Lemma 12.1, w ∈ L(BS), and we are done.

For the “only-if” direction, let I be a model of R, S a role, w ∈ L(BS), and 〈x, y〉 ∈ wI .
We prove 〈x, y〉 ∈ SI by well-founded induction on ≺. Obviously, we can restrict our
attention to a role name S due to Lemma 12.3 and since BS− is defined as a mirrored copy
of BS .

First, we observe that w ∈ L(BS) induces a decomposition w = w1 . . .wk and word
ŵ = S1 . . . Sk such that

• Si ≺ S or Si = S for all 1 � i � k,
• ŵ ∈ L(ÂS), and
• wi ∈ L(BSi ).

Next, 〈x, y〉 ∈ wI implies that there are xi with x = x0, y = xk , and 〈xi, xi+1〉 ∈ wI
i+1, for

each 0 � i < k. By induction, 〈xi, yi〉 ∈ SI
i and thus 〈x, y〉 ∈ ŵI .

(1) If SS �̇S /∈ R and S− �̇S /∈R, then, by construction, ŵ is of the form

ŵ = u1 . . .umxv1 . . . vn and uiS �̇S ∈ R, for each 1 � i � m

x �̇S ∈R or x = S

Svj �̇S ∈ R, for each 1 � j � n

Thus I being a model of R implies that 〈x, y〉 ∈ SI .
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(2) If SS �̇S ∈ R and S− �̇S /∈R, then, by construction, ŵ is of the form
ŵ = (
u

(1)
1 . . .u(1)

m1
x(1)v

(1)
1 . . . v(1)

n1

)
. . .

(
u

(�)
1 . . .u(�)

m�
x(�)v

(�)
1 . . . v(�)

n�

)
and

u
(k)
i S �̇S ∈ R, for each 1 � i � m, 1 � k � �

x(k) �̇S ∈ R or x(k) = S, for each 1 � k � �

Sv
(k)
j �̇S ∈ R, for each 1 � j � n, 1 � k � �

Again, I being a model of R implies that 〈x, y〉 ∈ SI .
(3) If SS �̇S /∈ R and S− �̇S ∈ R, then BS is the disjoint union of AS with a mirrored

copy of AS and additional ε-transitions between the final and initial state and their
copies. By construction, we have

ŵ = u1 . . .umxv1 . . . vn and

uiS �̇S ∈R or S Inv(ui) �̇S ∈ R for each 1 � i � m

x �̇S ∈ R or Inv(x) �̇S ∈ R or x = S or x = S−

Svj �̇S ∈ R or Inv(vj )S �̇S ∈ R, for each 1 � j � n

In both cases, I being a model of R implies that 〈x, y〉 ∈ SI .
(4) If SS �̇S ∈ R and S− �̇S ∈R, then we are in a mixture of the cases (2) and (3), i.e.,

ŵ = ŵ1 . . . ŵr

and each ŵi is accepted by a run through BS which neither uses the ε-transition from
fS to iS nor the corresponding one in the mirrored copy of ÂS . We can decompose
each ŵi as we have decomposed ŵ in case (3), and conclude that I being a model of
R implies that 〈x, y〉 ∈ SI . �

4.2. A tableau for RIQ

In the following, if not stated otherwise, C,D (possibly with subscripts) denote RIQ-
concepts, R,S (possibly with subscripts) roles, and R a regular role hierarchy.

We start by defining fclos(C0,R), the closure of a concept C w.r.t. a regular role hier-
archy R. Intuitively, this contains all relevant sub-concepts of C together with universal
value restrictions over sets of role paths described by an NFA. We use NFAs in universal
value restrictions to memorise the path between an object that has to satisfy a value re-
striction and other objects. To do this, we “push” this NFA-value restriction along this path
while the NFA gets “updated” with the path taken so far. For this “update”, we use the
following definition.

Definition 13. For B an NFA and q a state of B, B(q) denotes the NFA obtained from B
by making q the (only) initial state of B, and we use q

S→ q ′ ∈ B to denote that B has a

transition q
S→ q ′.

Without loss of generality, we assume all concepts to be in NNF, that is, negation oc-
curs in front of concept names only. Any RIQ-concept can easily be transformed into an
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equivalent one in NNF by pushing negations inwards using a combination of DeMorgan’s

laws and the following equivalences:

¬(∃R . C) ≡ (∀R . ¬C), ¬(∀R . C) ≡ (∃R . ¬C),

¬(� nR . C) ≡ (
� (n + 1)R . C

)
, ¬(� (n + 1)R . C

) ≡ (� nR . C),

¬(� 0R . C) ≡ ⊥.

We use ¬̇C for the NNF of ¬C. Obviously, the length of ¬̇C is linear in the length of C.
For a concept C0, clos(C0) is the smallest set that contains C0 and that is closed under

sub-concepts and ¬̇. The set fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0) ∪ {∀BS(q) . D | ∀S . D ∈ clos(C0) and BS has a state q
}
.

It is not hard to show and well known that the size of clos(C0) is linear in the size of C0. For
the size of fclos(C0,R), we have seen in Lemma 11 that, for a role S, the size of BS can be
exponential in the depth of R. Since there are at most linearly many concepts ∀S . D, this
yields a bound for the cardinality of fclos(C0,R) that is exponential in the depth of R and
linear in the size of C0. Investigating whether this exponential blow-up can be avoided will
be part of future work. So far, we only define in Section 4.4 a further syntactic restriction
which avoids this exponential blow-up.

We are now ready to define tableaux as a useful abstraction of models.

Definition 14. T = (S,L,E) is a tableau for C0 w.r.t. R iff

• S is a non-empty set,
• L : S → 2fclos(C0,R) maps each element in S to a set of concepts, and
• E : RC0,R → 2S×S maps each role to a set of pairs of elements in S.

Furthermore, for all s, t ∈ S, C,C1,C2 ∈ fclos(C0,R), and R,S ∈ RC0,R, T satisfies:

(P0) there is some s ∈ S with C0 ∈L(s),
(P1) if C ∈L(s), then ¬C /∈ L(s),
(P2) if C1 � C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈L(s),
(P3) if C1 � C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4a) if ∀B(p) . C ∈L(s), 〈s, t〉 ∈ E(S), and p
S→ q ∈ B(p), then ∀B(q) . C ∈ L(t),

(P4b) if ∀B . C ∈ L(s) and ε ∈ L(B), then C ∈L(s),
(P5) if ∃S . C ∈ L(s), then there is some t with 〈s, t〉 ∈ E(S) and C ∈L(t),
(P6) if ∀S . C ∈L(s), then ∀BS . C ∈L(s),
(P7) 〈x, y〉 ∈ E(R) iff 〈y, x〉 ∈ E(Inv(R)),
(P8) if (� nS . C) ∈ L(s), then �ST (s,C) � n,
(P9) if (� nS . C) ∈ L(s), then �ST (s,C) � n,

(P10) if (� nS . C) ∈ L(s) and 〈s, t〉 ∈ E(S′) for some S′ ∈ L(BS), then C ∈ L(t) or
¬̇C ∈ L(t),

where ST (s,C) := {t ∈ S | 〈s, t〉 ∈ E(S′) for some S′ ∈ L(BS) and C ∈L(t)}.
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Lemma 15. A RIQ-concept C0 is satisfiable w.r.t. R iff there exists a tableau for C0

w.r.t. R.

Proof. For the if direction, let T = (S,L,E) be a tableau for C0 w.r.t. R. We extend the
relational structure of T and then prove that this indeed gives a model. More precisely, a
model I = (�I, ·I) of D and R can be defined as follows: we set �I := S, AI := {s |
A ∈L(s)} for concept names A in clos(C0), and for roles names R, we set

RI := {〈s0, sn〉 ∈ (
�I)2 | there are s1, . . . , sn−1 with 〈si , si+1〉 ∈ E(Si+1)

for 0 � i � n − 1 and S1 · · ·Sn ∈ L(BR)
}
.

The semantics of complex concepts is given through the definition of the RIQ semantics.
Due to Lemma 12.3 and (P7), the semantics of inverse roles can either be given directly as
for role names, or by setting (R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}.

First, we show that I is a model of R and C0. Due to Proposition 9, it suffices to
prove that, for each (possibly inverse) role S, each word w ∈ L(BS), and each 〈x, y〉 ∈ wI ,
we have 〈x, y〉 ∈ SI . Let w ∈ L(BS) and 〈x, y〉 ∈ wI . For w = S1 . . . Sn, this implies the
existence of yi such that y0 = x , yn = y , and 〈yi−1, yi〉 ∈ SI

i for each 1 � i � n. For each
i , we define a word wi as follows:

• if 〈yi−1, yi〉 ∈ E(Si), then set wi := Si ,
• otherwise, there is some vi = T

(i)
1 . . . T

(i)
ni

∈ L(BSi ) and there are y
(i)
j such that yi−1 =

y
(i)
0 , yi = y

(i)
ni

, and 〈y(i)
j−1, y

(i)
j 〉 ∈ E(T

(i)
j ) for each 1 � j � ni . In this case, we set

wi := vi .

Let ŵ := w1 . . .wn. By construction of BS from ÂS , w ∈ L(BS) implies that ŵ ∈ L(BS).
For ŵ = U1 . . .Un′ , we can thus re-name the yi and y

(i)
j to zi such that we have z0 = x ,

zn = y , and 〈zi−1, zi〉 ∈ E(Ui). Hence, by definition of ·I , we have 〈x, y〉 ∈ SI .
Secondly, we prove that I is a model of C0. We show that C ∈ L(s) implies s ∈ CI for

each s ∈ S and each C ∈ clos(C0). Together with (P0), this implies that I is a model of C0.
This proof can be given by induction on the length of concepts, where we count neither
negation nor integers in number restrictions. The only interesting cases are C = (� nS .E)

and C = ∀S . E (for the other cases, see [14,17]):

• If (� nS . E) ∈ L(s), then (P8) implies that #ST (s,E) � n. Moreover, since S is sim-
ple, Lemma 12.2 implies that L(BS) = {S′ | S′ �* S}, and thus (P10) implies that, for
all t , if 〈s, t〉 ∈ SI , then E ∈ L(t) or ¬̇E ∈ L(t). By induction EI = {t | E ∈ L(t)},
and thus s ∈ (� nS . E)I .

• Let ∀S .E ∈L(s) and 〈s, t〉 ∈ SI . From (P6) we have that ∀BS .E ∈L(s). By definition
of SI , there are S1 . . . Sn ∈ L(BS) and si with s = s0, t = sn, and 〈si−1, si〉 ∈ E(Si).
Applying (P4a) n times, this yields ∀BS(q) . E ∈ L(t) for q a final state of BS . Thus
(P4b) implies that E ∈L(t). By induction, t ∈ EI , and thus s ∈ (∀S . E)I .

For the converse, for I = (�I, ·I) a model of C0 w.r.t. R, we define a tableau T =
(S,L,E) for C0 and R as follows:
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S := �I,
E(R) := RI , and

L(s) := {
C ∈ clos(C0) | s ∈ CI}

∪ {∀BS . C | ∀S . C ∈ clos(C0) and s ∈ (∀S . C)I
}

∪ {∀BR(q) . C ∈ fclos(C0,R) | for all S1 . . . Sn ∈ L
(
BR(q)

)
,

s ∈ (∀S1 . ∀S2 . . . .∀Sn . C)I and
if ε ∈ L

(
BR(q)

)
, then s ∈ CI}

We have to show that T satisfies each (Pi). We restrict our attention to the only new cases
(P4) and (P6).

For (P6), if ∀S . C ∈ L(s), then s ∈ (∀S . C)I and thus ∀BS . C ∈ L(s) by definition
of T .

For (P4a), let ∀B(p) .C ∈ L(s) and 〈s, t〉 ∈ E(S) = SI . Assume that there is a transition

p
S→ q in B(p) and ∀B(q) . C /∈ L(t). By definition of T , this can have two reasons:

• there is a word S2 . . . Sn ∈ L(B(q)) and t /∈ (∀S2. . . .∀Sn . C)I . However, this implies
that SS2 . . . Sn ∈ L(B(p)) and thus that s ∈ (∀S . ∀S2. . . .∀S . C)I , which contradicts,
together with 〈s, t〉 ∈ SI , the definition of the semantics of RIQ concepts.

• ε ∈ L(B(q)) and t /∈ CI . This implies that S ∈ L(B(p)) and thus contradicts s ∈ (∀S .

C)I .

Hence ∀B(q) . C /∈L(t).
For (P4b), ε ∈ L(B(p)) implies s ∈ CI by definition of T , and thus C ∈L(s). �

4.3. The tableau algorithm

In this section, we present a tableau algorithm that tries to construct, for an input RIQ-
concept C0 and a regular role hierarchy R, a tableau for C0 w.r.t. R. We prove that this
algorithm constructs a tableau for C0 and R iff there exists a tableau for C0 and R, and thus
decides satisfiability of RIQ concepts w.r.t. regular role hierarchies and, using Lemma 3,
also w.r.t. terminologies.

This algorithm generates a completion tree, a structure that will be unravelled to an
(infinite) tableau for the input concept. As usual, in the presence of transitive roles, blocking
is employed to ensure termination of the algorithm. In the additional presence of inverse
roles, blocking is dynamic, i.e., blocked nodes (and their sub-branches) can be un-blocked
and blocked again later. In the further, additional presence of number restrictions, pairs
of nodes are blocked rather than single nodes [17]. The blocking conditions as they are
presented here are, clearly, too strict. As a consequence, blocking may occur later than
necessary, and thus we end up with a search space that is larger than necessary. In [14], we
have shown how to loosen the blocking condition for SHIQ while retaining correctness
of the algorithm. Here, we focus on the decidability of RIQ, and defer a similar loosening
for RIQ to future work.
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Definition 16. A completion tree T for a RIQ concept C0 and a regular role hierarchy

R is a tree, where each node x is labelled with a set L(x) ⊆ fclos(C0,R) and each edge
〈x, y〉 from a node x to its successor y is labelled with a non-empty set L(〈x, y〉) of (pos-
sibly inverse) roles occurring in C0 and R. Finally, completion trees come with an explicit
inequality relation � .= on nodes which is implicitly assumed to be symmetric.

If R ∈ L(〈x, y〉) for a node x and its successor y , then y is called an R-successor of x

and x is called an Inv(R)-predecessor of y . If y is an R-successor or an Inv(R)-predecessor
of x , then y is called an R-neighbour of x . Finally, ancestor is the transitive closure of
predecessor and descendant is the transitive closure of successor.

For a role S, a concept C and a node x in T we define ST(x,C) by

ST(x,C) := {
y | for some S′ �* S, y is an S′-neighbour of x and C ∈L(y)

}
.

A node is blocked iff it is either directly or indirectly blocked. A node x is directly
blocked iff none of its ancestors are blocked, and it has ancestors x ′, y and y ′ such that

(1) x is a successor of x ′ and y is a successor of y ′ and
(2) L(x) = L(y) and L(x ′) = L(y ′) and
(3) L(〈x ′, x〉) = L(〈y ′, y〉).

If there are no descendants x ′′, y ′′ of x ′ and y ′ with these properties, then we say that y

blocks x .
A node y is indirectly blocked if one of its ancestors is blocked.
For a node x , L(x) is said to contain a clash if

• ⊥ ∈L(x) or
• for some concept name A, {A,¬A} ⊆ L(x) or
• there is some concept (� nS .C) ∈ L(x) and {y0, . . . , yn} ⊆ ST(x,C) with yi � .= yj for

all 0 � i < j � n.

A completion tree is clash-free if none of its nodes contains a clash, and it is complete if
no rule from Fig. 3 can be applied to it.

Given C0 (in NNF) and R, the algorithm initialises a completion tree consisting only
of a root node x0 labelled with {C0}. Then this tree is expanded by repeatedly applying the
expansion rules from Fig. 3, stopping when a clash occurs. The algorithm answers “C0 is
satisfiable w.r.t. R” iff the expansion rules can be applied in such a way that they yield a
complete and clash-free completion tree, and “C0 is unsatisfiable w.r.t. R” otherwise.

All but the ∀i -rules have been used before for fragments of RIQ, e.g., SHIQ [14,16],
and the three ∀i -rules are the obvious counterparts to the tableau conditions (P4a), (P4b),
and (P6).

As usual, we prove termination, soundness, and completeness of the tableau algorithm
to show that it indeed decides satisfiability of RIQ-concepts w.r.t. regular role hierarchies.

Lemma 17. Let C0 be a RIQ-concept and R a regular role hierarchy. The tableau algo-
rithm terminates when started for C0 and R.
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�-rule: if C1 � C2 ∈ L(x), x is not indirectly blocked, and

{C1,C2} �⊆L(x)

then L(x) → L(x) ∪ {C1,C2}
�-rule: if C1 � C2 ∈ L(x), x is not indirectly blocked, and

{C1,C2} ∩L(x) = ∅
then L(x) → L(x) ∪ {E} for some E ∈ {C1,C2}

∃-rule: if ∃S . C ∈L(x), x is not blocked, and
x has no S-neighbour y with C ∈L(y)

then create a new node y with
L(〈x,y〉) := {S} and L(y) := {C}

∀1-rule: if ∀S . C ∈ L(x), x is not indirectly blocked, and
∀BS . C �∈L(x)

then L(x) → L(x) ∪ {∀BS . C}
∀2-rule: if ∀B(p) . C ∈ L(x), x is not indirectly blocked, p

S→ q in B(p),
and there is an S-neighbour y of x with ∀B(q) . C /∈ L(y),

then L(y) → L(y) ∪ {∀B(q) . C}
∀3-rule: if ∀B . C ∈L(x), x is not indirectly blocked, ε ∈ L(B),

and C �∈ L(x)

then L(x) → L(x) ∪ {C}
X-rule: if (� nS . C) ∈L(x), x is not indirectly blocked, and

there is an S′-neighbour y of x with S′ �* S

and {C, ¬̇C} ∩L(y) = ∅
then L(y) → L(y) ∪ {E} for some E ∈ {C, ¬̇C}

�-rule: if (� nS . C) ∈L(x), x is not blocked, and
there are no y1, . . . , yn ∈ ST(x,C)

with yi � .= yj for each 1 � i < j � n

then create n new nodes y1, . . . , yn with L(〈x,yi 〉) = {S},
L(yi) = {C}, and yi � .= yj for 1 � i < j � n.

�-rule: if (� nS . C) ∈L(x), x is not indirectly blocked, and
#ST(x,C) > n, there are y, z ∈ ST(x,C) with
not y � .= z and y is not an ancestor of z,

then 1. L(z) →L(z) ∪L(y) and
2. if z is an ancestor of x

then L(〈z, x〉) → L(〈z, x〉) ∪ Inv(L(〈x,y〉))
else L(〈x, z〉) → L(〈x, z〉) ∪L(〈x,y〉)

3. remove y and the sub-tree below y

Fig. 3. The expansion rules for the RIQ tableau algorithm.

Proof. Let m = �fclos(C0,R), n the number of roles occurring in C0 and R, and nmax :=
max{n | (� nR . C) ∈ clos(C0)}. Termination is a consequence of the following properties
of the expansion rules:

(1) Nodes are labelled with subsets of fclos(C0,R) and edges with sets of roles occurring
in C0 and R, so there are at most 22mn different possible labellings for a pair of nodes
and an edge. Therefore, if a path p is of length at least 22mn, the pair-wise blocking
condition implies the existence of a node x on p such that x is blocked. Since a path
on which nodes are blocked cannot become longer, paths are of length at most 22mn.
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(2) The expansion rules never remove labels from nodes in the tree, and the only rule that

removes a node from the tree is the �-rule.

(3) Only the ∃- or the �-rule generate new nodes, and each generation is triggered by
a concept of the form ∃R . C or (� nR . C) in the label of a node x . Each of these
concepts triggers at most once the generation of at most nmax R-successors yi of x:
note that if the �-rule subsequently causes an R-successor yi of x to be removed, then
x will have some R-neighbour z with L(z) ⊇ L(yi). This, together with the definition
of a clash, implies that the rule application which led to the generation of yi will not
be repeated. Since fclos(C0,R) contains a total of at most m ∃R . C, the out-degree of
the tree is bounded by mnmax. �

Lemma 18. Let C0 be a RIQ-concept and R a regular role hierarchy. The expansion
rules can be applied to C0 and R such that they yield a complete and clash-free completion
tree if and only if C0 has a tableau w.r.t. R.

For the if direction, we can unravel a complete and clash-free completion tree T in a
standard way into a tableau T , where the same technique as for SHIQ is used to make
sure that (P9) is satisfied even if two “sibling” nodes are blocked by the same node. It is
easily seen that the ∀i expansion rules make sure that the resulting structure indeed satisfies
the new tableau condition (P4a), (P4b), and (P6).

For the only-if direction, we take a tableau I of C0 and R and use it to steer the appli-
cation of the non-deterministic rules, i.e., the �-, the X- and the �-rule. To do this, while
building the completion tree, we define a mapping π from the nodes of the completion tree
into the tableau which satisfies the following three conditions:

L(x) ⊆ L
(
π(x)

)
,

if y is an S-neighbour of x, then
〈
π(x),π(y)

〉 ∈ E(S), and
x � .= y implies π(x) �= π(y).


 (∗)

We start with π mapping the root node to some tableau element s0 with C0 in its label, and
prove that, if an expansion rule is applicable to T, then this rule can be applied in such a
way that (∗) is preserved. As a consequence of this claim, (P1), (P8), and Lemma 17, we
thus end with a complete and clash-free completion tree. For a full proof, see [13].

From Theorem 4, Lemmas 15, 17, and 18, we thus have the following theorem:

Theorem 19. The tableau algorithm decides satisfiability and subsumption of RIQ-
concepts with respect to regular role hierarchies and terminologies.

4.4. Avoiding the blow-up

In the previous section, we have presented an algorithm that decides satisfiability and
subsumption of RIQ-concepts with respect to regular role hierarchies and terminologies.
Unfortunately, compared to similar algorithms that are implemented in state-of-the-art
description logic reasoners [10,12,22] and behave well in many cases, we have here an ex-
ponential blow-up: the closure fclos(C0,R) is exponential in the depth of R since we have
“unfolded” the regular role hierarchy R into trees of NFAs. While investigating whether
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and how this exponential blow-up can be avoided, we observe that a further restriction of

the syntax of regular role hierarchies avoids this blow-up:

A regular role hierarchy R is called simple when, for all Si , Ti , n, m, 1 � i � n, and
1 � j � m, if

(1) uiSivi �̇Si+1 ∈R and u′
j Tj v

′
j �̇Tj+1 ∈ R,

(2) Si �= Si+1 and Tj �= Tj+1,
(3) Sn = Tm and un �= u′

m,

then Si �= Tj .
For a simple regular role hierarchy R, the size of each NFA BR is only polynomial in

the size of R since each NFA BS occurs at most once in BR .

Lemma 20. For a RIQ-concept C0 and a simple regular role hierarchy R, the size of
fclos(C0,R) is polynomial in the size of C0 and R.

Thus, for simple role hierarchies, the tableau algorithm presented here is of the same
worst case complexity as for SHIQ, namely 2NExpTime. A detailed investigation of the
exact complexity will be part of future work.

5. Evaluation of the RIQ algorithm in FaCT

In order to evaluate the practicability of the above algorithm, we have extended the DL
system FaCT [12] to deal with RIQ, and we have carried out a preliminary empirical
evaluation.

From a practical point of view, one potential problem with the RIQ algorithm is that
the number of states of automata, and hence the number of different ∀B . C concepts, could
be very large. Moreover, many of these automata could be equivalent (i.e., accept the same
languages). As blocking depends on finding ancestor nodes labelled with the same set of
concepts, the discovery of blocks could be unnecessarily delayed, and this can lead to a
serious degradation in performance [14].

The FaCT implementation addresses these possible problems by transforming all of
the initial NFAs into minimal deterministic finite automata (DFAs), using the AT&T FSM
LibraryTM for this purpose [20]. A minimal DFA is constructed for each role, the states
in each DFA are uniquely numbered, and the implementation uses concepts of the form
∀B . C, where B is the number of a state in one of the DFAs. Determinising the automata
allows standard minimisation techniques to be used [11], and because the automata are
minimal, if ∀B . C leads to the presence of ∀B′.C in some successor node (as a result of
repeated applications of the ∀2-rule), then ∀B . C is equivalent to ∀B′.C iff B = B′ (and as
B and B′ are numbers, such comparisons are very easy). Unnecessary blocking delays are
thus avoided.

The implementation is still at the “beta” stage, but it has been possible to carry out
some preliminary tests using the well-known Galen medical terminology KB [12,25]. This
KB contains 2,740 named concepts and 413 roles, 26 of which are transitive. The roles
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are arranged in a relatively complex hierarchy with a maximum depth of 10. Classifying

this KB using FaCT’s SHIQ reasoner takes 116 s on an 800 MHz Pentium III equipped
Linux PC. Classifying the same KB using the new RIQ reasoner took a total of 275 s
on the same machine. This result is encouraging as it shows that, in the case of the Galen
KB at least, using automata in ∀B . C concepts does not lead to a serious degradation
in performance. Moreover, the time taken by the RIQ reasoner includes approximately
100 s to compute the minimal deterministic automata for the role box. This overhead could
become important if optimisations of the RIQ reasoner result in even better performance,
but it should be noted that (a) this is a preprocessing step that will not need to be repeated
when the remainder of the KB is extended, modified or queried, and (b) compared to other
KBs we have seen, the Galen KB involves an unusually large and complex role box.

The KB was then extended with several role inclusion axioms that express the propaga-
tion of location across various partonomic roles. These included

hasLocation isSolidDivisionOf�̇hasLocation

and

hasLocation isLayerOf �̇hasLocation.

Classifying the extended KB took 280 s, an increase of only 2% (3.5% if we exclude the
NFA computation time). Subsumption queries w.r.t. this KB revealed that, e.g.,

Fracture� ∃hasLocation . NeckOfFemur

was implicitly a kind of

Fracture� ∃hasLocation . Femur

(NeckOfFemur is a solid division of Femur), and

Ulcer� ∃hasLocation . GastricMucosa

was implicitly a kind of

Ulcer� ∃hasLocation . Stomach

(GastricMucosa is a layer of Stomach). None of these subsumption relationships held
w.r.t. the original KB. The times taken to compute these relationships w.r.t. the classified
KB could not be measured accurately as they were of the same order as a system clock tick
(10 ms).

6. Summary and outlook

Motivated (primarily) by medical terminology applications, we have investigated the
decidability of the well-known expressive DL, SHIQ, extended with RIAs of the form
RS �̇P . We have shown that this extension is undecidable even when RIAs are restricted
to the forms RS �̇R or SR �̇R, but that decidability can be regained by further restricting
sets of RIAs to regular ones. In the presence of inverse roles, this is slightly tricky, and is
realised here using a partial order on role names to prevent cyclic dependencies between
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roles. The definition of regular sets of RIAs aimed at being as general as possible, and still

allows for RIAs of the form RS �̇S, SR �̇S, SS �̇S, and R− �̇R.

We have presented a tableau algorithm for this DL and reported on its implementation
in the FaCT system. A preliminary evaluation suggests that the algorithm will perform well
in realistic applications and demonstrates that it can provide important additional function-
ality in a medical terminology application.
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