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Abstract

We show that the terminological logic ALC comprising Boolean operations

on concepts and value restrictions is a notational variant of the propositional

modal logic K(m). To demonstrate the utility of the correspondence, we give

two of its immediate by-products. Namely, we axiomatize ALC and give a

simple proof that subsumption in ALC is PSPACE-complete, replacing the

original six-page one.

Furthermore, we consider an extension of ALC additionally containing

both the identity role and the composition, union, transitive-re
exive closure,

range restriction, and inverse of roles. It turns out that this language, called

T SL, is a notational variant of the propositional dynamic logic converse-

PDL. Using this correspondence, we prove that it su�ces to consider �nite

T SL-models, show that T SL-subsumption is decidable, and obtain an ax-

iomatization of T SL.

By discovering that features correspond to deterministic programs in dy-

namic logic, we show that adding them to T SL preserves decidability, al-

though violates its �nite model property. Additionally, we describe an algo-

rithm for deciding the coherence of inverse-free T SL-concepts with features.

Finally, we prove that universal implications can be expressed within T SL.



1 Motivation

We shall establish correspondences between terminological logics and propo-

sitional modal and dynamic logics. These correspondences turn out to be

highly productive because formerly unrelated �elds are brought together. In

the area of terminological logics, running systems such as BACK, CLASSIC,

KL-ONE, KRYPTON, and LOOM have been developed since the late sev-

enties. Only recently theoretical investigations have been undertaken mainly

concerning the computational complexity of terminological logics.1 In the

very contrast to that, elaborated theories for modal and dynamic logics have

been developed much earlier.2 Particularly for modal logic there is|apart

from �rst order logic|the most elaborated theory, and dynamic logic has

bene�ted from these results. By detecting these correspondences, we gain

new insights into terminological logics solely by expounding the theorems of

modal and dynamic logic as theorems of the corresponding terminological

logic. There can also be redundant research if correspondences are over-

looked. For instance, Ladner [1977] showed that the propositional modal

logic K(m) is PSPACE-complete, and twelve years later this was reproved by

Schmidt-Schau� and Smolka [1991] for its notational variant ALC.

2 Preliminaries

To understand the complexity results to be presented, you should know the

complexity classes P, NP, PSPACE, and EXPTIME: P is the class of problems

decidable in deterministic polynomial time, NP are those problems decidable

in nondeterministic polynomial time, PSPACE are the problems decidable in

deterministic polynomial space, and EXPTIME are those problems decidable

in deterministic exponential time. Furthermore, you should know that a

problem L is PSPACE-complete i� both L 2 PSPACE and each problem in

PSPACE is log space reducible to L; a problem M is log space reducible to

L i� there is a function f : M ! L computable in space log (and therefore

also computable in polynomial time) such that for all x, x 2M i� f(x) 2 L.

Be aware of the complexity hierarchy P � NP � PSPACE � EXPTIME for

which it is only known that P 6= EXPTIME.

1Confer [Nebel, 1990] for a good overview of the systems and the complexity results.
2For the history of modal logic confer [Hughes and Cresswell, 1984], and for that of

dynamic logic confer [Harel, 1984].
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3 Terminological Logics and Modal Logics

We �rst consider a terminological logic investigated by Schmidt-Schau� and

Smolka [1991], named ALC. Like any other terminological logic, ALC com-

prises concepts, denoting sets, as well as roles, which denote binary relations.

Contrary to roles, concepts can be compound, viz. by intersection u, union

t, complementation :; and the value restrictions 8: and 9: taking a role and

a concept as their arguments. 8R:C is to be read as \all objects for which

all R's are in C," whereas 9R:C is to be read as \all objects for which there

exists an R in C." So we can express concepts such as `mothers having only

sons' by the ALC-expression

women u :men u (9child:men)u 8child:(menu :women):

Formally,ALC is given by the following formation rules, where c denotes

a concept symbol and r a role symbol:

C;D ! c j > j C uD j :C j 8R:C

R ! r

As usually, we specify the formal semantics of ALC by an extension func-

tion. Let D be any set, called the domain. An extension function E over D

is a function mapping concepts to subsets of D and roles to subsets of D�D

such that

E[>] = D

E[C uD] = E[C] \ E[D]

E[:C] = D n E[C]

E[8R:C] = fd 2 D : 8hd; ei 2 E[R]:e 2 E[C]g

Using extension functions, we can de�ne the semantic notions subsump-

tion, equivalence, and coherence: D subsumes C, written j= C v D, i� for

each extension function E, E[C] � E[D], whereas C and D are equivalent,

written j= C = D, i� for each extension function E, E[C] = E[D]. Finally,

C is coherent i� there is an extension function E with E[C] 6= ;, called a

model for C; otherwise C is incoherent. The following lemma justi�es merely

investigating subsumption in ALC:

Lemma 1 Subsumption, equivalence, and incoherence are log space reducible

to each other in any terminological logic comprising Boolean operations on

concepts.
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Proof: Since j= C v D i� j= C uD = C, subsumption is log space reducible

to equivalence in presence of u. Equivalence in turn is log space reducible to

incoherence in presence of u as well as : because j= C = D i� (C u :D) t

(Du:C) is incoherent. And �nally, incoherence clearly is log space reducible

to subsumption in presence of :> since C is incoherent i� j= C v :>. 2

We take the union of concepts t and the operation 9: dual to 8: with

E[9R:C] = fd 2 D : 9hd; ei 2 E[R]:e 2 E[C]g as abbreviations for linearly

length-bounded ALC-expressions:

C tD
def
= :(:C u :D)

9R:C
def
= :8R::C

It is well known that ALC is a sublanguage of �rst order logic since

atomic concepts correspond to one-place predicates and atomic roles to two-

place predicates. The ALC-concept :c1 t 8r:(c2 u c3), for instance, can be

expressed by the �rst order formula :c1(x) _ 8y:r(x; y)) c2(y) ^ c3(y).

Viewing ALC from the modal logic perspective, atomic concepts simply

can be expounded as atomic propositional formulae, and can be interpreted

as the set of worlds in which the atomic propositional formula holds. In

this case 8: becomes a modal operator since it is applied to formulae. Thus

:c1 t8r:(c2u c3) can be expressed by the propositional modal formula :c1 _

Kr(c2 ^ c3). Kr(c2 ^ c3) is to be read as \agent r knows proposition c2 ^ c3,"

and means that in every world accessible for r, both c2 and c3 hold. Actually

� the domain of an extension function can be read as a set of worlds.

� atomic concepts can be interpreted as the set of worlds in which they

hold, if expounded as atomic formulae.

� atomic roles can be interpreted as accessibility relations.

Hence 8R:C can be expounded as \all worlds in which agent R knows propo-

sition C" instead of \all objects for which all R's are in C."

It is not essential for the following to know propositional modal logic

except for establishing the correspondence. To begin with, we inductively

�x the syntax of K(m). The atomic propositions p1; p2; ::: as well as true

are K(m)-formulae, and, if � and � are K(m)-formulae, so are � ^ �, :�,

K1�,..., and Km�. The meaning of a K(m)-formula is given by a Kripke

structure M = hD; �;P1; :::;Pmi, where D is any set of worlds, P1; :::;Pm �

D�D are accessibility relations, and � is a truth assignment mapping atomic

propositions to subsets of D. d 2 �(p) says that p holds in the world d,

and dPie denotes that in world d agent i considers world e to be possible.
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We call K(m) normal because there are no restrictions on the accessibility

relations. The denotation of arbitrary formulae is given by a valuation vM

mapping K(m)-formulae to subsets of D. vM is uniquely de�ned w.r.t. a

Kripke structure M = hD; �;P1; :::;Pmi by vM(true) = D, vM(pi) = �(pi),

vM(� ^ �) = vM(�) \ vM(�), vM(:�) = D n vM(�), and vM(Ki�) = fw 2

D : 8hw;w0i 2 Pi:w
0 2 vM(�)g. Now a K(m)-formula � is satis�able i� there

is a valuation vM with vM(�) 6= ;, and � is valid i� :� is not satis�able.

For a slightly more comprehensive introduction to K(m) confer [Halpern and

Moses, 1985].

To establish the correspondence, consider the function f mapping ALC-

concepts to K(m)-formulae with f(c) = c, f(>) = true, f(C uD) = f(C) ^

f(D), f(:C) = :f(C), and f(8R:C) = KRf(C). It could easily be shown

by induction on the complexity of ALC-concepts that f is a linearly length-

bounded isomorphism such that an ALC-concept C is coherent i� the K(m)-

formula f(C) is satis�able. Hence we can conclude:

Theorem 1 ALC is a notational variant of the propositional modal logic

K(m), and satis�ability in K(m) has the same computational complexity as

coherence in ALC.

By this correspondence, several theoretical results for K(m) can easily be

carried over to ALC. We immediately know, for example, that without loss

of generality, it su�ces to consider either �nite ALC-models of exponential

size or a single in�nite canonical ALC-model (cf. e.g. [Hughes and Cresswell,

1984]). We shall expose two other outcomes of the correspondence, namely

an axiomatization of ALC and the complexity of ALC somewhat closer.

Proposition 1 (An Axiomatization of ALC)

The axioms forcing h>;u;:i to be a Boolean algebra together with

8R:> = >

8R:(C uD) = (8R:C)u (8R:D)

are a sound and complete axiomatization of ALC-equivalence [Lemmon,

1966].

Now we shall prove that deciding subsumption in ALC is PSPACE-

complete. Of course, this is not a new result, but its proof is much simpler

than the original six-page one in [Schmidt-Schau� and Smolka, 1991]. The

reason is that Ladner [1977] proved the PSPACE-completeness of validity in

K(m) for m = 1, and, as Halpern and Moses [1985] noted, this result also

holds for each m � 1. Using Theorem 1 and Lemma 1, we can immediately

conclude:
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Proposition 2 (Complexity of ALC)

Deciding subsumption in ALC is PSPACE-complete, even if involving only a

single atomic role [Ladner, 1977].

An algorithm for deterministically computing coherence in ALC in quadratic

space is also given in [Ladner, 1977].

4 Terminological Logics and Dynamic Log-

ics

Although concepts can be composed in ALC, we are not able to form com-

pound roles. To overcome this de�ciency, we shall introduce an extension of

ALC, named T SL. Based on the role parent, for instance, we can express

in T SL its transitive-re
exive closure by parent�, its inverse role `has child'

by parent�1, and the union of the roles parent and parent�1, for example,

by parentt parent�1. Thus in T SL we could formalize the concept `human

beings' as follows:

8parent�:(9parent:womenu 9parent:men)

u 8(parentt parent�1)�:((women u :men) t

(men u :women))

Beside these operations, T SL comprises the composition of roles � and

the operation id with id(C) denoting the identity relation over C. Using both

we can express, for instance, the role `mother' by parent � id(women).

To be exact, T SL is given by the same concept-formation rule as ALC

together with the role-formation rule

R;S ! r j R � S j R t S j R� j R�1 j id(C):

To specify the formal semantics of T SL, we additionally require an ex-

tension function E to be a mapping with

E[R � S] = E[R] � E[S]

E[R t S] = E[R] [ E[S]

E[R�] = E[R]�

E[R�1] = fhd; ei : he; di 2 E[R]g

E[id(C)] = fhd; di : d 2 E[C]g

The identity role self, the range restriction j de�ned by E[RjC] = fhd; ei 2

E[R] : e 2 E[C]g, and the transitive closure of roles + all can be de�ned within
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T SL:

self
def
= id(>)

RjC
def
= R � id(C)

R+ def
= R �R�

However, only the �rst and the second de�nition are linearly bounded in

their length whereas the third generally is not. Remarkably, we could have

introduced the range restriction j and the role self into the logic and then

de�ne id(C) as selfjC.

Now it is important to realize that roles not only can be interpreted as

accessibility relations but also as nondeterministic programs. In this case

hd; ei 2 E[R] denotes that there is an execution of the program R starting in

state d and ending in state e. To achieve this interpretation

� the domain of an extension function is to be read as a set of program

states.

� atomic concepts are to be interpreted as the set of states in which they

hold, if expounded as atomic formulae.

� atomic roles are to be interpreted as atomic nondeterministic programs.

Using this interpretation, compound T SL-expressions can be expounded as

follows:

� 8R:C as \whenever program R terminates, proposition C holds on

termination"

� R1 �R2 as \run R1 and R2 consecutively"

� R1 tR2 as \nondeterministically do R1 or R2"

� R� as \repeat programR a nondeterministically chosen number of times

� 0"

� R�1 as \run R in reverse"

� id(C) as \proceed without changing the program state i� proposition

C holds"

This illustrates that T SL corresponds to propositional dynamic logic.

Indeed, T SL could easily be shown to be a notational variant of converse-

PDL as given in [Fischer and Ladner, 1979]. There, > is written as true,

C uD as C ^D, :C as � C, 8R:C as [R]C, 9R:C as hRiC, R � S as R;S,

R t S as R [ S, R�1 as R�, and id(C) as C?.
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Theorem 2 T SL is a notational variant of converse-PDL, the propositional

dynamic logic PDL with the converse-operator. Moreover, satis�ability in

converse-PDL has the same computational complexity as coherence in T SL.

For an excellent introduction to dynamic logic you may confer [Harel,

1984]. There, one can �nd a survey of interesting theorems of dynamic logic

which can now be expounded as theorems of T SL. Hence, for instance, we

can narrow down the computational complexity of T SL. Fischer and Ladner
[1979] showed that PDL-validity is EXPTIME-hard, even if involving only a

single atomic program and its transitive-re
exive closure as programs. Using

Theorem 2, we can infer:

Proposition 3 (Lower Compl. Bound of T SL)

Deciding subsumption in ALC extended with the transitive-re
exive closure of

roles is EXPTIME-hard, even if involving only a single atomic role [Fischer

and Ladner, 1979].

Concerning the upper complexity bound, Pratt [1979] gave an algorithm

for deciding PDL-satis�ability requiring at most exponential time. As Harel
[1984, Section 2.5.6] pointed out, the algorithm can easily be extended to

deal with �1. The reason is that without loss of generality, we can assume �1

applied only to atomic roles. To see this, realize that for each E, E[(R�S)�1] =

E[S�1 �R�1], E[(RtS)�1] = E[R�1tS�1], and E[(R�)�1] = E[(R�1)�]. Using

Theorem 2, we know that T SL-coherence is contained in EXPTIME, and

therefore T SL-subsumption is in co-EXPTIME. However, co-EXPTIME is

the same as EXPTIME. So we have:

Proposition 4 (Upper Compl. Bound of T SL)

Subsumption in T SL can be decided in exponential time [Pratt, 1979, Harel,

1984, Section 2.2/2.5.6].

As another by-product of the correspondence we gain an axiomatization

of T SL which assumes �1 to be applied only to atomic roles.

Proposition 5 (An Axiomatization of T SL)

Let C v D be de�ned as C uD = C. The axioms for ALC together with

8R t S:C = (8R:C) u (8S:C)

8R � S:C = 8R:8S:C

8id(C):D = :C tD

8R�:C = C u 8R+:C

C u 8R�:(:C t 8R:C) v 8R�:C

C v 8r:9r�1:C

C v 8r�1:9r:C
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are a sound and complete axiomatization of T SL-equivalence [Pratt, 1979,

Harel, 1984, Section 2.5.6].

By the way, the �rst three axioms indicate that T SL without � and �1 is

reduced to ALC since t, �, id can be eliminated linearly.

The correspondence theorem additionally provides us with an elaborated

model theory. The main model theorem for converse-PDL says that it su�ces

to consider only �nite connected models of exponential size. To carry over

this result, we call an extension function E over D mapping the atomic roles

r1; :::; rm connected i� for every d; e 2 D, hd; ei 2 E[(r1 t r�1
1 ::: t rm t r�1

m
)�].

Furthermore, l(C) denotes the length of the concept C regarded as a string

over >;u;t;:;8:; �;� ;�1, and atoms.

Proposition 6 (Finite T SL-Models)

Every coherent T SL-concept C has a connected model over D with jDj �

2l(C) [Fischer and Ladner, 1979].

In contrast to that, the �nite model property does not hold for T SL

augmented with the intersection of roles, called T SLR. The reason is that

every model E for

8r�:((9r:>) u 8(r+ u self)::>)

has an in�nite acyclic E[r]-chain.

Proposition 7 (In�nite T SLR-Models)

There is a coherent T SLR-concept which has no �nite model [Harel, 1984,

Theorem 2.35].

Note that this does not mean that T SLR is undecidable. Actually, the

decidability of T SLR seems to be unknown. It is known, however, that

T SL extended with the complementation of roles is undecidable [Harel, 1984,

Theorem 2.34], and that T SLR with features is highly undecidable as we

shall see in the next section.

4.1 T SL with Features

In T SL we are able to force, for instance, that something has at least two

parents, namely a female and a male one:

(9parentjwomen::men) u (9parentjmen::women)

Unfortunately, this expression does not stipulate that something has exactly

two parents. The reason is that we have expressed `has mother' as the role

parentjwomen. However, `has mother' rather is a partial function than a
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relation. If something has a mother, it has exactly one. This suggests to

extend T SL with features, denoting atomic partial functions. If mother

and father were features, the above expression indeed would force that each

human being has exactly one mother and father.

We de�ne FSL by the same formation rules as T SL exept that an FSL-

role additionally can be a feature symbol. Moreover, we require an extension

function E over D to be a mapping such that for each feature symbol f , E[f ]

is a partial function mapping D to D.

Note that f1 � f2 and id(C) denote partial functions, whereas f1 t f2, f
�,

and f�1 generally denote binary relations.

Clearly, features correspond to atomic deterministic programs considered

in dynamic logic. Thus [Parikh, 1979, x7] can be read to show that any

atomic role r is expressible by fr � (fnew)
�, where fr is the feature uniquely

corresponding to r and fnew is a new feature. In this manner each non-feature

atomic role in a T SL-expression can be eliminated without increasing its

length more than linearly.3 Thus we can assume that the only atomic roles

which FSL comprises are features. So, it is obvious that FSL is a notational

variant of the deterministic version of converse-PDL.

Theorem 3 FSL is a notational variant of converse-DPDL, the determinis-

tic propositional dynamic logic DPDL with the converse-operator. Moreover,

satis�ability in converse-DPDL has|up to linear time|the same computa-

tional complexity as coherence in FSL.

Ben-Ari et al. [1982] showed that DPDL-satis�ability is contained in

EXPTIME, and Vardi [1985] pointed out that satis�ability in converse-

DPDL can be decided in double exponential time. Utilizing Theorem 3 and

Lemma 1, we can conclude:

Proposition 8 (Complexity of FSL)

Subsumption in FSL without �1 can be decided in exponential time [Ben-

Ari et al., 1982], and deciding subsumption in FSL can be done in double

exponential time [Vardi, 1985]. Furthermore, both problems are EXPTIME-

hard [Parikh, 1979, x7].

We now present a sound and complete algorithm for deciding coherence

of �1-free FSL-concepts in deterministic exponential time as described in
[Ben-Ari et al., 1982]. To test the coherence of a concept C, the algorithm

builds a tree with nodes labeled by sets of FSL-concepts with root fCg,

where double negations occurring in concepts are assumed to be eliminated.

3By the way this means that in the presence of � deciding subsumption in feature logics

is at least as hard as deciding subsumption in the corresponding terminological logic.
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The algorithm uses three functions to build the tree, namely ^-succ, _-succ,

and f-succ. ^-succ and _-succ are nondeterministic functions to generate

necessary and possible consequences of a set of FSL-concepts represented

by an and-or-tree.

^-succ(�)
def
= � [

8>>>>>>>>><
>>>>>>>>>:

fC;Dg if C uD 2 �

fC;Dg if 9id(C):D 2 �

f9R:9S:Cg if 9R � S:C 2 �

f8R:8S:Cg if 8R � S:C 2 �

f8R:C;8S:Cg if 8R t S:C 2 �

fC;8R:8R�:Cg if 8R�:C 2 �

_-succ(�)
def
=

8>>>><
>>>>:

h� [ fCg;� [ fDgi if C tD 2 �

h� [ f:Cg;� [ fDgi if 8id(C):D 2 �

h� [ f9R:Cg;� [ f9S:Cgi if 9R t S:C 2 �

h� [ fCg;� [ f9R:9R�:Cgi if 9R�:C 2 �

f-succ is a function to generate the f -successors of a node, de�ned for each

feature f by

f-succ(�)
def
= fC : 9f:C 2 �g [ fC : 8f:C 2 �g:

To compute the coherence of an �1-free FSL-concept, the algorithm performs

the following steps:

1. Replace each occurrence of a non-feature atomic role r in C by fr �

(fnew)
�, where fr is the feature uniquely corresponding to r and fnew

is a new feature.

2. Take the tree consisting solely of the root fCg as the current tree.

3. Apply ^-succ and _-succ to the not yet eliminated leaves until every

node thus obtainable already is on the tree.

4. Repeatedly eliminate each leaf � violating either (a) S � � for every

S = ^-succ(�), (b) S1 � � or S2 � � for every hS1; S2i = _-succ(�), or

(c) C 2 � i� :C 62 � for each C. Call the set of nodes of the current

tree N .

5. For each feature f , apply f-succ to all not yet eliminated leaves where

two nodes f-succ(�) and f 0-succ(�) are to be identi�ed if they are equal.

Now de�ne for each feature f , E[f ] � N �N such that h�s;�ti 2 E[f ]
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i� �t is a node of the tree with root f-succ(�s) generated by ^-succ

and _-succ. For each node �s 2 N check (in polynomial time) whether

for every 9R:D 2 �s there is a �t such that h�s;�ti 2 E[R] and D 2 �t.

Eliminate each node not satisfying this condition and all edges leading

from and to that node. Continue with 3. until all leaves do satisfy the

condition.

6. Return `yes' if C is an element of a not eliminated node; otherwise

return `no.'

To test 9f�:c, for instance, the algorithm �rst generates the root �0 =

f9f�:cg and its _-successors �1 = f9f�:c; cg and �2 = f9f�:c;9f:9f�:cg.

Then the f -successor of �2, �3 = f9f�:cg, is generated. E[f ] is de�ned

as fh�2;�0i; h�2;�1i; h�2;�2ig because �1 as well as �2 are _-successors of

f-succ(�2). Now for each 9R:C 2 �2 there is a node � such that h�2;�i 2

E[R] and C 2 �. Therefore no leaf has to be eliminated. The algorithm

halts returning `yes' because each _-successor of �3 is already on the tree

and 9f�:c 2 �0.

Surprisingly, allowing the intersection of roles does not preserve the de-

cidability of FSL.

Proposition 9 (Undecidability of FSLR)

Subsumption in FSL augmented with role intersection is highly undecidable,

even if involving only features as atomic roles [Harel, 1984, Theorem 2.36].

With Theorem 3 we gain new model theoretic insights into FSL. For

the ability to force an FSL-model to be in�nite, both features and �1 are

essential. To see this, �rst realize that each model E for

c u 8(f�1)�:9f�1::c

has an in�nite acyclic E[f ]-chain if f is a feature. Requiring f to be a

feature is necessary to preclude cyclic models such as E over D = fd; eg with

E[c] = feg and E[f ] = fhd; ei; hd; dig, where E[f ] is not functional.

Proposition 10 (In�nite FSL-Models)

There is a coherent FSL-concept which has no �nite model [Vardi, 1985].

In contrast to this result, the �nite model property holds for �1-free FSL.

Proposition 11 (Finite Models for �1-free FSL)

Every coherent �1-free FSL-concept C has a connected model over D with

jDj � 4nn2, where n = l(C) [Ben-Ari et al., 1982].
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4.2 Concept Equations and Inequations

The terminological logics investigated seem to be very expressive. Neverthe-

less, they do not support concept de�nitions and constraints. We could want

to de�ne, for instance, human beings by

human = 8parent:human (1)

Of course, we want to know the consequences of such de�nitions and

constraints. Like in dynamic logic we say, for example, that human v

8parent�:human is a global consequence of the set � = f(1)g and write:

� j= human v 8parent�:human

Formally, we pin this down as follows: Let � [ fEg be a set of concept

equations and inequations. E is a global consequence of �, written � j= E, i�

each extension function E satisfying all elements of �, also satis�es E; where

E satis�es C = D i� E[C] = E[D], and E satis�es C 6= D i� E[C] 6= E[D].

We treat C v D as an abbreviation for C uD = C, and each element of

� of this form is called universal implication.

Now there is the question whether the ability to de�ne and constrain sets

actually increases the expressive power of T SL. It will turn out that for �nite

�, global consequence in T SL is reducible to subsumption in T SL. To show

this, we need two lemmata. The �rst signi�es that only connected models are

relevant for global consequence in T SL. This can easily be proved by utilizing

the so-called collapsed model property of T SL stating that every T SL-model

can be collapsed into a �nite connected one [Harel, 1984, Theorem 2.13].

Lemma 2 Let � [ fEg be a set of T SL-concept equations and inequations.

Then � j= E i� each connected extension function E satisfying all elements

of �, also satis�es E.

The following lemma states that universally quanti�ed expressions are

expressible in connected models|viz. by c(C) de�ned as 8(r1t r
�1
1 :::t rmt

r�1
m
)�:C, where r1; :::; rm are the atomic roles and features of the language in

question. Note that c owes its name to the common knowledge operator (cf.
[Halpern and Moses, 1985]).

Lemma 3 Let C be any T SL-concept and E any connected extension func-

tion over D. E[C] = D i� E[c(C)] = D, and moreover E[c(C)] 6= D i�

E[c(C)] = ;.

Theorem 4 For �nite sets of concept equations and inequations, global con-

sequence in T SL is log space reducible to subsumption in T SL.

12



Proof: Let eq(C;D) be c(:C tD) u c(:D t C). According to the last two

lemmata, it is obvious that fC1 = D1g[� j= C v D i� � j= eq(C1;D1)uC v

D and that fC1 6= D1g [ � j= C v D i� � j= :eq(C1;D1) u C v D. Taking

this as induction step, it can be easily shown by induction on j�j that all

elements of � can be eliminated linearly. 2

However, the proof does not work for in�nite � since T SL lacks com-

pactness. This becomes obvious when considering the in�nite set � = fc v

8r:d; c v 8r �r:d; :::g. Clearly, c v 8r+:d is a global consequence of � but not

a global consequence of any �nite subset of �. In fact, global consequence in

T SL is known to be highly undecidable [Harel, 1984, Section 2.4]. However,

Theorem 4 also holds for FSL since Vardi [1985] proved the collapsed model

property for FSL.

5 Conclusions

So far we have seen that correspondences between terminological logics and

propositional modal and dynamic logics can be used to gain new insights into

the nature of terminological logics. However, this work can be extended in

two ways. First, we can further exploit the correspondences already estab-

lished by carefully studying the corresponding theories of modal and dynamic

logic. For example, we proved that a syntactically restricted form of global

consequence in T SL, known in dynamic logic as partial completeness asser-

tions, is NP-complete. Secondly, we can establish further correspondences.

Constants in terminological logics, for instance, correspond to names (atomic

formulae denoting single element sets) in dynamic logic. Similarly, temporal

expressions can be integrated into terminological logics.
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