
A Description Logic with Transitive

and Inverse Roles and Role

Hierarchies

IAN HORROCKS, Department of Computer Science, University of

Manchester, Oxford Road, Manchester, M13 9PL, UK.

E-mail: horrocks@cs.man.ac.uk

ULRIKE SATTLER, LuFG Theoretical Computer Science, RWTH

Aachen, Theoretische Informatik, Ahornstr. 55, D-52074 Aachen,

Germany.

E-mail: uli@cantor.informatik.rwth-aachen.de

Abstract

The combination of transitive and inverse roles is important in a range of applications, and is crucial

for the adequate representation of aggregated objects, allowing the simultaneous description of parts

by means of the whole to which they belong and of wholes by means of their constituent parts.

In this paper we present tableaux algorithms for deciding concept satis�ability and subsumption in

Description Logics that extend ALC with both transitive and inverse roles, a role hierarchy, and

functional restrictions. In contrast to earlier algorithms for similar logics, those presented here are

well-suited for implementation purposes: using transitive roles and role hierarchies in place of the

transitive closure of roles enables sophisticated blocking techniques to be used in place of the cut

rule, a rule whose high degree of non-determinism strongly discourages its use in an implementation.

As well as promising superior computational behaviour, this new approach is shown to be suÆciently

powerful to allow subsumption and satis�ability with respect to a (possibly cyclic) knowledge base

to be reduced to concept subsumption and satis�ability, and to support reasoning in a Description

Logic that no longer has the �nite model property.

Keywords: Knowledge representation, description logics, transitivity, algorithms.

1 Motivation

As argued in [19, 26], transitive roles play an important rôle in the adequate repre-
sentation of aggregated objects: they allow these objects to be described by referring
to their parts without specifying a level of decomposition. In [17], the Description
Logic (DL) ALCHR+ is presented, which extends ALC [29] with transitive roles and
a role hierarchy. It is argued in [27] that ALCHR+ is well-suited to the representa-
tion of aggregated objects in applications that require various part{whole relations
to be distinguished, some of which are transitive. For example,1 a knowledge base

1This example is purely for didactic purposes and is not intended as a contribution to the philo-

sophical debate on the semantics of part{whole relationships.

J. Logic Computat., Vol. 9 No. 3, pp. 385{410 1999 c
 Oxford University Press

386 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

describing nuclear reactors could contain the following entries

is component ofvis part of;

Control rod vDeviceu 9is component of:Reactor core;

Reactor core vDeviceu 9is component of:Nuclear reactor;

where v is a subsumption (implication) relationship and is part of is assumed to be
a transitive role name. It can be inferred from this knowledge base that Control rod

is subsumed by 9is part of:Nuclear reactor.
ALCHR+ does not, however, allow the simultaneous description of components by

means of the devices to which they belong, and devices by means of their constituent
components: one or other is possible, but not both. To overcome this limitation
we present ALCHIR+ , a DL that extends ALCHR+ with inverse (converse) roles,
allowing, for example, the use of has part as well as is part of.2 Using ALCHIR+ ,
we can describe a dangerous nuclear reactor by

Nuclear reactoru 9has part:Faultyv Dangerous nuclear reactor;

and then recognize that
Control rod u Faulty

is subsumed by
9is part of:Dangerous nuclear reactor:

Moreover, ALCHIR+ can be further extended with functional restrictions to give
ALCHFIR+ . Functional restrictions are useful in general because they provide a
weak form of number restrictions. For example, functional restrictions can be used in
an axiom

Nuclear reactor v 9controlled by:Control unit u (6 1 controlled by)

in order to capture the knowledge that a nuclear reactor is controlled by at most one
control unit. An interesting feature of ALCHFIR+ is that it no longer has the �nite
model property: there can be ALCHFIR+ concepts that are satis�able but for which
there exists no �nite model (see Section 2.2).
Like ALCHR+ , ALCHIR+ and ALCHFIR+ also allow for the internalization of

general concept inclusion axioms using a universal role: a transitive role that sub-
sumes all other roles in the terminology [17]. This technique allows subsumption and
satis�ability with respect to (possibly cyclic) general concept inclusion axioms to be
reduced to concept satis�ability and subsumption.

It could be argued that, instead of de�ning yet another DL, one could make use of
the results presented in [9] and use ALC extended with role expressions which include
transitive closure and inverse operators. The reason for not proceeding like this is the
fact that transitive roles can be implemented more eÆciently than the transitive clo-
sure of roles [17], although they lead to the same complexity class (ExpTime-complete)
when added, together with role hierarchies, to ALC. Using transitive roles and a role
hierarchy instead of role expressions does lead to some loss of expressive power as it
is no longer possible to completely capture the relationship between a role and its

2Note that has part is taken to be the inverse of is part of.

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 387

transitive closure. If, for example, is part of were taken to be the transitive closure
of is component of, then we would have

9is component of:>
:

= 9is part of:>;

where
:

= is an equivalence (if and only if) relationship; when is part of is a transitive
superrole of is component of, we only have

9is component of:> v 9is part of:>:

However, we believe that it is hard to �nd applications for which the smallest

transitive superrole of a given role is crucial and that could not, instead, use a less
speci�c transitive superrole.
Furthermore, it is still an open question whether the transitive closure of roles

together with inverse roles necessitates the use of the cut rule [10], a rule that, due to
its high degree of non-determinism, leads to an algorithm with very bad computational
behaviour. This problem would be further exacerbated by embedding functional
restrictions in such a logic (as described in [8]), because the embedding generates large
numbers of general concept inclusion axioms|another source of non-determinism.

We will present algorithms for both ALCHIR+ and ALCHFIR+ that decide sat-
is�ability and subsumption and that do not include the cut rule but instead employ
new blocking techniques in order to guarantee both correctness and termination. Ex-
periences with an implementation of ALCHR+ in the FaCT system [18] suggest that
these algorithms should behave well in practice.

2 Blocking

The algorithms that we will present use the tableaux method [16], in which the sat-
is�ability of a concept D is tested by trying to construct a model of D. The model is
represented by a tree in which nodes correspond to individuals and edges correspond
to roles. Each node x is labelled with a set of concepts L(x) that the individual must
satisfy, and each edge is labelled with a role name.
An algorithm starts with a single node labelled fDg, and proceeds by repeatedly

applying a set of expansion rules that recursively decompose the concepts in node
labels; new edges and nodes are added as required in order to satisfy 9R:C concepts.
The construction terminates either when none of the rules can be applied in a way
that extends the tree, or when the discovery of obvious contradictions demonstrates
that D has no model.
In order to prove that such an algorithm is a sound and complete decision procedure

for concept satis�ability in a given logic, it is necessary to demonstrate that the
models it constructs are valid with respect to the semantics, that it will always �nd
a model if one exists, and that it always terminates. The �rst two points can usually
be dealt with by proving that the expansion rules preserve satis�ability, and that
in the case of non-deterministic expansion (e.g. of disjunctions) all possibilities are
exhaustively searched. For logics such as ALC, termination is mainly due to the fact
that the expansion rules can add only new concepts that are strictly smaller than the
decomposed concept, so the model must stabilize when all concepts have been fully
decomposed.

388 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

Termination is not, however, so easily guaranteed for logics that include transitive
roles, as the expansion rules can introduce new concepts that are the same size as
the decomposed concept. In particular, 8R:C concepts, where R is a transitive role,
are dealt with by propagating the whole concept across R-labelled edges [26]. For
example, given a leaf node x labelled fC; 9R:C;8R:(9R:C)g, where R is a transitive
role, the combination of the 9R:C and 8R:(9R:C) concepts would cause a new node
y to be added to the tree with an identical label to x. The expansion process could
then be repeated inde�nitely.
This problem can be dealt with by blocking : halting the expansion process when a

cycle is detected [1, 4]. For logics without inverse roles, the general procedure is to
check the label of each new node y, and if it is a subset [2] of the label of an existing
node x, then no further expansion of y is performed: x is said to block y. The resulting
tree corresponds to a cyclical model in which y is identi�ed with x.3 The validity of
the cyclical model is an easy consequence of the fact that the concepts which y must
satisfy must also be satis�ed by x, because x's label is a superset of y's. Termination
is guaranteed by the fact that all concepts in node labels are ultimately derived from
the decomposition of D, so all node labels must be a subset of the subconcepts of D,
and a cycle must therefore occur within a �nite number of expansion steps.

2.1 Dynamic blocking

Blocking is, however, more problematical when inverse roles are added to the logic,
and a key feature of the algorithms presented here is the introduction of a dynamic

blocking strategy. Besides using label equality instead of subset, this strategy allows
blocks to be established, broken, and re-established.
With inverse roles the blocking condition must be equality of node labels because

roles are now bi-directional, and additional concepts in x's label could invalidate the
model with respect to y's predecessor. Taking the above example of a node labelled
fC; 9R:C;8R:(9R:C)g, if the successor of this node were blocked by a node whose
label additionally included 8R�::C, then the cyclical model would clearly be invalid.
Another diÆculty introduced by inverse roles is the fact that it is no longer possible

to establish a block on a once and for all basis when a new node is added to the tree.
This is because further expansion in other parts of the tree could lead to the labels of
the blocking and/or blocked nodes being extended and the block being invalidated.
Consider the example sketched in Figure 1, which shows parts of a tableau that was
generated for the concept

A u 9S:(9R:>u 9P:> u 8R:C u 8P:(9R:>) u 8P:(8R:C) u 8P:(9P:>));

where C represents the concept

8R�:(8P�
:(8S�::A)):

This concept is clearly not satis�able: w has to be an instance of C, which implies
that x is an instance of :A|which is inconsistent with x being an instance of A.

3For logics with a transitive closure operator it is necessary to check the validity of the cyclical

model created by blocking [1], but for logics that only support transitive roles the cyclical model is

always valid [26].

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 389

R

L(x) = fA; : : :g

R

S

x

y

z

P 2 R+

L(z) = L(y)) z blocked by y

v L(v) = fCg

w

L(y) = f9R:>;9P:>;8R:C;
8P:(9R:>);8P:(9P:>);8P:(8R:C)g

Fig. 1. A tableau where dynamic blocking is crucial

As P is a transitive role, all universal value restrictions over P are propagated
from y to z, hence L(y) = L(z) and z is blocked by y. If the blocking of z were not
subsequently broken when 8P�

:(8S�::A) is added to L(y) from C 2 L(v), then :A
would never be added to L(x) and the inconsistency would not be detected.
As well as allowing blocks to be broken, it is also necessary to continue with some

expansion of blocked nodes, because 8R:C concepts in their labels could e�ect other
parts on the tree. Again, let us consider the example in Figure 1. After the blocking of
z is broken and 8P�

:(8S�::A) is added to L(z) from C 2 L(w), z is again blocked by
y. However, the universal value restriction 8P�

:(8S�::A) 2 L(z) has to be expanded
in order to detect the inconsistency.
These problems are overcome by using dynamic blocking: allowing blocks to be

dynamically established and broken as the expansion progresses, and continuing to
expand 8R:C concepts in the labels of blocked nodes.

2.2 Pair-wise Blocking

Further extending the logic with functional restrictions (concepts of the form (6 1 R),
meaning that an individual can be related to at most one other individual by the
role R) and a role hierarchy (subsumption relationships between roles) introduces
new problems associated with the fact that the logic no longer has the �nite model
property. This means that there are concepts that are satis�able but for which there
exists no �nite model. An example of such a concept is

:C u 9F�
:C u (6 1 F) u 8R�:(9F�

:(C u (6 1 F)))

where R is a transitive role and F v R. Any model of this concept must contain an
in�nite sequence of individuals, each related to a single successors by an F� role, and
each satisfying C u9F�

:C, the 9F�
:C term being propagated along the sequence by

the transitive super-role R. Attempting to terminate the sequence in a cycle causes
the whole sequence to collapse into a single node due to the functional restrictions

390 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

L(y) = fD; 9F�:D; 8R�:(9F�:D); C; (6 1 F); 9F::Cg

L(x) = f:C; (6 1 F);9F�:D; 8R�:(9F�:D)g

F�

F�

L(z) = fD; 9F�:D; 8R�:(9F�:D); C; (6 1 F);9F::Cgz

y

x

Fig. 2. A tableau where pair-wise blocking is crucial

(6 1 F), and this results in a contradiction as both C and :C will be in the node's
label.
In order to deal with in�nite models|namely to have an algorithm that terminates

correctly even if the input concept has only in�nite models|a more sophisticated
pair-wise blocking strategy is introduced, and soundness is proved by demonstrating
that a blocked tree always has a corresponding in�nite model.4

The new blocking strategy generates a tree where an in�nite tableau is de�ned by
recursively replacing the blocked node with a copy of the tree rooted at the blocking
node. To be certain that this transplanted tree is still valid in its new location,
blocks are established between pairs of nodes connected by the same role: a node y
is blocked by a node x when their labels are equal, the labels of their predecessors y0

and x
0 are equal, and the edges connecting x

0 to x and y
0 to y are labelled with the

same role names. Note the similarity between this condition and that imposed by the
combination of the blocking condition and cut rule in converse-PDL [11].
Figure 2 shows how pair-wise blocking is crucial in order to ensure that the algo-

rithm discovers the unsatis�ability of the concept

:C u (6 1 F) u 9F�
:D u 8R�:(9F�

:D);

where F v R and D represents the concept

C u (6 1 F) u 9F::C:

Using dynamic blocking, z would be blocked by y. The resulting tree cannot represent
a cyclical model in which y is related to itself by an F� role as this would con
ict with
(6 1 F) 2 L(y). The tree must therefore represent the in�nite model generated by
recursively replacing each occurrence of z with a copy of the tree rooted at y. However,
this is not a valid model as when z is substituted by a copy of y, 9F::C 2 L(y), which
was satis�ed by :C 2 L(x), is no longer satis�ed in its new location.
When pair-wise blocking is used, z is no longer blocked by y as the labels of their

predecessors (y and x respectively) are not equal, and the algorithm continues to
expand L(z). The expansion of 9F::C 2 L(z) calls for the existence of a node
whose label includes :C and that is connected to z by an F labelled edge. Because
(6 1 F) 2 L(z) this node must be y, and this results in a contradiction as both C

and :C will be in L(y).

4This is not to say that it may not also have a �nite model.

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 391

(C uD)I = C
I \D

I
;

(C tD)I = C
I [D

I
;

:CI = �I n CI
;

(9S:C)I = fx 2 �I j There exists y 2 �I with hx; yi 2 S
I and y 2 C

Ig;

(8S:C)I = fx 2 �I j For all y 2 �I , if hx; yi 2 S
I , then y 2 C

Ig;

For S 2 R : hx; yi 2 S
I i� hy; xi 2 S

�
I

; and

For R 2 R+ : if hx; yi 2 R
I and hy; zi 2 R

I , then hx; zi 2 R
I
:

Fig. 3. Semantics of ALCIR+ -concepts

3 Syntax and semantics of ALCIR+

For ease of understanding, we start by introducing the Description Logic ALCIR+ ,
which is the extension of the well-known DL ALC [29] with transitive roles and inverse

(converse) roles. The set of transitive role names R+ is a subset of the set of role
names R. Interpretations map role names to binary relations on the interpretation
domain, and transitive role names to transitive relations. In addition, for any role
R 2 R, the role R� is interpreted as the inverse of R.
In the next section, we describe a tableaux algorithm for testing the satis�ability

of ALCIR+ concepts and present a proof of its soundness and completeness. The
extension of ALCIR+ with role hierarchies, ALCHIR+ , together with the extended
tableaux algorithm and corresponding proofs is then described in Section 5. Finally,
the extension of ALCHIR+ with functional restrictions together with the further
extended tableaux algorithm and corresponding proofs is presented in Section 6.

Definition 3.1

Let NC be a set of concept names and let R be a set of role names with transitive
role names R+ � R. The set of ALCIR+-roles is R [fR� j R 2 Rg. The set of
ALCIR+-concepts is the smallest set such that

1. every concept name is a concept and

2. if C and D are concepts and R is an ALCIR+-role, then (C uD), (C tD), (:C),
(8R:C), and (9R:C) are concepts.

An interpretation I = (�I
; �I) consists of a set �I , called the domain of I, and a

function �I which maps every concept to a subset of �I and every role to a subset of
�I ��I such that, for all concepts C, D and roles R, S, the properties in Figure 3
are satis�ed.
A concept C is called satis�able i� there is some interpretation I such that CI 6= ;.

Such an interpretation is called a model of C. A concept D subsumes a concept C
(written C v D) i� C

I � D
I holds for each interpretation I. For an interpretation

I, an individual x 2 �I is called an instance of a concept C i� x 2 C
I .

In order to make the following considerations easier, we introduce two functions on
roles:

1. The inverse relation on roles is symmetric, and to avoid considering roles such as

392 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

R
��, we de�ne a function Inv which returns the inverse of a role. More precisely,

Inv(R) = R
� if R is a role name, and Inv(R) = S if R = S

�.

2. Obviously, a role R is transitive if and only if Inv(R) is transitive. However, this
may be established by either R or Inv(R) being in R+. We therefore de�ne a
function Trans which returns true i� R is a transitive role|regardless of whether
it is a role name or the inverse of a role name. More precisely, Trans(R) = true i�
R 2 R+ or Inv(R) 2 R+.

4 A tableaux algorithm for ALCIR+

Like other tableaux algorithms, the ALCIR+ algorithm tries to prove the satis�ability
of a concept D by constructing a model of D. The model is represented by a so-
called completion tree, a tree some of whose nodes correspond to individuals in the
model, each node being labelled with a set of ALCIR+-concepts. When testing the
satis�ability of an ALCIR+-concept D, these sets are restricted to subsets of sub(D),
where sub(D) is the set of subconcepts of D, where subconcepts are de�ned as follows:

sub(A) = fAg for concept names A 2 NC ;

sub(C uD) = fC uDg [sub(C) [sub(D);
sub(C tD) = fC tDg [sub(C) [sub(D);
sub(8R:C) = f8R:Cg [sub(C); and
sub(9R:C) = f9R:Cg [sub(C):

For ease of construction, we assume all concepts to be in negation normal form

(NNF), that is, negation occurs only in front of concept names. Any ALCIR+ -
concept can easily be transformed to an equivalent one in NNF by pushing negations
inwards [16].
The soundness and completeness of the algorithm will be proved by showing that it

creates a tableau for D. We have chosen to take the (not so) long way round tableaux
de�nition method for proving properties of tableaux algorithms because once tableaux
are de�ned and Lemma 4.2 is proven the remaining proofs are considerably easier.

Definition 4.1

IfD is an ALCIR+-concept in NNF andRD is the set of roles occurring inD, together
with their inverses, a tableau T for D is de�ned to be a triple (S;L;E) such that:

S is a set of individuals, L : S ! 2sub(D) maps each individual to a set of concepts
which is a subset of sub(D), E : RD ! 2S�S maps each role in RD to a set of pairs of
individuals, and there is some individual s 2 S such that D 2 L(s). For all s; t 2 S,
C;E 2 sub(D), and R 2 RD, it holds that:

1. if C 2 L(s), then :C =2 L(s),

2. if C u E 2 L(s), then C 2 L(s) and E 2 L(s),

3. if C t E 2 L(s), then C 2 L(s) or E 2 L(s),

4. if 8R:C 2 L(s) and hs; ti 2 E(R), then C 2 L(t),

5. if 9R:C 2 L(s), then there is some t 2 S such that hs; ti 2 E(R) and C 2 L(t),

6. if 8R:C 2 L(s), hs; ti 2 E(R) and Trans(R), then 8R:C 2 L(t), and

7. hs; ti 2 E(R) i� ht; si 2 E(Inv(R)).

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 393

Lemma 4.2

An ALCIR+-concept D is satis�able i� there exists a tableau for D.

Proof. For the if direction, if T = (S;L;E) is a tableau for D with D 2 L(s0), a
model I = (�I

; �I) of D can be de�ned as:

�I = S

A
I = fs j A 2 L(s)g for all concept names A in sub(D)

R
I =

�
E(R)+ if Trans(R)
E(R) otherwise

where E(R)+ denotes the transitive closure of E(R). D
I 6= ; because s0 2 D

I .
Transitive roles are obviously interpreted as transitive relations. By induction on the
structure of concepts, we show that, if E 2 L(s), then s 2 E

I . Let E 2 L(s).

1. If E is a concept name, then s 2 E
I by de�nition.

2. If E = :C, then C =2 L(s) (due to Property 1 in De�nition 4.1), so s 2 �I nCI =
E
I .

3. If E = (C1 u C2), then C1 2 L(s) and C2 2 L(s), so by induction s 2 C
I

1 and
s 2 C

I

2 . Hence s 2 (C1 u C2)
I .

4. The case E = (C1 t C2) is analogous to 3.

5. If E = (9S:C), then there is some t 2 S such that hs; ti 2 E(S) and C 2 L(t). By
de�nition, hs; ti 2 S

I and by induction t 2 C
I . Hence s 2 (9S:C)I .

6. If E = (8S:C) and hs; ti 2 S
I , then either

(a) hs; ti 2 E(S) and C 2 L(t), or
(b) hs; ti 62 E(S) and there exists a path of length n � 1 such that hs; s1i; hs1; s2i; : : : ;

hsn; ti 2 E(S) and Trans(S). Due to Property 6 in De�nition 4.1, 8S:C 2 L(si)
for all 1 6 i 6 n, and we have C 2 L(t).

In both cases, we have by induction t 2 C
I , hence s 2 (8S:C)I .

For the converse, if I = (�I
; �I) is a model of D, then a tableau T = (S;L;E) for

D can be de�ned as:

S = �I

E(R) = R
I

L(s) = fC 2 sub(D) j s 2 C
Ig:

It only remains to demonstrate that T is a tableau for D:

1. T satis�es properties 1{5 in De�nition 4.1 as a direct consequence of the semantics
of ALCIR+ concepts.

2. Assume that T does not satisfy Property 6 in De�nition 4.1. There must then be
some d 2 S with hd; ei 2 E(R), Trans(R), (8R:C) 2 L(d), and (8R:C) 62 L(e). The
de�nition of T implies that d 2 (8R:C)I , hd; ei 2 R

I , Trans(R), and e 62 (8R:C)I .
However, this can only be the case if there is some f such that he; fi 2 R

I and
f =2 C

I . The transitivity of R implies that hd; fi 2 R
I and, because d 2 (8R:C)I ,

we also have f 2 C, contradicting f =2 C. Therefore T does satisfy Property 6 in
De�nition 4.1.

3. T satis�es Property 7 in De�nition 4.1 as a direct consequence of the semantics of
inverse relations.

394 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

u-rule: if 1. C1 u C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g 6� L(x)

then L(x) �! L(x) [fC1; C2g

t-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g \ L(x) = ;

then L(x) �! L(x) [fCg for some C 2 fC1; C2g

9-rule: if 1. 9S:C 2 L(x), x is not blocked, and
2. x has no S-neighbour y with C 2 L(y)

then create a new node y with L(hx; yi) = S and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [fCg

8+-rule: if 1. 8S:C 2 L(x), Trans(S), x is not indirectly blocked, and
2. there is an S-neighbour y of x with 8S:C =2 L(y)

then L(y) �! L(y) [f8S:Cg

Fig. 4. Tableaux expansion rules for ALCIR+

4.1 Constructing an ALCIR+ tableau

From Lemma 4.2, an algorithm that constructs a tableau for an ALCIR+-concept D
can be used as a decision procedure for the satis�ability of D. Such an algorithm will
now be described in detail.
The tableaux algorithm works on a completion tree. This is a tree where each

node x of the tree is labelled with a set L(x) � sub(D) and each edge hx; yi is labelled
L(hx; yi) = R for some (possibly inverse) role R occurring in sub(D). Edges are added
when expanding 9R:C and 9R�:C terms; they correspond to relationships between
pairs of individuals and are always directed from the root node to the leaf nodes. The
algorithm expands the tree either by extending L(x) for some node x or by adding
new leaf nodes.
A completion tree T is said to contain a clash if, for a node x in T and a concept

C, fC;:Cg � L(x).
If nodes x and y are connected by an edge hx; yi, then y is called a successor of x

and x is called a predecessor of y; ancestor is the transitive closure of predecessor.
A node y is called an R-neighbour of a node x if either y is a successor of x and

L(hx; yi) = R or y is a predecessor of x and L(hy; xi) = Inv(R).
A node x is blocked if for some ancestor y, y is blocked or L(x) = L(y). A blocked

node x is indirectly blocked if its predecessor is blocked, otherwise it is directly blocked.
If x is directly blocked, it has a unique ancestor y such that L(x) = L(y): if there
existed another ancestor z such that L(x) = L(z) then either y or z must be blocked.
If x is directly blocked and y is the unique ancestor such that L(x) = L(y), we will
say that y blocks x.
The algorithm initializes a tree T to contain a single node x0, called the root node,

with L(x0) = fDg, where D is the concept to be tested for satis�ability. T is then
expanded by repeatedly applying the rules from Figure 4.
The completion tree is complete when for some node x, L(x) contains a clash or

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 395

when none of the rules is applicable. If, for an input concept D, the expansion rules
can be applied in such a way that they yield a complete, clash-free completion tree,
then the algorithm returns `D is satis�able'; otherwise, the algorithm returns `D is
unsatis�able'.

4.2 Soundness and completeness

The soundness and completeness of the algorithm will be demonstrated by proving
that, for an ALCIR+-concept D, it always terminates and that it returns satis�able

if and only if D is satis�able.

Lemma 4.3

For each ALCIR+-concept D, the tableaux algorithm terminates.

Proof. Let m = jsub(D)j. Obviously, m is linear in the length of D. Termination is
a consequence of the following properties of the expansion rules:

1. The expansion rules never remove nodes from the tree or concepts from node
labels.

2. Successors are generated only for concepts of the form 9R:C, and for any node
each of these concepts triggers the generation of at most one successor. Since
sub(D) contains at most m 9R:C concepts, the out-degree of the tree is bounded
by m.

3. Nodes are labelled with nonempty subsets of sub(D). If a path p is of length at
least 2m, then there are 2 nodes x; y on p, with L(x) = L(y), and blocking occurs.
Since a path on which nodes are blocked cannot become longer, paths are of length
at most 2m.

In [22], an optimized version of this tableaux algorithm is presented, namely one
that generates completion trees whose depth is polymially bounded by the size of the
input concept.
Together with Lemma 4.2, the following lemma implies soundness of the tableaux

algorithm.

Lemma 4.4 (Soundness)
If the expansion rules can be applied to an ALCIR+-concept D such that they yield
a complete and clash-free completion tree, then D has a tableau.

Proof. Let T be the complete and clash-free completion tree constructed by the
tableaux algorithm for D. A tableau T = (S;L;E) can be de�ned with:

S = fx j x is a node in T, and x is not blockedg;

L = the restriction of the labelling L in T to S,

E(R) = fhx; yi 2 S� S j 1: y is an R-neighbour of x or

2:L(hx; zi) = R and y blocks z or

3:L(hy; zi) = Inv(R) and x blocks zg;

and it can be shown that T is a tableau for D:

1. D 2 L(x0) for the root x0 of T and, as x0 has no predecessors, it cannot be
blocked. Hence D 2 L(s) for some s 2 S.

396 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

2. Property 1 of De�nition 4.1 is satis�ed because T is clash-free.

3. Properties 2 and 3 of De�nition 4.1 are satis�ed because neither the u-rule nor
the t-rule apply to any x 2 S.

4. Property 4 in De�nition 4.1 is satis�ed because, for all x 2 S, if 8R:C 2 L(x) and
hx; yi 2 E(R) then either:

(a) y is an R-neighbour of x,

(b) L(hx; zi) = R, y blocks z, and L(y) = L(z), or

(c) L(hy; zi) = Inv(R), x blocks z, and L(x) = L(z).

In all three cases, the 8-rule ensures that C 2 L(y).

5. Property 5 in De�nition 4.1 is satis�ed because for all x 2 S, if 9R:C 2 L(x), then
the 9-rule ensures that there is either:

(a) a predecessor y such that L(hy; xi) = Inv(R) and C 2 L(y). Because y is a
predecessor of x it cannot be blocked, so y 2 S and hx; yi 2 E(R);

(b) a successor y such that L(hx; yi) = R and C 2 L(y). If y is not blocked, then
y 2 S and hx; yi 2 E(R). Otherwise, y is blocked by some z with L(z) = L(y).
Hence C 2 L(z), z 2 S and hx; zi 2 E(R).

6. Property 6 in De�nition 4.1 is satis�ed because, for all x 2 S, if 8R:C 2 L(x),
hx; yi 2 E(R), and Trans(R), then either:

(a) y is an R-neighbour of x,

(b) L(hx; zi) = R, y blocks z, and L(y) = L(z), or

(c) L(hy; zi) = Inv(R), x blocks z, hence L(x) = L(z) and 8R:C 2 L(z).

In all three cases, the 8+-rule ensures that 8R:C 2 L(y).

7. Property 7 in De�nition 4.1 is satis�ed because, for each hx; yi 2 E(R), either:

(a) x is an R-neighbour of y, so y is an Inv(R)-neighbour of x.

(b) L(hx; zi) = R and y blocks z, so L(hx; zi) = Inv(Inv(R)).

(c) L(hy; zi) = Inv(R) and x blocks z.

In all three cases, hy; xi 2 E(Inv(R)).

Lemma 4.5 (Completeness)
If D has a tableau, then the expansion rules can be applied in such a way that the
tableaux algorithm yields a complete and clash-free completion tree for D.

Proof. Let T = (S;L;E) be a tableau for D. Using T , we trigger the application of
the expansion rules such that they yield a completion tree T that is both complete and
clash-free. We start with T consisting of a single node x0, the root, with L(x0) = fDg.
T is a tableau, hence there is some s0 2 S with D 2 L(s0). When applying the

expansion rules to T, the application of the non-deterministic t-rule is driven by the
labelling in the tableau T . To this purpose, we de�ne a mapping � which maps the
nodes of T to elements of S, and we steer the application of the t-rule such that
L(x) � L(�(x)) holds for all nodes x of the completion tree.
More precisely, we de�ne � inductively as follows:

� �(x0) = s0.

� If �(xi) = si is already de�ned, and a successor y of xi was generated for 9R:C 2
L(xi), then �(y) = t for some t 2 S with C 2 L(t) and hsi; ti 2 E(R).

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 397

t0-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g \ L(x) = ;

then L(x) �! L(x) [fCg for some C 2 fC1; C2g \ L(�(x))

Fig. 5. The t0-rule

To make sure that we have L(xi) � L(�(xi)), we use the t0-rule given in Figure 5
instead of the t-rule. The expansion rules given in Figure 4 with the t-rule replaced
by the t0-rule are called modi�ed expansion rules in the following.
It is easy to see that, if a tree T was generated using the modi�ed expansion rules,

then the expansion rules can be applied in such a way that they yield T. Hence
Lemma 4.4 and Lemma 4.3 still apply, and thus using the t0-rule instead of the
t-rule preserves soundness and termination.
We will now show by induction that, if L(x) � L(�(x)) holds for all nodes x in

T, then the application of an expansion rule preserves this subset-relation. To start
with, we clearly have fDg = L(x0) � L(s0).
If the u-rule can be applied to x in T with C1 uC2 2 L(x), then C1; C2 are added

to L(x). Since T is a tableau, fC1; C2g � L(�(x)), and hence the u-rule preserves
L(x) � L(�(x)).
If the t0-rule can be applied to x in T with C1 t C2 2 L(x), then C 2 fC1; C2g

is in L(�(x)), and C is added to L(x) by the t0-rule. Hence the t0-rule preserves
L(x) � L(�(x)).
If the 9-rule can be applied to x in T with C = 9R:C1 2 L(x), then C 2 L(�(x))

and there is some t 2 S with h�(x); ti 2 E(R) and C1 2 L(t). The 9-rule creates a
new successor y of x for which �(y) = t for some t with C1 2 L(t). Hence we have
L(y) = fC1g � L(�(y)).
If the 8-rule can be applied to x in T with C = 8R:C1 2 L(x) and y is an R-

neighbour of x, then h�(x); �(y)i 2 E(R), and thus C1 2 L(�(y)). The 8-rule adds
C1 to L(y) and thus preserves L(y) � L(�(y)).
If the 8+-rule can be applied to x in T with C = 8R:C1 2 L(x), Trans(R), and

y being an R-neighbour of x, then h�(x); �(y)i 2 E(R), and thus 8R:C1 2 L(�(y)).
The 8+-rule adds 8R:C1 to L(y) and thus preserves L(y) � L(�(y)).
Summing up, the tableau-construction triggered by T terminates with a complete

tree, and since L(x) � L(�(x)) holds for all nodes x in T, T is clash-free due to
Property 1 of De�nition 4.1.

Theorem 4.6

The tableaux algorithm is a decision procedure for the satis�ability and subsumption
of ALCIR+-concepts.

Theorem 4.6 is an immediate consequence of the Lemmata 4.2, 4.3, 4.4 and 4.5.
Moreover, since ALCIR+ is closed under negation, subsumption C v D can be re-
duced to the unsatis�ability of C u :D.

5 ALCIR+ Extended by role hierarchies

We will now extend the tableaux algorithm presented in Section 4.1 to deal with
role hierarchies in a similar way to the algorithm for ALCHR+ presented in [17].

398 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

ALCHIR+ extends ALCIR+ by allowing, additionally, for inclusion axioms on roles.
These axioms can involve transitive as well as non-transitive roles, and inverse roles
as well as role names. For example, to express that a role R is symmetric, we add the
two axioms R v R

� and R
� v R.

Definition 5.1

A role inclusion axiom is of the form

R v S;

for two (possibly inverse) roles R and S. For a set of role inclusion axioms R,

R+ := (R [fInv(R) v Inv(S) j R v S 2 Rg; v*)

is called a role hierarchy, where v* is the transitive-re
exive closure of v over R [
fInv(R) v Inv(S) j R v S 2 Rg.
ALCHIR+ is the extension of ALCIR+ obtained by allowing, additionally, for a

role hierarchy R+.
As well as being correct for ALCIR+ concepts, an ALCHIR+ interpretation has to

satisfy, for all roles R;S with R v* S, the additional condition

hx; yi 2 R
I implies hx; yi 2 S

I
:

The tableaux algorithm given in the preceding section can easily be modi�ed to
decide satis�ability of ALCHIR+-concepts by extending the de�nitions of both R-
neighbours and the 8+-rule to include the notion of role hierarchies. To prove the
soundness and completeness of the extended algorithm, the de�nition of a tableau is
also extended.

Definition 5.2

As well as satisfying De�nition 4.1 (i.e., being a valid ALCIR+ tableau), a tableau
T = (S;L;E) for an ALCHIR+-concept D must also satisfy:

60. if 8S:C 2 L(s) and hs; ti 2 E(R) for some R v* S with Trans(R), then 8R:C 2 L(t),

8. if hx; yi 2 E(R) and R v* S, then hx; yi 2 E(S),

where Property 60 extends and supersedes Property 6 from De�nition 4.1.

5.1 Constructing an ALCHIR+ tableau

For the ALCHIR+ algorithm, the 8+-rule is replaced with the 80+-rule (see Figure 6)
and the de�nition of R-neighbours is extended as follows:

Definition 5.3

Given a completion tree, a node y is called an S-neighbour of a node x if, for some R
with R v* S, either y is a successor of x and L(hx; yi) = R or y is a predecessor of x
and L(hy; xi) = Inv(R).

Due to this de�nition and the re
exivity of v* , the 80+-rule extends the 8+-rule. In
the following, the tableaux algorithm resulting from these modi�cations will be called
the modi�ed tableaux algorithm.

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 399

80+-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is some R with Trans(R) and R v* S, and
3. there is an R-neighbour y of x with 8R:C =2 L(y)

then L(y) �! L(y) [f8R:Cg

Fig. 6. The new 80+-rule for ALCHIR+

5.2 Soundness and completeness

To prove that the modi�ed tableaux algorithm is indeed a decision procedure for the
satis�ability of ALCHIR+-concepts, all four technical lemmata used in Section 4.2
to prove this fact for the ALCIR+ tableaux algorithm have to be re-proven for
ALCHIR+ . In the following, we will restrict our attention to cases that di�er from
those already considered for ALCIR+ .

Lemma 5.4

An ALCHIR+-concept D is satis�able i� there exists a tableau for D.

Proof. For the if direction, the construction of a model of D from a tableau for D is
similar to the one presented in the proof of Lemma 4.2. If T = (S;L;E) is a tableau
for D with D 2 L(s0), a model I = (�I

; �I) of D can be de�ned as follows:

�I = S

A
I = fs j A 2 L(s)g for all concept names A in sub(D)

R
I =

(
E(R)+ if Trans(R)
E(R) [

S
P v* R;P 6=R

P
I otherwise.

The interpretation of non-transitive roles is recursive in order to correctly interpret
those non-transitive roles that have a transitive sub-role. From the de�nition of RI

and Property 8 of a tableau it follows that if hx; yi 2 S
I , then either hx; yi 2 E(S) or

there exists a path hx; x1i; hx1; x2i; : : : ; hxn; yi 2 E(R) for some R with Trans(R) and
R v* S.
Property 8 of a tableau ensures that RI � S

I holds for all roles with R v* S, in-
cluding those cases where R is a transitive role. Again, it can be shown by induction
on the structure of concepts that I is a correct interpretation. We restrict our atten-
tion to the only case that is di�erent from the ones in the proof of Lemma 4.2. Let
E 2 sub(D) with E 2 L(s).

60. If E = (8S:C) and hs; ti 2 S
I , then either

(a) hs; ti 2 E(S) and C 2 L(t), or

(b) hs; ti 62 E(S), and there exists a path of length n � 1 such that

hs; s1i; hs1; s2i; : : : ; hsn; ti 2 E(R)

for some R with Trans(R) and R v* S. Due to Property 60 in De�nition 5.2,
8R:C 2 L(si) for all 1 6 i 6 n, and we have C 2 L(t).

In both cases, we have t 2 C
I .

400 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

For the converse, if I = (�I
; �I) is a model of D, then a tableau T = (S;L;E)

for D is de�ned like the one de�ned in the proof of Lemma 4.2. It only remains to
demonstrate that T is a tableau for D:

1. T satis�es properties 1{5 in De�nition 4.1 as a direct consequence of the semantics
of ALCHIR+-concepts.

2. If d 2 (8S:C)I and hd; ei 2 R
I for some R with Trans(R) and R v* S, then e 2

(8R:C)I unless there is some f such that he; fi 2 R
I and f =2 C

I . However, if
hd; ei 2 R

I , he; fi 2 R
I , Trans(R), and R v* S, then hd; fi 2 R

I , hd; fi 2 S
I , and

d =2 (8S:C)I . T therefore satis�es Property 60 in De�nition 5.2.

3. Since I is a model of D, hx; yi 2 R
I implies hx; yi 2 S

I for all roles R;S with
R v* S. Hence T satis�es Property 8 in De�nition 5.2.

Lemma 5.5

For each ALCHIR+-concept D, the modi�ed tableaux algorithm terminates.

The proof is identical to the one given for Lemma 4.3.

Lemma 5.6 (Soundness)
If the expansion rules can be applied to an ALCHIR+-concept D such that they yield
a complete and clash-free completion tree, then D has a tableau.

Proof. The de�nition of a tableau from a complete and clash-free completion tree
T, as presented in the proof of Lemma 4.4, has to be slightly modi�ed. A tableau
T = (S;L;E) is now de�ned with:

S = fx j x is a node in T, and x is not blockedg;

L = the restriction of the labelling L in T to S,

E(S) = fhx; yi 2 S� S j 1: y is an S-neighbour of x or

2: There exists a role R with R v* S and
a: L(hx; zi) = R and y blocks z or

b: L(hy; zi) = Inv(R) and x blocks zg

and, again, it can be shown that T is a tableau for D:

1. D 2 L(x0) for the root x0 of T and, as x0 has no predecessors, it cannot be
blocked. Hence D 2 L(s) for some s 2 S.

2. Due to the enhanced `neighbour' relation in De�nition 5.3, proofs of the satisfac-
tion of Properties 1{3, 5 and 7 in De�nition 4.1 are identical to those in the proof
of Lemma 4.4.

3. Property 4 in De�nition 4.1 is satis�ed because, for all x 2 S, if 8S:C 2 L(x) and
hx; yi 2 E(S) then either:

(a) y is an S-neighbour of x, or
(b) for some role R with R v* S, either

i. L(hx; zi) = R, y blocks z, and L(y) = L(z), or
ii. L(hy; zi) = Inv(R), x blocks z, and L(x) = L(z).

In all cases, the 8-rule ensures C 2 L(y).

4. Property 6' in De�nition 5.2 is satis�ed because, for all x 2 S, if 8S:C 2 L(x) and
hx; yi 2 E(R) for some R with Trans(R) and R v* S, then either:

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 401

(a) y is an R-neighbour of x, or

(b) for some role R0 with R
0 v* R, either

i. L(hx; zi) = R
0, y blocks z and L(y) = L(z), or

ii. L(hy; zi) = Inv(R0), x blocks z and L(x) = L(z).

In all cases, the 80+-rule ensures that 8R:C 2 L(y).

5. Property 8 in De�nition 5.2 follows immediately from the de�nition of E.

Lemma 5.7 (Completeness)
If an ALCHIR+-concept D has a tableau, then the expansion rules can be applied in
such a way that the tableaux algorithm yields a complete and clash-free completion
tree for D.

The proof of Lemma 5.7 is identical to the one presented for Lemma 4.5. Again,
summing up, we have the following theorem.

Theorem 5.8

The modi�ed tableaux algorithm is a decision procedure for the satis�ability and
subsumption of ALCHIR+ -concepts.

5.3 General concept inclusion axioms

In [1, 28, 3], the internalization of terminological axioms is introduced. This tech-
nique is used to reduce reasoning with respect to a (possibly cyclic) terminology to
satis�ability of concepts. In [17], we saw how role hierarchies can be used to reduce
satis�ability and subsumption with respect to a terminology to concept satis�ability
and subsumption. In the presence of inverse roles, this reduction must be slightly
modi�ed.

Definition 5.9

A terminology T is a �nite set of general concept inclusion axioms,

T = fC1 v D1; : : : ; Cn v Dng;

where Ci; Di are arbitrary ALCHIR+-concepts. An interpretation I is said to be a
model of T i� C

I

i � D
I

i holds for all Ci v Di 2 T . C is satis�able with respect to
T i� there is a model I of T with C

I 6= ;. Finally, D subsumes C with respect to T
(C vT D) i� for each model I of T we have CI � D

I .

The following lemma shows how general concept inclusion axioms can be internal-

ized using a `universal' role U . This role U is a transitive super-role of all relevant
roles and their respective inverses. Hence, for each interpretation I, each individual
t reachable via some role path from another individual s is an U

I-successor of s. All
general concept inclusion axioms Ci v Di in T are propagated along all role paths
using the value restriction 8U::C tD.

Lemma 5.10

Let T be terminology and C;D be ALCHIR+-concepts and let

CT := u
CivDi2T

:Ci tDi:

402 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

Let U be a transitive role with R v U , Inv(R) v U for each role R that occurs in
T ; C, or D. Then C is satis�able with respect to T i�

C u CT u 8U:CT

is satis�able. D subsumes C with respect to T (C vT D) i�

C u :D u CT u 8U:CT

is unsatis�able.

Remark: Instead of de�ning U as a transitive super-role of all roles and their re-
spective inverses, one could have de�ned U as a transitive super-role of all roles and,
additionally, a symmetric role by adding U v U

� and U
� v U .

The proof of Lemma 5.10 is similar to the ones that can be found in [28, 1]. One
point to show is that, if an ALCHIR+-concept C is satis�able with respect to a
terminology T , then CT has a connected model, namely one whose individuals are
all related to each other by some role path. This follows from the de�nition of the
semantics of ALCHIR+-concepts. The other point to prove is that, if y is reachable
from x via a role path (possibly involving inverse roles), then hx; yi 2 U

I . This is an
easy consequence of the de�nition of U .
Decidability of satis�ability and subsumption with respect to a terminology is an

immediate consequence of Lemma 5.10 and Theorem 5.8.

Theorem 5.11

The modi�ed tableaux algorithm is a decision procedure for satis�ability and sub-
sumption of ALCHIR+ -concepts with respect to terminologies.

6 Extending ALCHIR+ by functional restrictions

In this section, we will present the extension of ALCHIR+ with functional restrictions
to giveALCHFIR+ . The most general way to do this is to allow, for (possibly inverse)
roles R, concepts of the form (6 1 R). These concepts express local functionality, and
can be used to express global functionality, by using the general concept inclusion
axiom > v (6 1 R). As the logic supports general negation, it is also necessary to
allow for negated functional restrictions :(6 1 R); in negation normal form these
become restrictions of the form (> 2 R) [16].
In ALCHFIR+ , the roles that can appear in functional restrictions are limited to

simple roles, where a role is simple if it is neither transitive nor has transitive sub-
roles. Without this limitation the extension of the ALCHIR+ tableau construction
algorithm would be more diÆcult due to the possibility of having to collapse a chain
of successors into a single node. This would be necessary if, for example, (6 1 S) is
added to the label of a node x where R 2 R+, x already has a chain of R-successors,
and R v* S.

Definition 6.1

ALCHFIR+ is the extension of ALCHIR+ obtained by allowing, additionally, for
functional restrictions: for a simple role R, (6 1 R) is also an ALCHFIR+-concept.
A role R is a simple role i� R =2 R+ and, for any S v* R, S is also a simple role.
An ALCHFIR+-interpretation is an ALCHIR+-interpretation that satis�es, addi-

tionally,

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 403

(6 1 R)I = fx 2 �I j For all y; z: if hx; yi 2 R
I and hx; zi 2 R

I , then y = zg,
(> 2 R)I = fx 2 �I j There exist y; z: hx; yi 2 R

I , hx; zi 2 R
I
; and y 6= zg.

Definition 6.2

If D is an ALCHFIR+-concept in NNF, then a tableau T for D is de�ned as in
De�nition 5.2, with the additional properties:

9. if (6 1 R) 2 L(s) and hs; ti 2 E(R) and hs; t0i 2 E(R), then t = t
0, and

10. if (> 2 R) 2 L(s), then there are some t; t0 2 S such that hs; ti 2 E(R), hs; t0i 2
E(R), and t 6= t

0.

Lemma 6.3

An ALCHFIR+-concept D is satis�able i� there exists a tableau for D.

The reader will recall from earlier sections that ALCHFIR+ no longer has the �nite
model property. In the algorithm presented here, this will be dealt with by generating
(�nite) completion trees and showing how they can be interpreted as in�nite tableaux.
The proof is similar to the proof of Lemma 5.4, with the additional observations

that

1. In the if direction, Properties 9 and 10 in De�nition 6.2 ensure that functional
restrictions are interpreted correctly. This depends on the fact that only simple
roles can appear in functional restrictions, as for a simple role R, RI = E(R).

2. In the only if direction, the semantics of functional restrictions ensure that Prop-
erties 9 and 10 in De�nition 6.2 are satis�ed.

6.1 Constructing an ALCHFIR+ tableau

In this section, we show how the tableaux algorithm for ALCHIR+ can be extended
to deal with ALCHFIR+ -concepts. The following is a list of modi�cations that are
necessary to deal with functional roles. The resulting de�nitions are then given in
De�nition 6.4.

1. If a node x has more R-neighbours than allowed by a functional restriction (6 1 R),
we will merge these R-neighbours into a single one. Since these R-neighbours can
also be neighbours with respect to some roles S; S0 which are not comparable by
v* , the merged R-neighbour is also an S- and an S

0-neighbour of x. To capture
this, edges will be labelled with sets of roles.

2. Due to the new, set-valued edge labelling, the de�nitions of neighbours and suc-
cessors have to be adjusted; as described in De�nition 6.4.

3. The blocking strategy from Section 4.1 is extended by using pair-wise blocking as
described in Section 2.2.

4. Tableau expansion rules must be added for functional restriction concepts, and
the 9-rule must be amended in order to deal with set valued edge labels. The
complete set of ALCHFIR+ expansion rules is given in Figure 7. For the proof of
the soundness of these rules, namely the proof of Lemma 6.6, if (> 2 R) 2 L(x),
then we always introduce two R-successors which can never be merged. For this
purpose, we use a concept name A that does not occur in the input concept D and

404 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

u-rule: if 1. C1 u C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g 6� L(x)

then L(x) �! L(x) [fC1; C2g

t-rule: if 1. C1 t C2 2 L(x), x is not indirectly blocked, and
2. fC1; C2g \ L(x) = ;

then, L(x) �! L(x) [fCg for some C 2 fC1; C2g

9-rule: if 1. 9S:C 2 L(x), x is not blocked, and
2. x has no S-neighbour y with C 2 L(y):

then create a new node y with L(hx; yi) = fSg and L(y) = fCg

8-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked, and
2. there is an S-neighbour y of x with C =2 L(y)

then L(y) �! L(y) [fCg

80+-rule: if 1. 8S:C 2 L(x), x is not indirectly blocked,
2. there is some R with Trans(R) and R v* S, and
3. there is an R-neighbour y of x with 8R:C =2 L(y)

then L(y) �! L(y) [f8R:Cg

>-rule: if 1. (> 2 R) 2 L(x), x is not blocked, and
2. there is no R-neighbour y of x with A 2 L(y)

then create two new nodes y1, y2 with L(hx; y1i) = fRg,
L(hx; y2i) = fRg, L(y1) = fAg and L(y2) = f:Ag

6-rule: if 1. (6 1 R) 2 L(x), x is not indirectly blocked,
2. x has two R-neighbours y and z s.t. y is not an ancestor of z,
then 1. L(z) �! L(z) [L(y) and

2. if z is an ancestor of y
then L(hz; xi) �! L(hz; xi) [Inv(L(hx; yi))
else L(hx; zi) �! L(hx; zi) [L(hx; yi)

3. L(hx; yi) �! ;

Fig. 7. The complete tableaux expansion rules for ALCHFIR+

thus does not interfere with the other constraints. For implementation purposes,
this rule could clearly be simpli�ed,5 but its current design facilitates the proofs.

5. The de�nition of a clash is extended to include those cases where there are con-

icting functional restrictions. Given the >-rule as described, this is not strictly
necessary, but it would be required if the>-rule did not create two logically disjoint
successors.

Definition 6.4

In contrast to completion trees introduced in Section 4.1, in the following, each edge
of completion trees is labelled with a set of roles.
Given a completion tree, a node y is called an R-successor of a node x if y is a

5It is intuitively obvious that if (> 2 R) 2 L(x), and there is no con
icting functional restriction

in L(x), then the sub-tree rooted in a single R-successor of x could be duplicated in order to satisfy

(> 2 R).

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 405

successor of x and S 2 L(hx; yi) for some S with S v* R; y is called an R-neighbour

of x if it is an R-successor of x, or if x is an Inv(R)-successor of y.
A node x is directly blocked if none of its ancestors are blocked, and it has ancestors

x
0, y and y

0 such that

1. x is a successor of x0 and y is a successor of y0 and

2. L(x) = L(y) and L(x0) = L(y0) and

3. L(hx0; xi) = L(hy0; yi).

In this case we will say that y blocks x.
A node is indirectly blocked if its predecessor is blocked, and in order to avoid

wasted expansion after an application of the 6-rule, a node y will also be taken to be
indirectly blocked if it is a successor of a node x and L(hx; yi) = ;.
For a node x, L(x) is said to contain a clash if it contains an ALCHIR+-clash, or,

for roles R and S, f(6 1 R); (> 2 S)g � L(x) and S v* R.

6.2 Soundness and completeness

The soundness and completeness proof follows the same pattern as those for the other
logics, but the tableaux construction proof is more complex as it must be able to create
an in�nite tableau.

Lemma 6.5

For each ALCHFIR+-concept D, the tableaux algorithm terminates.

Proof. Very similar to the proof of Lemma 4.3, it only being necessary to show that
there are a �nite number of di�erent node-relation-node triples. Letm = jsub(D)j and
n = jRDj. Termination is a consequence of the following properties of the expansion
rules:

1. The expansion rules never remove nodes from the tree or concepts from node
labels. Edge labels can be changed only by the 6-rule which either expands them
or sets them to ;; in the latter case the node below the ;-labelled edge is blocked.

2. Successors are generated only for concepts of the form 9R:C and (> 2 R). For a
node x, each of these concepts triggers the generation of at most two successors y:
note that if the 6-rule subsequently causes L(hx; yi) to be changed to ;, then x

will have some R-neighbour z with L(z) � L(y). This, together with the enhanced
de�nition of a clash, implies that the rule application which led to the generation
of y will not be repeated. Since sub(D) contains a total of at most m 9R:C and
(> 2 R) concepts, the out-degree of the tree is bounded by 2m.

3. Nodes are labelled with nonempty subsets of sub(D) [fA;:Ag and edges with
subsets of RD, so there are at most 22mn di�erent possible labellings for a pair of
nodes and an edge. Therefore, if a path p is of length at least 22mn, then from the
pair-wise blocking condition de�ned in Section 6.1 there must be 2 nodes x; y on
p such that x is directly blocked by y. Since a path on which nodes are blocked
cannot become longer, paths are of length at most 22mn.

Lemma 6.6 (Soundness)
If the expansion rules can be applied to an ALCHFIR+ -concept D such that they
yield a complete and clash-free completion tree, then D has a tableau.

406 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

Proof. Intuitively, the de�nition of a tableau T = (S;L;E) from a complete and
clash-free completion tree T works as follows: an individual in S corresponds to a
path in T from the root node to some node that is not blocked. To obtain in�nite
tableaux, these paths may be cyclic. Instead of going to a directly blocked node, these
paths go `back' to the blocking node|and this an in�nite number of times. Thus, if
blocking occurred while constructing a tableaux, we obtain an in�nite tableau.6

More precisely, let T be a complete and clash-free completion tree. We will use the
mapping Tail(p) to return the last element in a path p: given a path p = [x0; : : : ; xn],
where the xi are nodes in T, Tail(p) = xn. Paths in T are de�ned inductively as
follows:

1. For the root node x0 in T, [x0] is a path in T.

2. For a path p and a node xi in T, [p; xi] is a path in T i�
(a) xi is a successor of Tail(p) and xi is not blocked, or
(b) for some node y in T, y is a successor of Tail(p) and xi blocks y.

Now we can de�ne a tableau T = (S;L;E) with:

S= fxp j p is a path in Tg

L(xp) =L(Tail(p))

E(R) = fhxp; xqi 2 S� S j Either q = [p;Tail(q)] and
1:Tail(q) is an R-successor of Tail(p), or
2: for some node y in T, y is an R-successor
of Tail(p) and Tail(q) blocks y

or p = [q;Tail(p)] and
1:Tail(p) is an Inv(R)-successor of Tail(q), or
2: for some node y in T, y is an Inv(R)-successor
of Tail(q) and Tail(p) blocks yg

and it can be shown that T is a tableau for D.

1. D 2 L(x0) for the root x0 of T and [x0] is a path in T. Hence D 2 L(x[x0]) for
x[x0] 2 S.

2. The proof that Properties 1{3 of De�nition 4.1 are satis�ed is identical to the
proof of Lemma 4.4.

3. The proof that Properties 4{6 of De�nition 4.1 are satis�ed is similar to that given
in the proof of Lemma 4.4, with the additional observations that

(a) the new De�nition 6.4 of R-neighbours must be taken into account, and
(b) for all individuals xp 2 S, the `immediate environment' of xp is identical to

that of the node Tail(p) in T. To be more precise, for all nodes x in T, if y is
an R-neighbour of x, then for every individual xp 2 S with Tail(p) = x there
is an individual xq 2 S such that hxp; xqi 2 E(R) and L(xq) = L(y). This is
straightforward in the case where y is an R-successor of x: either Tail(q) = y,
or Tail(q) = z for some z that blocks y and L(z) = L(y).
However, in the case where x is an Inv(R)-successor of y (so y is an R-neighbour
of x), and x blocks some node z, the maintenance of this property crucially

6If a simpli�ed >-rule were employed, as outlined in Section 6.1, then a more elaborate construc-

tion would be required, one that created duplicate paths as necessary in order to satisfy (> 2 R)

concepts.

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 407

depends on the de�nition of pair-wise blocking: let w be the predecessor of z,
q be a path with Tail(q) = w and p be the path [q; x] resulting from the block.
By de�nition xp 2 S with Tail(p) = x. From pair-wise blocking we have that w
is an R-neighbour of z, and L(w) = L(y), so for xq 2 S, hxp; xqi 2 E(R) and
L(xq) = L(y).

4. Property 7 holds because of the symmetric de�nition of the mapping E.

5. The proof that Properties 60 and 8 of De�nition 5.2 are satis�ed is identical to the
proof of Lemma 5.6.

6. Suppose Property 9 of De�nition 6.2 were not satis�ed. Let xp; xq ; xq0 be indi-
viduals in S with (6 1 R) 2 L(xp), fhxp; xqi; hxp; xq0 ig � E(R) and q 6= q

0. This
means that either

(a) Tail(q) and Tail(q0) are both R-neighbours of Tail(p), or
(b) one of them, say Tail(q), is an R-neighbour of Tail(p) and Tail(q0) blocks an R-

neighbour y of Tail(p), but then both y and Tail(q) are R-neighbours of Tail(p),
and y 6= Tail(q) because y is blocked while Tail(q) is not, or

(c) Tail(q) and Tail(q0) block R-neighbours y and z of Tail(p), but then both y and
z are R-neighbours of Tail(p), with y 6= z because q 6= q

0 and a blocked node has
a unique blocking node.

In all three cases Tail(p) has two R-neighbours, the 6-rule would be applicable,
and T cannot be complete.

7. Property 10 of De�nition 6.2 follows immediately from the >-rule and the de�ni-
tion of the tableau T : since T is clash-free, if (> 2 R) 2 L(xp), then Tail(p)
in T has two R-successors that cannot be blocked by the same node, hence
hxp; xqi 2 E(R) and hxp; xq0i 2 E(R), with q 6= q

0.

Lemma 6.7 (Completeness)
IfD has a tableau, then the expansion rules can be applied to anALCHFIR+-concept
D such that they yield a complete and clash-free completion tree.

Again, this proof is similar to the one for Lemma 4.5 and ALCIR+ -concepts. This
is due to the fact that we did not introduce new non-deterministic rules. Given a
tableau, we can trigger the application of the expansion rules such that they yield a
complete and clash-free completion tree, with Properties 9 and 10 of De�nition 6.2
ensuring that it is also complete and clash-free with respect to functional restrictions.

Theorem 6.8

The tableaux algorithm is a decision procedure for the satis�ability and subsumption
of ALCHFIR+ -concepts with respect to terminologies.

Using the same techniques and arguments as in Section 5.3, general concept inclu-
sion axioms can be internalized. Hence the tableaux algorithm is a decision procedure
for satis�ability and subsumption of ALCFIR+ -concepts with respect to terminolo-
gies.

7 Summary and related work

The combination of transitive and inverse roles is important for the adequate represen-
tation of aggregated objects, allowing the simultaneous description of parts by means
of the whole to which they belong and of wholes by means of their constituent parts.

408 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

Using a new dynamic blocking technique we have been able to develop a cut-free
tableaux algorithm for deciding satis�ability and subsumption in ALCHIR+ , a DL
that extends ALC with both transitive and inverse roles, as well as a role hierarchy.
Moreover, by adding pair-wise blocking it has been possible to extend this algorithm

to deal with ALCHFIR+ , a DL that additionally supports functional restrictions;
this is in spite of the fact that ALCHFIR+ no longer has the �nite model property.
Support for functional restrictions is important in several application domains. In
particular, ALCHFIR+ could be used to model E=R schemata (a formalism intro-
duced by [7], and widely used for the conceptual modelling of relational databases).
In the (common) case where the E=R-schema is of the kind where minimum cardinal-
ity restrictions are either 0 or 1 and maximum cardinality restrictions are either 1 or
1, the technique presented in [6, 5] translates the schema into an ALCFI terminology
(which contains general concept inclusion axioms); the method for reasoning with
such terminologies using ALCHFIR+ has been described in Section 5.3. Extending
ALCHFIR+ with general number restrictions would allow the same method to be
used with E=R-schemata containing general cardinality restrictions; this will be part
of future work.
Although ALCHIR+ and ALCHFIR+ are in the same complexity class as ALC

augmented with the transitive closure and inverse role forming operators7 (ExpTime-
complete), there are good reasons to believe that they will have better computational
properties.
Firstly, transitive closure is inherently harder than transitive roles: the extension

of ALC with transitive closure (ALC+) is already ExpTime-hard (which is an easy
consequence of results presented in [13, 25]), whereas the extension of ALC with
transitive roles is still in PSpace-complete (which is a not so easy consequence [26] of
results presented in [23, 15]).
Secondly, even with respect to ALCHR+ , which is in the same complexity class

as ALC+, transitive closure appears to be considerably harder than transitive roles.
Expanding 9R+

:C-concepts introduces additional non-determinism because one must
guess the length of an R-chain leading to an instance of C. Moreover, blocking is more
involved because, in ALC+, a block may represent a contradiction since it might only
indicate a postponement of the satisfaction of an 9R+

:C-concept in an inherently
unsatis�able context, a situation known as a bad cycle [1].
Thirdly, another diÆculty must be dealt with if inverse roles are present. To our

knowledge, the only technique for distinguishing the above mentioned bad cycles
uses the so-called cut rule (an algorithm for converse-PDL employing a cut rule is
presented in [10]); the application of this rule leads to considerable additional non-
determinism. Intuitively, the cut rule guesses, for each subconcept C of the input
concept and for each blocking node x, whether C or :C holds at x. Moreover, the
ALCHFIR+ algorithm deals directly with functional restrictions, rather than using
an embedding [12] which is yet another source of non-determinism.
Finally, a large fragment of ALCHFIR+ , namely ALCFIR+ , is still in Pspace [22].

A corresponding relationship holds between ALCHR+ and ALCR+ , and implementa-
tions of ALCHR+ in the FaCT and DLP systems [17, 24] have been shown to behave
well in realistic applications [20]. A possible explanation for this phenomenon is that

7Which is a notational variant of converse-PDL if the set of program constructors is restricted to

transitive closure and inverse.

A Description Logic with Transitive and Inverse Roles and Role Hierarchies 409

the constructor which makes these logics ExpTime-hard, namely the role hierarchy, is
mainly used for the encoding of axioms. According to our experiences, realistic knowl-
edge bases contain few axioms that are not amenable to the absorption optimization
technique described in [18].
Moreover, the ALCHR+ algorithm has been shown to be amenable to a range of

other optimisation techniques [21]; we believe that both its good behaviour and the
optimisation techniques will carry over into both ALCHIR+ and ALCHFIR+ . To
verify this belief, these new algorithms are to be implemented in a descendant of the
FaCT system.

Acknowledgements

Ian Horrocks acknowledges that part of this work was carried out while being a guest
at IRST, Trento. Ulrike Sattler's work on this paper was supported by the Esprit
Project 22469 { DWQ.
We would like to thank the anonymous referees for their valuable comments and

suggestions.

References

[1] F. Baader. Augmenting concept languages by transitive closure of roles: An alternative to

terminological cycles. In Proceedings of the 12th International Joint Conference on Arti�cial

Intelligence (IJCAI-91), pp. 446{451, 1991.

[2] F. Baader, M. Buchheit, and B. Hollunder. Cardinality restrictions on concepts. Arti�cial

Intelligence, 88, 195{213, 1996.

[3] F. Baader, H.-J. Burckert, B. Nebel, W. Nutt and G. Smolka. On the expressivity of feature

logics with negation, functional uncertainty and sort equations. Journal of Logic, Language and

Information, 2, 1{18, 1993.

[4] M. Buchheit, F. M. Donini and A. Schaerf. Decidable reasoning in terminological knowledge

representation systems. Journal of Arti�cial Intelligence Research, 1, 109{138, 1993.

[5] D. Calvanese. Unrestricted and Finite Model Reasoning in Class-Based Representation For-

malisms. PhD thesis, Dipartimento di Informatica e Sistemistica, Universit�a di Roma `La

Sapienza', 1996.

[6] D. Calvanese, M. Lenzerini and D. Nardi. A uni�ed framework for class based representation

formalisms. In Proceedings of the Fourth International Conference on the Principles of Knowl-

edge Representation and Reasoning (KR-94), J. Doyle, E. Sandewall and P. Torasso, eds. pp.

109{120, Morgan Kaufmann, Los Altos, CA, 1994.

[7] P. P. Chen. The entity-relationship model: Toward a uni�ed view of data. ACM Transactions

on Database Systems, 1, 9{36, 1976.

[8] G. De Giacomo. Decidability of Class-Based Knowledge Representation Formalisms. PhD thesis,

Dip. di Inf. e Sist., Univ. di Roma \La Sapienza", 1995.

[9] G. De Giacomo and M. Lenzerini. Tbox and Abox reasoning in expressive description logics. In

Proceedings of the Fifth International Conference on the Principles of Knowledge Representa-

tion and Reasoning (KR-96), pp. 316{327. Morgan Kaufmann, Los Altos, 1996.

[10] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and

algorithms for converse-pdl. Information and Computation, 1998. To appear.

[11] G. De Giacomo and F. Massacci. Combining deduction and model checking into tableaux and

algorithms for converse-pdl. Information and Computation, to appear.

[12] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description logics

and propositional dynamic logics (extended abstract). In Proceedings of the Twelfth National

Conference on Arti�cial Intelligence (AAAI-94), 1994.

[13] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of

Computer and System Science, 18, 194{211, 1979.

410 A Description Logic with Transitive and Inverse Roles and Role Hierarchies

[14] E. Franconi, G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani,

editors. Collected Papers from the International Description Logics Workshop (DL'98). CEUR,

May 1998.

[15] J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logic of knowl-

edge and belief. Arti�cial Intelligence, 54, 319{379, 1992.

[16] B. Hollunder and W. Nutt. Subsumption algorithms for concept languages. In Proceedings of

the 9th European Conference on Arti�cial Intelligence (ECAI'90), pp. 348{353. John Wiley and

Sons, 1990.

[17] I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis,

University of Manchester, 1997.

[18] I. Horrocks. Using an expressive description logic: FaCT or �ction? In Principles of Knowledge

Representation and Reasoning: Proceedings of the Sixth International Conference (KR'98),

A. G. Cohn, L. Schubert, and S. C. Shapiro, eds. pp. 636{647. Morgan Kaufmann, San Francisco,

CA, 1998.

[19] I. Horrocks and G. Gough. Description logics with transitive roles. In Proceedings of the Interna-

tional Workshop on Description Logics, M.-C. Rousset, R. Brachmann, F. Donini, E. Franconi,

I. Horrocks, and A. Levy, eds. pp. 25{28, Gif sur Yvette, France, 1997. Universit�e Paris-Sud.

[20] I. Horrocks and P. F. Patel-Schneider. Comparing subsumption optimizations. In Collected

Papers from the International Description Logics Workship (DL`98), E. Franconi et al., eds. pp.

90{94. CEUR, 1998.

[21] I. Horrocks and P. F. Patel-Schneider. Optimising propositional modal satis�ability for de-

scription logic subsumption. In Arti�cial Intelligence and Symbolic Computation: International

Conference AISC'98, number 1476 in Lecture Notes in Arti�cial Intelligence, J. Calmet and

J. Plaza, eds. pp. 234{246. Springer-Verlag, 1998.

[22] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding ALCNI
R+

-satis�ability.

LTCS-Report 98-08, LuFg Theoretical Computer Science, RWTH Aachen, Germany, 1998.

[23] R. E. Ladner. The computational complexity of provability in systems of modal propositional

logic. SIAM Journal of Computing, 6, 467{480, 1977.

[24] P. F. Patel-Schneider. DLP system description. In Collected Papers from the International

Description Logics Workship (DL`98), E. Franconi et al., eds. pp. 87{89. CEUR, 1998.

[25] V. R. Pratt. Models of program logics. In Proceedings of the 20th Annual Symposium on

Foundations of Computer Science, San Juan, Puerto Rico, 1979.

[26] U. Sattler. A concept language extended with di�erent kinds of transitive roles. In 20. Deutsche

Jahrestagung f�ur K�unstliche Intelligenz, number 1137 in Lecture Notes in Arti�cial Intelligence,

G. G�orz and S. H�olldobler, eds. pp. 333{345. Springer Verlag, 1996.

[27] U. Sattler. Terminological Knowledge Representation Systems in a Process Engineering Appli-

cation. PhD thesis, RWTH Aachen, 1998.

[28] K. Schild. A correspondence theory for terminological logics: Preliminary report. In Proceedings

of the Twelfth International Joint Conference on Arti�cial Intelligence (IJCAI-91), pp. 466{

471, Sydney, 1991.

[29] M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions with complements. Arti-

�cial Intelligence, 48, 1{26, 1991.

Received 14 July 1998

