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Abstract

We analyse the complexity of finite model reasoning in the description logicALCQI , i.e.,ALC augmented
with qualifying number restrictions, inverse roles, and general TBoxes. It turns out that all relevant reasoning
tasks such as concept satisfiability and ABox consistency are ExpTime-complete, regardless of whether the
numbers in number restrictions are coded unarily or binarily. Thus, finite model reasoning with ALCQI is
not harder than standard reasoning with ALCQI .
© 2004 Elsevier Inc. All rights reserved.
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1. Motivation

Description logics (DLs) are a family of logical formalisms that originated in the field of knowl-
edge representation, and that were designed to represent and reason about conceptual knowledge.
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Central DL notions are concepts (unary predicates or classes) and roles (binary relations). A spe-
cific DL is mainly characterized by the constructors it provides to build complex concepts (and
roles) from atomic ones. For example, in the basic DL ALC [28], all roles are atomic, and concepts
can be built using Boolean operators and value restrictions. The following ALC-concept describes
companies in which only managers or researchers work, and in which a parent works.

Company � (∃employs.∃hasChild.Human) � ∀employs.(Researcher � Manager)

It is well known that DLs are closely related to modal logics. For example, ALC is a notational
variant of the basic multi-modal logic K [27], and the aboveALC concept is the DL counterpart of
the multi modal formula

Company ∧ (〈employs〉〈hasChild〉Human) ∧ [employs](Researcher ∨ Manager).

AstandardDLknowledgebase, calledTBox, consists of a set of concept equations, i.e., expressions
of the form C

.= D, where C and D are possibly complex concepts. Intuitively, a TBox constrains
the set of models that are admitted for the interpretation of concepts. Using a TBox, we can thus
describe the terminology of an application domain by using an (atomic) concept name on the left-
hand side and its (complex) definition on the right-hand side. Moreover, we can capture general
constraints that come from the application domain. The standard DL reasoning tasks are deciding
concept satisfiability and concept subsumption w.r.t. a TBox: checking whether a concept C can
have any instances in models of the TBox T , and checking whether one concept D is more general
than another concept C w.r.t. models of T .
During the last decade, a lot of work has been devoted to investigating the classical trade-off

between expressivity and complexity [1], i.e., to find DLs whose expressive power is appropriate for
a certain kind of applications, and whose reasoning problems are still decidable, preferably of an
acceptable complexity.
Applications for which such a good compromise could be found include reasoning about

conceptual database models [8] and the usage of DLs as logical underpinning of ontology lan-
guages such as DAML+OIL and OWL [16,17]. In this paper, we are concerned with the former
application. Suppose that a conceptual database model is described by one of the standard for-
malisms: an ER diagram in the case of relational databases and a UML diagram in the case of
object-oriented databases. As shown in [8], such models can be translated into a DL TBox and a
description logic reasoner such as FaCT orRACER [15,14] can be used to reason about the database
model. In particular, this approach can be used to detect inconsistencies in the database model, and
to infer implicit IS-A relationships between entities/classes that are not given explicitly in themodel.
This useful and original application has already led to the implementation of tools that provide
a GUI for specifying conceptual models, automatise the translation into description logics, and
display the information returned by the DL reasoner [12].
One of the most important description logics used for reasoning about conceptual database

models is called ALCQI [10], and extends ALC with

• qualifying number restrictions (corresponding to graded modalities in modal logic): concepts of
the form (�nR.C) and (�nR.C), describing objects having at least n (at most n) instances of C
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related to them via the role R. For example, the concept Company � (�3employs.Manager)
describes companies employing at most 3 managers.

• the inverse role constructor (corresponding to inverse modalities):ALCQI allows the use of the
inverse R− of a role R in number restrictions and value restrictions. For example, the concept
Manager � (�2employs−.Company) describes managers that are employed by at least two
companies.

A feature that distinguishesALCQI from less expressiveDLs is thatALCQI is capable of enforc-
ing infinity, i.e., there are concepts and TBoxes that are satisfiable, but admit only infinite models.
In other words, ALCQI lacks the finite model property (FMP).
Since reasoning about database models is one of ALCQI’s premier applications, its lack of the

FMP cannot be ignored: database models are usually encoded into ALCQI such that there is a
tight correspondence between logical models and databases; since databases are usually considered
to be finite, we should thus perform reasoning on finite models rather than on unrestricted ones
when using ALCQI in this context. That the restriction to finite models indeed makes a difference
is witnessed by that fact that there exist quite simple ER and UML diagrams that are satisfiable
only in infinite models [30]. From a database perspective, such diagrams should thus be consid-
ered inconsistent rather than consistent, and thus we get an incorrect result when translating them
to ALCQI and using unrestricted model reasoning. Interestingly, the problem of finite models
is commonly ignored when using DL tools for reasoning about database models. This is due to
the fact that, with FaCT and RACER [15,14], there are two popular and highly efficient reasoners
for dealing with unrestricted reasoning in ALCQI but, up to now, no ALCQI reasoner for finite
models is available. We believe that one important reason for the lack of finite model reasoners is
that, in contrast to reasoning w.r.t. unrestricted models, reasoning w.r.t. finite models in ALCQI
is not yet well understood from a theoretical perspective. In particular, as we will discuss below
in more detail, tight complexity bounds for finite model reasoning in ALCQI have never been
determined. The purpose of this paper is thus to improve the understanding of finite model reasoning
in description logics by establishing tight ExpTime complexity bounds for finite model reasoning in the
DL ALCQI.

As noted above, reasoning with ALCQI in unrestricted models is well-understood. For ex-
ample, it is known that satisfiability and subsumption w.r.t. TBoxes is ExpTime-complete [10].
Note that there is a subtle issue about number restrictions here: inside ALCQI’s constructors
(�n R C) and (�n R C), we can code the number n either in unary or in binary, and the length
of concepts and TBoxes will clearly be exponentially shorter in the latter case. Fortunately,
the ALCQI ExpTime-completeness results is insensitive of this coding, i.e., it holds for both
cases [31].
For finitemodel reasoning, no tight complexity bounds were known. It follows easily frommodal

correspondence theory [32] thatALCQI is a fragment of the two variable fragment of first order log-
ic with counting quantifiers (C2) [13,22]. Hence finite satisfiability of C2 being decidable [13] implies
that, inALCQI , finite satisfiability and subsumption w.r.t. TBoxes are decidable as well. Moreover,
Calvanese proves in [3] that ALCQI satisfiability and subsumption w.r.t. TBoxes are decidable in
2-ExpTime. Very recently, finite satisfiability of C2 was proven to be complete for non-deterministic
exponential time [25,20], which improves Calvanese’s upper bound. A lower bound follows easily
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from the fact that reasoning in ALC is already ExpTime-hard [11,27]—both w.r.t. unrestricted and
finite models sinceALC enjoys the finite model property. This leaves us with a gap between ExpTime
and NExptime for finite model reasoning inALCQI and the question whether it is as insensitive to
the coding of numbers as unrestricted model reasoning: all upper bounds mentioned were proved
for unary coding of numbers. In this paper, we will close this gap by providing a tight ExpTime
upper bound and show that, similar to the unrestricted case, the complexity is insensitive to the
coding of numbers. More precisely, we present the following results:
In Section 3, we develop an algorithm that decides the finite satisfiability of ALCQI-concepts

w.r.t. TBoxes. Similar to Calvanese’s approach, the core idea behind our algorithm is to translate
a given satisfiability problem into a set of linear inequalities that can then be solved by linear
programming methods. In this translation, we use variables to represent the number of elements
described by so-called mosaics: a mosaic is an abstraction of domain elements which describes the
(unary) type of a domain element together with its “neighborhood,” i.e., the numbers and types of
(relevant) role successors. Using a rather strict notion of mosaics and an appropriate data struc-
ture to represent them allows us to keep the number of mosaics exponential in the size of the
input. This yields an exponential bound on the number of variables and also on the size of sys-
tems of inequalities. Thus, we improve the best known NExptime upper bound to a tight ExpTime
one.
However, this bound is exponential only if we assume unary coding of numbers in number re-

strictions, and it is not clear whether our translation can be modified to yield an ExpTime upper
bound in the case of binary coding. Thus, we use a different strategy to attack binary coding: in
Section 4, we give a polynomial reduction of finite ALCQI-concept satisfiability w.r.t.TBoxes to
finite satisfiability of ALCFI-concept satisfiability w.r.t. TBoxes, where ALCFI is obtained from
ALCQI by allowing only numbers up to two to be used in number restrictions. Since finite model
reasoning in ALCFI is in ExpTime by the results from Section 3 (the coding of numbers is not an
issue here), we obtain a tight ExpTime bound for finite model reasoning in ALCQI with numbers
coded in binary. Note that we cannot use existing reductions from ALCQI to ALCFI since these
fail for finite model reasoning [10].
In Section 5, we extend our result to a more general reasoning problem, namely the finite consis-

tency ofABoxesw.r.t. TBoxes. Intuitively,ABoxes describe a particular state of affairs, a “snapshot”
of the world. FiniteALCQI-ABox consistency is another interesting reasoning task with important
applications: whereas finite ALCQI-concept satisfiability can be used to decide the consistency of
conceptual database models and infer implicit IS-A relationships, ALCQI-ABox consistency can
be used as the core component of algorithms deciding containment of conjunctive queries w.r.t. con-
ceptual database models—a task that DLs have successfully been used for and that calls for finite
model reasoning [5,18]. Using a reduction to (finite) concept satisfiability, we are able to show that
this reasoning task is alsoExpTime-complete, independently of the way inwhich numbers are coded.
Finally, in Section 6, we discuss related work.

2. Preliminaries

We introduce syntax and semantics ofALCQI , discuss the inference problems we are interested
in, and introduce some useful notation.
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Definition 1 (ALCQI Syntax). Let R and C be disjoint and countably infinite sets of role and
concept names. A role is either a role name R ∈ R or the inverse R− of a role name R ∈ R. The set
of ALCQI-concepts is the smallest set satisfying the following properties:

• each concept name A ∈ C is an ALCQI-concept;
• if C and D are ALCQI-concepts, R is a role, and n a natural number, then ¬C , C � D, C � D,
(�n R C), and (�n R C) are also ALCQI-concepts.

A concept equation is of the form C
.= D for C ,D twoALCQI-concepts. A TBox is a finite set of

concept equations.

We will refer to concepts of the form (�n R C) as atmost restrictions and to concepts of the form
(�n R C) as atleast restrictions. As usual, we use the standard abbreviations → and ↔ as well as
∃R.C for (�1 R C), ∀R.C for (�0 R ¬C), � to denote an arbitrary propositional tautology, and ⊥
as abbreviation for ¬�. The fragment ALCFI of ALCQI is obtained by admitting only atmost
restrictions (�n R C) with n ∈ {0, 1} and only atleast restrictions (�n R C) with n ∈ {1, 2}.
Definition 2 (ALCQI Semantics). An interpretation I is a pair (	I , ·I) where 	I is a non-empty
set and ·I is a mapping that assigns

• to each concept name A, a set AI ⊆ 	I and
• to each role name R, a binary relation RI ⊆ 	I × 	I .

The interpretation of inverse roles and complex concepts is then defined as follows, with #S
denoting the cardinality of the set S:

(R−)I = {〈e, d〉 | 〈d , e〉 ∈ RI}
(¬C)I = 	I \ CI

(C � D)I = CI ∩ DI

(C � D)I = CI ∪ DI

(�n R C)I = {d | #{e ∈ CI | 〈d , e〉 ∈ RI} � n}
(�n R C)I = {d | #{e ∈ CI | 〈d , e〉 ∈ RI} � n}

A domain element d ∈ 	I is an instance of a concept C if d ∈ CI ; moreover, a domain element
d ′ ∈ 	I is an R-neighbour of d , for R a role, if (d , d ′) ∈ RI .
An interpretation I satisfies a concept equation C .= D if CI = DI , and I is called a model of a

TBox T if I satisfies all concept equations in T .
A concept C is satisfiable w.r.t. a TBox T if there is a model I of T with CI /= ∅. A concept C is

finitely satisfiable w.r.t. a TBox T if there is a model I of T with CI /= ∅ and 	I finite.

To see that satisfiability and finite satisfiability do not coincide, consider the concept C = ¬A �
∃R.A and the TBox {A .= ∃R.A � (�1 R− �)}. It is not hard to see that C is satisfiable w.r.t. T , but
only in infinite models: each model contains an infinite, acyclic R-chain. Thus, ALCQI does not
enjoy the finite model property.
The second important reasoning problem on concepts and TBoxes, subsumption of concepts

w.r.t. TBoxes, has already been mentioned in the introduction: a concept C is (finitely) subsumed
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by a concept D w.r.t. a TBox T if we have CI ⊆ DI for each (finite) model I of T . It is well known
that subsumption can be reduced to (un)satisfiability, as C is subsumed by D w.r.t. T if and only if
C � ¬D is unsatisfiable w.r.t. T . Since this holds both for the infinite and the finite case, in this paper
we will concentrate on satisfiability and just note here that all complexity bounds obtained in this
paper also apply to subsumption (despite the implicit complementation in the reduction, since we
will only be dealing with deterministic complexity classes).
In the remainder of this paper, we will w.l.o.g. only consider concepts and TBoxes that are in a

restricted syntactic form: concepts are assumed to be in negation normal form (NNF), i.e., negation
is only allowed in front of concept names. Every ALCQI-concept can be transformed in linear
time into an equivalent one in NNF by exhaustively applying the rewrite rules displayed in Fig.
1. We use ¬̇C to denote the NNF of ¬C . TBoxes are assumed to be of the rather simple form
{� .= C} with C in NNF. This can be done w.l.o.g. since an interpretation I is a model of a TBox
T = {Ci

.= Di | 1 � i � n} iff it is a model of {� .= �1�i�n(Ci ↔ Di)}.
We now introduce some convenient notation used throughout this paper. For each role R, we

use Inv(R) to denote R− if R is a role name, and S if R = S−. For a given concept C and TBox T , we
use cnam(C , T ) to denote the set of concept names appearing in C and T , rnam(C , T ) to denote
the set of role names appearing in C and T , and rol(C , T ) to denote the set

rnam(C , T ) ∪ {R− | R ∈ rnam(C , T )}.

3. Unary coding of numbers

In this section, we present a decision procedure for finite satisfiability of ALCQI-concepts w.r.t.
TBoxes that runs in deterministic exponential time, provided that numbers in number restrictions
are coded unarily. In Section 4, we will generalise this upper bound to binary coding of numbers.
It is easily seen that combinatorics is an important issue when deciding finite satisfiability of

ALCQI-concepts. To illustrate this, consider the TBox
T := {A .= (�2 R B), B .= (�1 R− A)}. (∗)

In any (finite) model of T , there are at least twice as many objects satisfying B as there are objects
satisfying A. This kind of combinatorics is not an issue if infinite domains are admitted: in this
case, we can always find a model where all concepts have the same number of instances, namely
countably infinitely many.
As observed by Calvanese [3], the combinatorial issues of finite model reasoning in description

logics can be addressed by using systems of inequalities. More precisely, for deciding the finite sat-
isfiability of ALCQI-concepts w.r.t. TBoxes, we will convert a given conept C0 and TBox T into a

Fig. 1. The NNF rewrite rules.
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system of linear inequalities that describes the induced combinatorial constraints. This is done in
a such way that there is a correspondence between non-negative integer solutions of the equation
system and finite models of the input. In this way, checking finite satisfiability of the input concept
and TBox corresponds to checking whether the constructed system of inequalities has a non-nega-
tive integer solution. To obtain an ExpTime upper bound as desired, we have to be careful to ensure
that the system of inequalities can be constructed in time exponential in the size of the input, and
that the existence of solutions can be checked in polynomial time.
Equation systems that handle combinatorial constraints can be conveniently formulated in terms

of types, which we introduce next. Along with types, we define the closure of anALCQI-conceptC0
and a TBox T , which is, intuitively, the set of concepts that are “relevant” for deciding the (finite)
satisfiability of C0 w.r.t. T .
Definition 3 (Closure, Type). Let C0 be a concept and T = {� .= CT } a TBox. The closure cl(C0, T )

of C0 and T is the smallest set of ALCQI-concepts such that

• C0, CT , and all sub-concepts of C0 and CT are in cl(C0, T );
• if C ∈ cl(C0, T ), then ¬̇C , the NNF of ¬C , is also in cl(C0, T ).

A type T for C0 and T is a subset T ⊆ cl(C0, T ) such that, for all D,E ∈ cl(C0, T ), we have

(1) D ∈ T iff ¬̇D "∈ T ,
(2) if D � E ∈ cl(C0, T ), then D � E ∈ T iff D ∈ T and E ∈ T ,
(3) if D � E ∈ cl(C0, T ), then D � E ∈ T iff D ∈ T or E ∈ T , and
(4) CT ∈ T .

We use type(C0, T ) to denote the set of all types for C0 and T .
For interpretations I , we call a domain element d ∈ 	I an instance of a type T if d ∈ CI for all

C ∈ T . Moreover, we use t(d) to denote the type that d is an instance of.1

A first idea to convert a finite satisfiability problem into an equational problem could be to intro-
duce one variable xT for each type T for the input concept C0 and TBox T , and then to formulate
a suitable system of inequalities for C0 and T such that each non-negative integer solution � of the
equation system corresponds to a model where each type T has exactly �(xT ) instances.
However, it turns out that this approach is too naive: assume that T1 to T5 are types for C0 and

T , and that the following holds:

• (�1 R C) ∈ T1 and (�1 R D) ∈ T2,
• (�1 R− �) ∈ T3 ∩ T4 ∩ T5,
• C ∈ T3 ∩ T4 and D ∈ T4 ∩ T5.

Observe that (instances of) T1 can “use” (instances of) T3 and T4 to satisfy the concept (�1 R C) ∈
T1, and T2 can “use” T4 and T5 to satisfy the concept (�1 R D) ∈ T2, a situation depicted in Fig. 2.

1 This type is obviously unique, and thus t(d) well defined.
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Fig. 2. Problems with types.

Similarly as for our initial example (∗), we get that (i) there have to be at least as many instances
of T3 and T4 as there are instances of T1, and (ii) there have to be at least as many instances of T4
and T5 as there are instances of T2. Thus, it is likely that a system of inequalities for C0 and T will
include

xT1 � xT3 + xT4 and xT2 � xT4 + xT5 . (∗∗)

Ignoring the existence of possible additional inequalities for a second, we obtain xT1 = xT2 =
xT4 = 1 and xT3 = xT5 = 0 as an integer solution. Trying to construct a model with a1, a2, and a4
instances of T1, T2, and T4, respectively, we have to use a4 as a witness of a1 being an instance
of (�1 R C ) and a2 being an instance of (�1 R D). Since this clearly violates the (�1 R− �)

concept in T4, we do not have an easy correspondence between models and integer solutions
as sketched above. Intuitively, the problem is that, above, we have considered Points (i) and
(ii) separately although they both speak about T4. Unfortunately, it seems impossible to resolve
this problem by adding additional inequalities of size at most exponential in the size of the
input.
One possible view on the sketched problem, which is also taken by Calvanese [3], is that

types do not provide enough information about domain elements. Intuitively, it seems neces-
sary to also record, for each role R, the type and number of R-neighbours. If this is done, in
the above example (∗∗), we can distinguish instances of T1 and T2 that have R-neighbors of type
T4 from those that do not. It is then possible to refine the given equations such that “infeasible
solutions” such as the one discussed are ruled out. Thus, we now develop a refinement of types
that allows to describe such additional information. We start with introducing a convenient
notation that will play a rather prominent role throughout this paper.

Definition 4 (lim function). Let C0 be a concept, T a TBox, R a role, and T1, T2 types for C0 and
T . Then we write

limR(T1, T2)

if C ∈ T1 and (�n Inv(R) C) ∈ T2 for some C ∈ cl(C0, T ) and n ∈ N.

Intuitively, limR(T1, T2) holds if, for each instance of T2, there can be only a limited number
of “incoming R-edges” from instances of T1. This situation is illustrated in Fig. 3, where the
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Fig. 3. Illustration of the lim function.

left ellipse contains all instances of type T1 and the right ellipsis contains all instances of type
T2. Note that, in the initial example (∗), we have limR(T1, T2) for all types T1, T2 such that T1
contains A and T2 contains B.
Our generalization of a type to also include the type and number of R-neighbours is called a

mosaic, and is defined as follows.

Definition 5 (Mosaic). Let T be a type and $% ∈ {�,�}. Then we use the following
abbreviations:

max$%(T) := max{n | ($% n R C) ∈ T }
sum$%(T) :=

∑
($% n R C)∈T

n.

A mosaic for a concept C0 and a TBox T is a triple M = (TM ,LM ,EM) where

• TM ∈ type(C0, T ),
• LM and EM are functions from rol(C0, T ) × type(C0, T ) to N.

such that the following conditions are satisfied:

(M1) if LM(R, T) > 0, then limR(TM , T) and not limInv(R)(T , TM),
(M2) if EM(R, T) > 0, then limInv(R)(T , TM),
(M3) if (�n R C) ∈ TM , then n �

∑
{T |C∈T }

EM(R, T),

(M4) #{(R, T) | LM(R, T) > 0} � sum�(TM ) and max(ran(LM)) � max�(TM ), where ran(f)
denotes the range of the function f .

If I is an interpretation, d ∈ 	I , and M = (TM ,LM ,EM) a mosaic for C0 and T , then d is an
instance of M if the following holds, for all R ∈ rol(C0, T ) and T ∈ type(C0, T ):

• t(d) = TM , i.e., d is an instance of TM ;
• if limR(TM , T) and not limInv(R)(T , TM), then LM(R, T ) is the minimum of max�(TM ) and
#{e ∈ 	I | (d , e) ∈ RI and t(e) = T };

• if limInv(R)(T , TM), then EM(R, T) = #{e ∈ 	I | (d , e) ∈ RI and t(e) = T }.
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It follows immediately from this definition that each domain element d is an instance of ex-
actly one mosaic. The definition of “instance” shows how mosaics are used to describe domain
elements: while TM is simply the type of d in I , LM and EM are used to describe the num-
ber of neighbours of d of certain types that are reachable from d via some role R, up to the
limit max�(TM ) in the LM case (to keep the number of mosaics “small”). More precisely, we
distinguish three possibilities for the R relationship between TM and a type T :

(1) not limInv(R)(T , TM) but limR(TM , T). Then each instance of TM may have an unrestricted
number of R-neighbours of type T since, by definition of lim, (�n R C) ∈ TM implies C /∈ T .
However, each instance of T has a limit on the number of Inv(R)-neighbours of type TM :
there is some (�n Inv(R) C) ∈ T with C ∈ TM . Thus, we must be careful not to violate this
limit when using instances of T as “witnesses” to satisfy atleast restrictions (�n R D) ∈ TM
with D ∈ T (such a violation is exactly what is happening in the example (∗∗) above). To
this end, we record in LM the minimal number of R-neighbours of type T that an instance
of M has (“L” for “lower bound”). In the equation systems to be defined later, this lower
bound will be used to take care of atleast restrictions in TM .

(2) limInv(R)(T , TM). Then an instance d of TM may only have a limited number of R-neighbours
of type T . To prevent the violation of this limit, we need to record an upper bound on the
number of d ’s R-neighbours of type T in M . On the other hand, there may be atleast re-
strictions in TM that need witnesses of type T . Thus, we also want to record a lower bound
on the number of d ’s R-neighbours of type T in M . Summing up, we use EM to record the
exact number of d ’s R-neighbours of type T (“E” for “exact bound”).

(3) Not limInv(R)(T , TM) and not limR(TM , T). Then each instance of TM may have an unrestrict-
ed number of R-neighbours of type T and each instance of T may have an unrestricted
number of Inv(R)-neighbours of type TM . Intuitively, R-neighbours of type T are “uncriti-
cal” for M and thus their number need not be recorded in the mosaic (we shall see later
that even without stating a lower bound, it is easy to satisfy atleast restrictions in TM using
witnesses in T ).

The conditions (M1) to (M4) of mosaics can thus be understood as follows: (M1) and (M2)
ensure that LM and EM record information for the “correct” types as described above; (M3)
ensures that at most restrictions are not violated—it suffices to consider only EM here since
(�n R C) ∈ TM and C ∈ T implies LM(R, T) = 0 by (M1) and definition of lim; finally, (M4) puts
upper bounds on LM to ensure that there exists only a limited number of mosaics.
To use mosaics in systems of inequalities, we introduce one variable xM for each mosaic

M for the input C0 and T , instead of for each type as sketched before. The intuition be-
hind variables, however, is slightly different from the type-based case: the goal is to ensure
that each non-negative integer solution � of the equation system corresponds to a pre-model
in which each mosaic M has exactly �(xM ) instances. Intuitively, pre-models differ from mod-
els in that, for any role R and domain elements d , e, they admit multiple R-edges between d

and e.

Definition 6 (Pre-model). A pre-interpretation I is a pair (	I , ·I) where 	I is a non-empty set
and ·I is a mapping that assigns
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• to each concept name A, a set AI ⊆ 	I and
• to each role name R, a function RI : (	I × 	I) → �.

Complex concepts and roles are interpreted as for standard interpretations, with the follow-
ing exceptions:

(R−)I(d , e) = RI(e, d),
(�n R C)I = {d | ∑

e∈CI RI(d , e) � n}, and
(�n R C)I = {d | ∑

e∈CI RI(d , e) � n}.

A pre-interpretation I is a pre-model of a concept C0 and a TBox T iff CI
0 /= ∅ and C

.=
D ∈ T implies CI = DI .

It is straightforward to adapt the notion “instance of mosaic” to pre-models by taking into
account the multiple edges when defining LM and EM : we only have to replace #{e ∈ 	I |
(d , e) ∈ RI and t(e) = T } with ∑

e∈T I RI(d , e).
The following theorem shows that we may safely consider pre-models instead of models

when checking satisfiability.

Theorem 7. A concept C0 and a TBox T have a finite pre-model iff C0 and T have a finite
(standard) model.

The “if” direction is trivial since every standard model can be conceived as a pre-model.
A formal proof of the “only if” direction can be found in Appendix A. Intuitively, to obtain
a finite standard model from a finite pre-model I for C0 and T , we take a finite number
of “disjoint copies” of I , and then bend some role relationships back and forth to eliminate
multiple edges. This construction is illustrated in Fig. 4: if the maximum multiplicity of edges
in the pre-model is n, we take n disjoint copies of it and “bend” the ith edge between two
elements d and e in the jth copy to go to (the copy of) e in the ((j + i) mod n)th copy. This
ensures that, for any role R, type T , and domain element d of the resulting model I ′, d has
exactly the same number of R-neighbours of type T as its corresponding domain element in
the pre-model I . As a consequence, I ′ is still a model of C0 and T .

Fig. 4. The copying construction.
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Let us now come back to the system of inequalities. As already stated, the variables repre-
sent the number of instances that mosaics have in a pre-model. We use inequalities to ensure
that we can “connect” the instances of the mosaics via roles such that

(a) the lower bounds on numbers of successors stored in LM are satisfied,
(b) the exact numbers of successors stored as EM(R, T) are satisfied, where we have to distin-

guish the following two cases
(i) limInv(R)(T , TM) and limR(TM , T), and
(ii) limInv(R)(T , TM) and not limR(TM , T).

(c) all atleast concepts are satisfied.

Note that we do not need to worry about the atmost-concepts as they are ensured by (M3)
together with Point (b) above. We first give the inequalities and then relate them to Points (a)
to (c) above.

Definition 8 (Equation System). For C0 an ALCQI-concept and T a TBox, we introduce a
variable xM for each mosaic M for C0, T and define the system of inequalities EC0,T by taking
(i) the inequality∑

{M |C0∈TM }
xM � 1, (E1)

(ii) for each pair of types T , T ′ ∈ type(C0, T ) and role R such that limR(T , T ′) and not
limInv(R)(T

′, T) the inequality∑
{M |TM=T }

LM(R, T ′) · xM �
∑

{M |TM=T ′}
EM(Inv(R), T) · xM , (E2)

and (iii) for each pair of types T , T ′ ∈ type(C0, T ) and role R such that limR(T , T ′) and
limInv(R)(T

′, T) the inequality∑
{M |TM=T }

EM(R, T ′) · xM =
∑

{M |TM=T ′}
EM(Inv(R), T) · xM . (E3)

We give a brief overview of the purpose of the inequalities, and refer to the proof of
Lemma 10 below for the full picture. Inequality (E1) simply guarantees the existence of an
instance of C0, and inequality (E2) deals with Point (a) from above. Point (b) is comprised of
two subcases, and Point (b.i) is dealt with by inequality (E3). In contrast, Point (b.ii) and (c)
cannot be dealt with by a simple inequality since they rather require a “conditional” inequali-
ty. To address these two points, we introduce the notion of admissible solutions.

Definition 9 (Admissible). A solution of EC0,T is admissible if it is a non-negative integer solution
and satisfies the following side-conditions:

(i) for each pair of types T , T ′ ∈ type(C0, T ) and roleR such that limR(T , T ′) and not limInv(R)(T
′, T),

if
∑

{M |TM=T ′}
EM(Inv(R), T) · xM > 0, then

∑
{M |TM=T }

xM > 0. (A1)
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(ii) for each mosaic M and each role R, if xM > 0, (�n R C) ∈ TM , and

m =
∑

{T |C∈T }
LM(R, T) +

∑
{T |C∈T }

EM(R, T) < n,

then (A2)

∑
{M ′|C∈TM ′ , not limR(TM ,TM ′ ),

and not limInv(R)(TM ′ ,TM )}

xM ′ > 0,

Now Point (b.ii) is addressed by the side-condition (A1). The fact that we require only the exis-
tence of a single instance in the post-condition is due to the fact that we work in pre-models and
can simply introduce an appropriate multiple edge to satisfy requirements for larger numbers of
instances. Finally, Point (c) from above is ensured using side-condition (A2).
The following lemma shows that our inequalities and side-conditions are indeed appropriate.

Lemma 10.The system of inequalities EC0,T has an admissible solution iffC0 is finitely satisfiable w.r.t.
T .

Intuitively, the proof of Lemma 10 proceeds as follows: for the “if” direction we simply take a
finite model I for C0 and T (as every model is also a pre-model), and then define an admissible
solution for the equation system by taking, for each variable xM , the number of instances of M in
I . For the “only if” direction, we construct a pre-model for I and T by reserving domain elements
for each mosaic as indicated by an admissible solution of EC0,T , and then refer to the inequalities
and side-conditions to show that we can indeed turn the reserved domain elements into instances
of the corresponding mosaic by connecting them via roles in an appropriate way. It then remains
to refer to Lemma 7 for the existence of a finite (standard) model. As the “only if” direction nicely
illustrates the purpose of the individual inequalities and side-conditions, we give the proof here.
The proof of the “if” direction can be found in Appendix A.

Proof.We only prove the “only if” direction here. Let {x̂M | M a mosaic} be an admissible solution
of EC0,T . We construct a finite pre-interpretation I from this solution and then show that it is a
pre-model of C0 and T . For each mosaic M , fix a set M̂ (of instances) such that #M̂ = x̂M and
M /= M ′ implies M̂ ∩ M̂ ′ = ∅. We define

	I =
⋃

M̂ .

In the following, for all e ∈ 	I , we use m(e) to denote the mosaic M with e ∈ M̂ , and t(e) to
denote the type Tm(e). For each concept name A ∈ C , we put

AI := {e ∈ 	I | A ∈ t(e)}.

Role names R ∈ R are harder to deal with. More precisely, in the construction of their inter-
pretation, we distinguish between the three cases identified on Page 141. We start with Case (1): for
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each role R ∈ rol(C0, T ) and each pair of types T , T ′ ∈ type(C0, T ) such that limR(T , T ′) but not
limInv(R)(T

′, T), we construct a mapping

�RT ,T ′ :
⋃

{M |TM=T }
M̂ ×

⋃
{M |TM=T ′}

M̂ → N

(such mappings will henceforth be called multiplicity mappings) such that

(1) for each e with t(e) = T , we have
∑

{e′∈	I |t(e′)=T ′}
�RT ,T ′(e, e′) � Lm(e)(R, T ′);

(2) for each e′ with t(e′) = T ′, we have
∑

{e∈	I |t(e)=T }
�RT ,T ′(e, e′) = Em(e′)(Inv(R), T).

Intuitively, the �RT ,T ′ function is the “part” of RI that deals with edges from elements of type T
to elements of type T ′. The construction proceeds as follows. First define two sets

	T := {(e, i) ∈ 	I × N | t(e) = T and i < Lm(e)(R, T ′)}
	T ′ := {(e, i) ∈ 	I × N | t(e) = T ′ and i < Em(e)(Inv(R), T)}

By Eq. (E2), we find a (total) injection f from 	T to 	′
T . We define a multiplicity mapping r

by setting r(d , e) := �{(i, j) ∈ N2 | f(e, i) = (d , j)}. It is easily checked that, by setting �RT ,T ′ := r, we
satisfy Condition (1) from above, but only the following weakening of Condition (2):

(2′) for each e′ with t(e′) = T ′, we have
∑

{e∈	I |t(e)=T }
�RT ,T ′(e, e′) � Em(e′)(Inv(R), T).

If Condition (2) is satisfied accidentally, we are done. If it is not, then we can “augment” r

appropriately to satisfy Condition (2) without destroying Condition (1). This is realised in two
steps. First, if r does not accidentally satisfy (2), then there is an e′ with t(e′) = T ′ and

∑
{e∈	I |t(e)=T }

�RT ,T ′(e, e′) < Em(e′)(Inv(R), T).

Then x̂m(e′) /= 0 and Em(e′)(Inv(R), T) > 0. Hence, by side-condition (A1), there exists a mosaicM
such that M̂ /= ∅ and TM = T . Fix an eM ∈ M̂ . Second, for each e′ with t(e′) = T ′, we define

miss(e′) := Em(e′)(Inv(R), T) −
∑

{e∈	I |t(e)=T }
�RT ,T ′(e, e′).
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We can now define �RT ,T ′ :

�RT ,T ′(d , e′) :=
{
r(d , e′) + miss(e′) if d = eM

r(d , e′) otherwise.

It is readily checked that Conditions (1) and (2) are now both satisfied. We have thus finished the
construction of �RT ,T ′ .
Now we deal with Case (2) from Page 141: for each role name R and each pair of types T , T ′ ∈

type(C0, T ) such that limR(T , T ′) and limR−(T ′, T), we construct a multiplicity mapping  RT ,T ′ such
that

(1) for each e with t(e) = T , we have

∑
{e′∈	I |t(e′)=T ′}

 RT ,T ′(e, e′) = Em(e)(R, T ′);

(2) for each e′ with t(e′) = T ′, we have
∑

{e∈	I |t(e)=T }
 RT ,T ′(e, e′) = Em(e′)(Inv(R), T).

The construction is is similar to that of �RT ,T ′ , but simpler: First define two sets

	T := {(e, i) ∈ 	I × N | t(e) = T and i < Em(e)(R, T ′)}
	T ′ := {(e, i) ∈ 	I × N | t(e) = T ′ and i < Em(e)(Inv(R), T)}

By Eq. (E3), we find a bijection f from	T to	′
T . We then define  

R
T ,T ′ := �{(i, j) ∈ N2 | f(e, i) =

(d , j)}. It is easily checked that Conditions (1) and (2) are satisfied, and thus we are done.
Finally, we address the simplest case from Page 141: Case (3). Let n ∈ N be a supremum of the

numbers used inside number restrictions in C0 and T . For each role name R and each pair of types
T , T ′ ∈ type(C0, T ) such that neither limR(T , T ′) nor limR−(T ′, T), we define a multiplicity mapping
ωR
T ,T ′ by setting ωR

T ,T ′(d , e) := n for all d , e with t(e) = T and t(e′) = T ′.
We are now ready to assemble the interpretation RI of role names: for any two d , e ∈ 	I with

t(e) = T and t(e′) = T ′, set

RI(d , e) :=




�RT ,T ′(d , e) if limR(T , T ′) and not limInv(R)(T
′, T)

�R
−

T ′,T (e, d) if not limR(T , T ′) and limInv(R)(T
′, T)

 RT ,T ′(d , e) if limR(T , T ′) and limInv(R)(T
′, T)

ωR
T ,T ′(d , e) if neither limR(T , T ′) nor limInv(R)(T

′, T)

It remains to show that I is a pre-model of C0 and T . To this end, we first establish a claim
showing that all lower bounds LM of mosaics are met in I .
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Claim 1. For all e ∈ 	I with m(e) = M and t(e) = T , roles R, and types T ′ with limR(T , T ′) and not
limInv(R)(T

′, T), we have∑
{e′∈	I |t(e′)=T ′}

RI(e, e′) � LM(R, T ′). (∗)

Proof. Let e, R, and T be as in the claim. We distinguish two cases:

• R is a role name. By construction of RI , we have RI(e, e′) = �RT ,T ′(e, e′) for all e′ with t(e′) = T ′.
Thus Property (1) of �RT ,T ′ immediately yields (∗).

• R = S− for some role name S . By construction of SI and the semantics of inverse roles, we have
RI(e, e′) = SI(e′, e) = �S

−
T ,T ′(e, e′). Thus Property (1) of �S−

T ,T ′ yields (∗).

The next claim addresses all exact bounds EM .

Claim 2. For all e ∈ 	I with m(e) = M and t(e) = T , roles R, and types T ′ with limInv(R)(T
′, T), we

have ∑
{e′∈	I |t(e′)=T ′}

RI(e, e′) = EM(R, T ′). (∗)

Proof. Let e, R, and T be as in the claim. We establish the claim using a case distinction:

• Not limR(T , T ′) and R is a role name. By construction of RI , we have RI(e, e′) = �R
−

T ′,T (e
′, e) for

all e′ with t(e′) = T ′. Thus Property (2) of the multiplicity mapping �R−
T ′,T yields (∗).

• Not limR(t(e), T ′) and R = S− for some role name S . By construction of SI and the semantics of
inverse roles, we have RI(e, e′) = SI(e′, e) = �ST ′,T (e

′, e). Thus, we again obtain (∗) by Property
(2) of �ST ′,T .

• limR(t(e), T ′) and R is a role name. By construction of RI , we have RI(e, e′) =  RT ,T ′(e, e′) for all
e′ with t(e′) = T ′. Thus Property (1) of  RT ,T ′ yields (∗).

• limR(t(e), T ′) and R = S− for some role name S . By construction of SI and the seman-
tics of inverse roles, we have RI(e, e′) = SI(e′, e) =  ST ′,T (e

′, e). Thus Property (2) of  RT ,T ′
yields (∗).

We can now prove the claim that is central for showing that I is a pre-model of the input concept
C0 and the input TBox T :
Claim 3. For all C ∈ cl(C0, T ) and all e ∈ 	I , C ∈ t(e) implies e ∈ CI .

The proof is by induction on the norm of concepts C as introduced in the proof of Theorem 7. Let
e ∈ 	I such that C ∈ t(e).

• C is a concept name. Then e ∈ CI follows from the definition of I .
• C = ¬D. Since every concept in cl(C0, T ) is in NNF, D is a concept name. If ¬D ∈ t(e), then
D /∈ t(e) by definition of types. Thus e ∈ (¬D)I by definition of I .
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• For C = D � E or C = D � E, the claim follows immediately from the definition of types and the
induction hypothesis.

• C = (�n R D). We show that
∑

{e′∈	I |D∈t(e′)}
RI(e, e′) � n. (∗)

It then follows that e ∈ CI as required, as we can show that D /∈ t(e′) implies e′ /∈ DI : by defi-
nition of types, D /∈ t(e′) implies ¬̇D ∈ t(e′). Since we are performing induction on the norm of
concepts, induction hypothesis thus yields e′ ∈ ( ¬̇D)I , and e′ /∈ DI follows by the semantics.
It thus remains to establish (∗), which is simple:C ∈ t(e) andD ∈ t(e′) implies limInv(R)(t(e

′), t(e)).
Thus by Claim 2 we can rewrite (∗) as

∑
{T |D∈T }

Em(e)(R, T) � n.

This, however, is ensured by Property (M3) of mosaics.
• C = (�n R D). We show that

∑
{e′∈	I |D∈t(e′)}

RI(e, e′) � n. (∗∗)

It then clearly follows from the induction hypothesis that e ∈ CI as required.
Claims 1 and 2 together with Properties (M1) and (M2) of mosaics imply that

∑
{e′∈	I |D∈t(e′)}

RI(e, e′) �
∑

{T |D∈T }
Lm(e)(R, T) +

∑
{T |D∈T }

Em(e)(R, T)

If the right-hand side of this inequality is greater or equal to n, then we are done. Otherwise, (A2)
ensures that there exists a mosaicM such that D ∈ TM , not limR(t(e), TM), not limInv(R)(TM , t(e)),
and x̂M /= 0, i.e., there is an e′ ∈ M̂ . First assume that R is a role name. By construction of RI ,
we have RI(e, e′) = ωR

T ,T ′ � n. Thus, (∗∗) is satisfied and we are done. Now let R = S− for a role
name S . Then we have RI(e, e′) = SI(e′, e) = ωS

T ′,T � n and are also done.

As a consequence, I is a pre-model of C0 and T = {� .= CT }: by Equation (E1) and due to the
fact that x̂M > 0 implies #M̂ > 0, there is a mosaicM such thatC0 ∈ TM and #M̂ > 0. Fix an e ∈ M̂ .
Claim 3 implies that e ∈ CI

0 and thus I is a pre-model of C0. Moreover, by definition of types, we
have CT ∈ TM for each mosaic M . This fact together with Claim 3 implies that I is a pre-model of
T . �
To establish the intended ExpTime upper bound, it now remains to show that (i) the size of the

constructed equation system EC0,T is (at most) exponential in the size of C0 and T , and (ii) the
existence of admissible solutions can be checked in polynomial time.
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We start with defining the size of concepts and TBoxes. First, the size w.r.t. unary coding of
concepts is defined inductively as follows:

|A|u = 1 for A a concept name,
|¬C|u = 1+ |C|u, |C1 � C2|u = |C1 � C2|u = |C1|u + |C2|u

|(�n R C)|u = |(�n R C)|u = n + 1+ |C|u
The size of a TBox T is defined as |CT |u. It can easily be shown that the cardinality of cl(C0, T ) is
linear in the size of C0 and T .
Now we determine the number of mosaics for C0 and T . Let n be the size of C0 plus the size of

CT w.r.t. unary coding. The cardinality of type(C0, T ) is exponential in n. For mosaics, (M2) and
(M3) imply

#{(R, T) | EM(R, T) > 0} � sum�(TM )

and max(ran(EM)) � max�(TM ), whereas (M4) implies analogous bounds for LM . Since max$%(T)
and sum$%(T) are linear in n for $% ∈ {�,�}, each mosaicM can be represented by TM and a vector
of length 2n of pairs of the form (k , T) for k � n and T a type. This implies the existence of a constant
c such that the number of mosaics is bounded by 2(cn

2).
Since the number of mosaics is exponential in the size of C0 and T , we can easily infer similar

bounds for the number of inequalities and side-conditions of EC0,T . Before we continue, however,
let us analyze what bounds are needed. To do this, we show that the existence of an admissible
solution for systems of inequalities EC0,T can be decided in time polynomial in certain parameters
of EC0,T .
First we need some prerequisites. We assume linear inequalities to be of the form %icixi � b.

Such an inequality is called positive if b � 0. A system of linear inequalities is described by a tuple
(V , E), where V is a set of variables and E a set of inequalities. Such a system is called simple if all
inequalities are positive and all coefficients are (possibly negative) integers.
A side condition for an inequality system (V , E) is a constraint of the form
x > 0 (⇒ x1 + · · · + x( > 0, where x, x1, . . . , x( ∈ V.

Let (V , E) be an inequality system and I a set of side conditions for (V , E). We say that (V , E)
admits an I -admissible solution if it admits a solution satisfying all constraints from I .
It is not hard to check that the inequality systems from Definition 8 are simple and that the

conditions (A1) and (A2) can be polynomially transformed into side conditions:

• (E1) is already simple,
• (E2) can obviously be transformed into

∑
. . . − ∑

. . . � 0,
• the equality (E3) is transformed into two inequalities of the form

∑
. . . − ∑

. . . � 0,
• each implication due to (A1) can be transformed into polynomially many side conditions as
follows: since we are interested in non-negative solutions only, we can use a separate implication
for each summand appearing in the premise. Next, the coefficients on the left-hand sides of the
premise are omitted by dropping those side-conditions whose coefficient is zero and replacing all
other coefficients with 1.

• (A2) is already in the form of a side condition.
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The following proposition states that the existence of I -admissible integer solutions can be
checked in time polynomial in several parameters. It is a generalization of Lemma 6.1.5 in [4].

Proposition 11. Let (V , E) be a simple system of inequalities in which all coefficients and constants are
from the interval [−a; a] of integers, and let I be a set of side conditions for (V , E). Then the existence
of an integer, non-negative, and I -admissible solution for (V , E) can be decided in (deterministic) time
polynomial in #V + #E + #I + a.

It is now easy to obtain the desiredExpTime upper bound. First, note that the number of variables
and the number of inequalities in EC0,T is at most exponential in the size of C0 and T due to our
bound on the number of mosaics. Second, the coefficients and constants appearing in EC0,T are
linear in the size of C0 and T due to (M2) to (M4). When transforming EC0,T into simple inequalities
and side conditions, these properties are preserved. Thus, Lemmas 10 and 11 yield an ExpTime upper
bound for the satisfiability ofALCQI-concepts w.r.t. TBoxes. The corresponding lower bound is a
consequence of the ExpTime-hardness of unrestricted satisfiability ofALC w.r.t. TBoxes [11,27] and
the fact that this DL has the finite model property.

Theorem 12. Finite satisfiability of ALCQI-concepts w.r.t. TBoxes is ExpTime-complete if numbers
are coded in unary.

If numbers in number restrictions are coded binarily, the algorithm developed in this section does
no longer yield anExpTimeupper bound: in this case, the number ofmosaics is double exponential in
the size of the input concept andTBox. Since it is not clear whether and how the presented algorithm
can bemodified in order to yield an ExpTime upper bound for the case of binary coding, we resort to
a different approach to attacking this problem: in the next section, we reduce finiteALCQI-satisfi-
ability to the finite satisfiability of ALCFI-concepts. Since the employed reduction is polynomial,
in this way we obtain an ExpTime upper bound for the finite satisfiability ofALCQI-concepts w.r.t.
TBoxes, even if numbers are coded in binary.

4. Binary coding of numbers

In this section, we prove that finite ALCQI-concept satisfiability w.r.t. TBoxes is decidable in
ExpTime even if numbers are coded in binary, where the size w.r.t. binary coding |C|b of a concept
C is defined as the size w.r.t. unary coding, the only difference being that

|(�n R C)|b = |(�n R C)|b = log(n) + 1+ |C|b.

The proof is by a polynomial reduction to finite ALCFI-concept satisfiability w.r.t. TBoxes.
Since, in the case of ALCFI , the size of numbers appearing in number restrictions is constant
(regardless of the coding), the results presented in the previous section imply that finite ALCFI-
concept satisfiability w.r.t. TBoxes is ExpTime-complete. Thus, this logic is a suitable target for
reduction. In contrast to existing reductions ofALCQI toALCFI , which only work in the case of
potentially infinite models (such as the one presented in [10]), we have to take special care to deal
with finite (and thus non-tree) models.
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Fig. 5. Representing role neighbour relationships.

Before we go into technical details, let us describe the intuition behind the reduction. The general
idea is to replace counting via qualified number restrictions with counting via concept names: to
count up to a number n, we reserve concept names B0, . . . ,B*log(n)+ representing the bits of numbers
between 0 and n. For the actual counting, we can then use well-known (propositional logic) for-
mulae that encode incrementation. But how can we use this approach to count the number of role
neighbour? Intuitively, we rearrange the neighbours of each domain element in a way that allows to
replace qualifying number restrictions with the combination of (i) functionality of roles as provided
by ALCFI and (ii) counting via concept names. Consider, for example, the domain element x and
itsR-neighbours displayed on the left-hand side of Fig. 5. Ignoring the “direct”R-neighbours of x on
the right-hand side for a moment, we have rearranged three R-neighbours along an auxiliary path
that is built using a new role LR. Employing the (�1 S �) constructor ofALCFI , we can ensure that
each node on this path has precisely one LR-predecessor, at most one LR-neighbour, and precisely
one R-neighbour. The counting via concept names is then performed along the domain elements on
LR-paths.
However, we cannot gather all original R-neighbours of x on the LR-path. The reason for this is

as follows: assume we are at some domain element on the LR-path descending from x and move
along this domain element’s outgoing R-edge. The reduction ensures that we either reach a “real”
domain element (such as x) or arrive on an LInv(R)-path. If the latter is the case, we have to ensure
that, moving up the LInv(R)-path, we will finally reach a “real” domain element. To do this, we count
the lengths of auxiliary paths via concept names:2 once we have moved up to node 0 of the path,
its predecessor must be “real.” Since, however, we do not know how many R-neighbours an object
had in the original model, we do not know how many bits to reserve for this counting. The solu-
tion is to gather only those R-neighbours of x on the LR-path which are constrained by a (�n R C)

concept applying to x or which are witnesses for a (�n R C) concept applying to x—this helps since
the number of such domain elements is known in advance. All other domain elements can remain
“direct” neighbours of x since there is no need to count them.

2 This counter is a different one than the ones mentioned above.
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Fix an ALCQI-concept C and an ALCQI-TBox T whose finite satisfiability is to be decided.
W.l.o.g., we assume C and T to be in NNF. In order to translate C and T toALCFI , we introduce
some additional concept and role names:

(1) a fresh (i.e., not appearing in C or T ) concept name Real;
(2) for each R ∈ rol(C , T ), a fresh concept name HR and a fresh role name LR;
(3) for each concept D ∈ cl(C , T ) of the form ($% n R E), where $% is used as a placeholder for� or

�, we reserve a fresh concept name XD;
(4) for each concept D ∈ cl(C , T ) that appears inside a qualifying number restriction ($% n R D) ∈

cl(C , T ), we reserve fresh concept names BD,0, . . . ,BD,k , where k = *log(numD)+ and
numD = max{n | ($% n R D) ∈ cl(C , T )} + 1;

(5) for each role R ∈ rol(C , T ), we reserve fresh concept names BR,0, . . . ,BR,k , where
k = *log(depthR)+ and

depthR =
∑

($% n R C)∈cl(C ,T )

n.

The concept name Real is used to distinguish “real” domain elements from domain elements on
auxiliary paths. The concept names HR are used to “mark” objects on auxiliary paths for the role
R: when following an LR-path, all encountered objects (apart from the root representing a “real”
domain element) will be instances of HR. The concept names BR,i are used to count the length of
auxiliary LR-paths as described above. The concept names BD,i are also employed for counting: they
are used to count the “occurrence” ofR-neighbours inD along LR-paths andwill thus help to replace
ALCQI-concepts of the form ($% n R D). Note that the number of newly introduced concept and
role names is polynomial in the size of C and T . We will use BD to refer to the number encoded by
the concept names BD,0, . . . ,BD,*log(numD)+ and BR to refer to the number encoded by the concept
names BR,0, . . . ,BR,*log(depthR)+.Moreover, we will use the following abbreviations:

• (BR = i) to denote the ALCFI-concept expressing that BR equals i (and similar for BD = i and
the comparisons “<” and “>”);

• incr(BR, S) to denote the ALCFI-concept expressing that, for all S-successors, the number BR
is incremented by 1 modulo depthR (and similar for incr(BD, S)). More precisely, the concept
incr(BR, S) is defined as follows (with n abbreviating *log(depthR)+):

(BR,0 → ∀S.¬BR,0) � (¬BR,0 → ∀S.BR,0) �
�

k=1..n
( �
j=0..k−1BR,j

) → (
(BR,k → ∀S.¬BR,k) � (¬BR,k → ∀S.BR,k)

) �
�

k=1..n
( 

j=0..k−1¬BR,j

) → (
(BR,k → ∀S.BR,k) � (¬BR,k → ∀S.¬BR,k)

)
.

• eq(BD, S) to denote the ALCFI-concept expressing that, for all S-successors, the number BR is
not changed. Formally, eq(BR, S) is defined as follows (with n abbreviating *log(depthR)+):

�
i=1..n

(
(BD,i → ∀LR.BD,i) � (¬BD,i → ∀LR.¬BD,i)

)
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We inductively define a translation �(C) of the concept C into a Boolean formula (which is also
an ALCFI-concept):

�(A) := A, for A ∈ cnam(C , T ) �(¬D) := ¬�(D)
�(D � E) := �(D) � �(E) �(D � E) := �(D) � �(E)

�(�n R D) := X�nRD �(�n R D) := X�nRD

Now set ,(C) := �(C) � Real and, for T = {� .= CT },
,(T ) := {� .= Real → �(CT )} ∪ Aux(C , T ),

Fig. 6. The TBox Aux(C ,T ).
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where theTBoxAux(C , T ) is defined inFig. 6 inwhichweuseD , E as abbreviation for� .= D → E,
and in which all 
 and � that have only a concept as index range over all concepts in cl(C , T ) of
the specified form.
The first three concept equations ensure the behaviour sketched above of Real, HR, and the

counting concepts BR and BD. The last but one concept equation ensures that the counting con-
cepts BD are updated correctly along an LR path. To guarantee that a “real” element d satisfies
“number restrictions” X($% n R D), the fourth concept equation ensures that we see enough R-neigh-
bours in D for atleast restrictions (�n R D) along an LR path starting at d , whereas the last concept
equation guarantees that we do not see too many such neighbours along an LR path for at most
restrictions (�n R D). The following Lemma states that , is a reduction fromfiniteALCQI-concept
satisfiability to finite ALCFI-concept satisfiability.
Lemma 13. A concept C is finitely satisfiable w.r.t. a TBox T iff ,(C) is finitely satisfiable w.r.t. ,(T ).

Intuitively, the proof of the above lemma proceeds as follows: for the “only if” direction, we
simply take a finite model of C and T , define all elements in the model as instances of the concept
Real, then form the auxiliary paths adding new elements to the model, define the interpretations of
the auxiliary concepts and roles, andmanipulate the interpretation of the original roles as described
above to obtain a finite model of ,(C) and ,(T ).
The “if” direction needs more work.We first note that a straightforward construction of a model

of C and T from a model of ,(C) and ,(T ) by moving all the origins of role relationships from
the auxiliary paths to the instance e of Real where the auxiliary path starts does not work. Let us
call this naive approach “spooling”. To see that spooling fails, consider the two models of ,(C) and
,(T ) given in Fig. 7, where

T = {� = (�2 R C) � (�2 R− C)}.

The thick points represent real elements, the dotted edges denote auxiliary paths, and the solid
edges denote real role relationships. Now, if we apply spooling to the model depicted at the left of
Fig. 7, we do not obtain a model of C and T since each node has exactly one incoming and one
outgoing R edge. So, to prove this part of Lemma 13, we first show that, if ,(C) is finitely satisfiable
w.r.t. ,(T ), then there is a singular finite model of ,(C) and ,(T ): intuitively, in a singular model, an
auxiliary path for a role R and an auxiliary path for Inv(R) are connected via at most one R-edge.
In Fig. 7, the left model is not singular, whereas the right one is. Then we show that, if we apply
spooling to a singular model of ,(C) and ,(T ), we indeed obtain a model of C and T .
The complete proof of Lemma 13 can be found inAppendix 7. Interestingly, to show the existence

of a singular model, we use the same copying construction that we used in the proof of Theorem 7,
and thus this encoding trick cannot be easily extended to work for logics that are not closed under
taking disjoint copies of models such as ALCQI with nominals or C2.
Lemma 13 together with the fact that ,(C) and ,(T ) are computable in polynomial time proves

that finite satisfiability ofALCQI concepts w.r.t. TBoxes is polynomially reducible to finite satisfi-
ability of ALCFI concepts w.r.t. TBoxes. By Theorem 12 we obtain the following theorem:

Theorem 14. Finite satisfiability of ALCQI-concepts w.r.t. TBoxes is ExpTime-complete if numbers
are coded in binary.
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Fig. 7. Two models for ,(C) and ,(T ).

5. ABox consistency

In this section, we extend the complexity bounds obtained in Sections 3 and 4 to a more gener-
al reasoning task: finite ALCQI-ABox consistency. As noted in the introduction, ABoxes can be
understood as describing a“snapshot” of the world.

Definition 15 (ABox). Let O be a countably infinite set of object names. An ABox assertion is an
expression of the form a : C or (a, b) : R, where a and b are object names, C is anALCQI-concept,
and R a role. An ABox is a finite set of ABox assertions.
Interpretations I are extended to ABoxes as follows: additionally, the interpretation function

·I maps each object name to an element of 	I such that a /= b implies aI /= bI for all a, b ∈ O

(the so-called unique name assumption). An interpretation I satisfies an assertion a : C if aI ∈ CI
and an assertion (a, b) : R if (aI , bI) ∈ RI . It is a model for an ABox A if it satisfies all assertions
in A. An ABox is called finitely consistent w.r.t a TBox T if it has a finite model that is also a
model of T .
In the following, we will polynomially reduce finiteALCQI-ABox consistency to finiteALCQI-

concept satisfiability. Thus, we prove that ALCQI-ABox consistency is ExpTime-complete inde-
pendently of the way in which numbers are coded. We start with fixing some notation.
Let A be an ABox and T a TBox. Analogously to what was done in previous sections, we use

rnam(A, T ) to denote the set of role names appearing inA and T , rol(A, T ) to denote the set of roles
and their inverses appearing inA and T , and obj(A) to denote the set of object names appearing in
A. For each object name a ∈ obj(A) and role R ∈ rol(A, T ),NA(a,R) denotes the set of R-neighbours
of a in A, i.e.

NA(a,R) = {b ∈ obj(A)| (a, b) : R ∈ A or (b, a) : Inv(R) ∈ A}

We use cl(A, T ) to denote the smallest set containing all sub-concepts of concepts appearing in
A and T that is closed under ¬̇ . It can easily be shown that the cardinality of cl(A, T ) is linear in
the sizes of A and T . The notion of types can straightforwardly be extended to ABoxes.
Definition 16 (Type). A type T for an ABox A and a TBox T is defined as in Definition 3, where
cl(C0, T ) is replaced with cl(A, T ).

The size of an ABox assertion a : C is the length of the concept C; the size of an ABox assertion
(a, b) : R is 1; finally, the size of an ABoxA is the sum of the size of all assertions inA. The number
of types for an ABox A and a TBox T is thus clearly exponential in the size of A and T .
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The central notion in the reduction of finiteALCQI-ABox consistency to finiteALCQI-concept
satisfiability is that of a reduction candidate:

Definition 17 (Reduction Candidate). LetA be an ABox and T a TBox. A reduction candidate forA
and T is a function t that maps each object name a appearing in A to a type t(a) for A and T such
that a : C ∈ A implies C ∈ t(a).
Let t be a reduction candidate forA and T . For each object name a ∈ obj(A), role R ∈ rol(A, T ),

and type T ∈ ran(t)weuse#A
t (a,R, T) to denote the number of object names b such that b ∈ NA(a,R)

and t(b) = T .
Now, for each object name a ∈ obj(A), we define a reduction concept CA

t (a) as follows:

CA
t (a) := �

C∈t(a) C � �
T∈ran(t)

#A
t (a,R,T)>0

(�#A
t (a,R, T) R ( �

C∈T C)).

The reduction candidate t is called realisable iff, for every object name a ∈ obj(A), the reduction
concept CA

t (a) is finitely satisfiable w.r.t. T .
The intuition behind this definition is as follows: for realisable reduction candidates, we can

“join” models of the individual reduction concepts to a model of the ABox. Vice versa, each model
of the ABox is also a model of all reduction concepts of a realisable reduction candidate.
Note that the definition of reduction concepts exploits the unique name assumption: If we find n

different R-neighbours of an object name a in an ABox A that are all assigned the same type T by
the reduction candidate, then the reduction concept CA

t (a) for a requires (via the atleast restriction)
that, for each domain element satisfying it, there are at least n different domain elements of type T
that are reachable via the role R. If we drop the unique name assumption, this requirement is too
strong since different R-neighbours of a in A can be interpreted as the same domain element.
The following lemma fixes the relationship between ABoxes and reduction candidates. A proof

can be found in Appendix 7.

Lemma 18.Let A be an ABox and T a TBox. A is finitely consistent w.r.t. T iff there exists a realisable
reduction candidate for A and T .

It is now easy to establish a tight complexity bound for finite ALCQI-ABox consistency.
Theorem 19. Finite ALCQI-ABox consistency w.r.t. TBoxes is ExpTime-complete if numbers are
coded in binary.

Proof. Let A be an ABox and T a TBox. Since the number of types for A and T is exponential
in the size of A and T and the number of object names used in A is linear in the size of A, the
number of reduction candidates for A and T is exponential in the size of A and T . Thus, to decide
finite consistency ofA w.r.t. T , we may simply enumerate all reduction candidates forA and T and
check them for realisability: by Lemma 18, A is finitely consistent w.r.t. T if we find a realisable
reduction candidate. Since the size of each reduction concept is polynomial in the size of A and T ,
by Theorem 14, the resulting algorithm can be executed in deterministic time exponential in A and
T . �
Note that we make the unique name assumption only to allow for simpler proofs. Indeed, it is

not crucial for obtaining an ExpTime upper bound: if we want to decide finite consistency of an
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ABoxAw.r.t. a TBox T without the unique name assumption, we may use the following approach:
enumerate all possible partitionings of the object names used in A. For each partitioning, choose
a representative for each partition and then replace each object name with the representative of its
partition. Obviously, the ABox A is finitely consistent w.r.t. T without the unique name assump-
tion if and only if one of the resulting ABoxes is finitely consistent w.r.t. T with the unique name
assumption. Since the number of partitionings is exponential in the number of ABox objects, this
yields an ExpTime upper bound for finite ABox consistency without the unique name assumption.

6. Related work

The results presented here are closely related to investigations that have been performed in two
different areas: on the one hand, the complexity of finite model reasoning has been investigated
for a variety of conceptual database models that can express infinity. For example, in [19], it is
shown that finite satisfiability in SERM schemata can be decided in polynomial time, where a
SERM schema roughly corresponds to an entity-relationship (ER) schema with cardinality con-
straints, but without IS-A links between entities or relationships. In [6], an ExpTime upper bound
is proved for finite satisfiability of CR models, where CR is the extension of SERM with IS-A
links between entities and relationships. In [7], this ExpTime upper bound is extended to the fi-
nite satisfiability of CAR models, where CAR provides, in addition, full Boolean operators on
classes and relations of arity larger than 2. A last piece of work to be mentioned is [9], where the
complexity of a variety of reasoning problems on (several combinations of) integrity constraints
on relational databases are investigated, both in unrestricted and in finite models. For the integ-
rity constraints considered (unary inclusion dependencies and functional dependencies), it turns
out that validity of implications between (various combinations of) these constraints often de-
pends on whether we consider unrestricted or finite models, but their complexity is mostly the
same.
On the other hand, the complexity of finite model reasoning has been investigated for other

first order and modal logics. Most prominently, the two variable fragment of first order logic with
counting quantifiers (C2) lacks the finite model property, but both reasoning in the unrestricted
case and in finite models are decidable [13,23] and even of the same complexity, namely NExptime-
complete; see [23] for the unrestricted case, [20] for reasoning in finite models, [25] for both cases,
and [26] for numbers inside counting quantifiers being coded in binary. As mentioned in the intro-
duction, ALCQI can be polynomially translated into C2, which yields a NExptime upper bound
for ALCQI . As we have shown in this paper, neither this bound nor the one that was established
in the first decidability result forALCQI [3] are tight. Another example to be mentioned here is the
full /-calculus, i.e., the extension ofALC with fixpoints and inverse roles. Even without any nested
fixpoints, this logic lacks the finite model property because, roughly spoken, it allows to express that
(i) there exists an infinite R-path, and (ii) R− is well-founded. These two constraints together are
satisfiable only in an infinite, acyclic R-path, and thus only in infinite models. For the 0/-fragment
of this logic, finite satisfiability has recently been shown to be ExpTime-complete [2], meeting the
complexity bounds for the unrestricted case [33].
The common pattern that seems to recur in various cases is that unrestricted and finite model

reasoning are often both decidable, and quite often of the same complexity, even though they might
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ask for different reasoning techniques. An exception to the latter point is the Stellar fragment, a
clausal formalism closely related to the two-variable fragment of first order logic with counting
quantifiers: in [25], systems of linear equations are used both for reasoning in unrestricted and finite
models.
Finally, we would like to point out that, similar to the case of unrestricted model reasoning, the

complexity of finite model reasoning is, in many natural cases, insensitive to the coding of numbers
in number restrictions. For example, C2 is NExptime-complete logic that is insensitive in this sense,
both for unrestricted and finite model reasoning [26]. In this paper, we have given an example for
an ExpTime-complete logic for which finite model reasoning is insensitive to the coding of num-
bers. The corresponding proof for the unrestricted case can be found in [10]. Finally, examples of
Pspace-complete logics for which the (only interesting) unrestricted case is insensitive to the coding
of numbers can be found in [31].

7. Outlook

In this paper, we have determined finite model reasoning in the description logic ALCQI to be
ExpTime-complete. This shows that reasoning w.r.t. finite models is not harder than reasoning w.r.t.
unrestricted models, which is also known to be ExpTime-complete [10]. We hope that, ultimately,
this research will lead to the development of finite model reasoning systems that behave equally
well as existing DL reasoners performing reasoning w.r.t. unrestricted models such as FaCT and
RACER [15,14]. Note, however, that the current algorithm is best-case ExpTime since it constructs an
exponentially large system of inequalities. It can thus not be expected to have an acceptable runtime
behaviour if implemented in a naive way. Nevertheless, we believe that the use of equation systems
and linear programming is indispensable for finite model reasoning in ALCQI . Thus, efforts to
obtain efficient reasoners should perhaps concentrate onmethods to avoid best-case exponentiality
such as on-the-fly construction of equation systems. Moreover, the reductions presented in Section
4 and 5 can also not be expected to exhibit an acceptable run-time behaviour and it would thus be
interesting to try to replace them by more “direct” methods.
Another option for future work is the following: while finiteALCQI-concept satisfiability w.r.t.

TBoxes is sufficient for reasoning about conceptual database models as described in the introduc-
tion, finite ALCQI-ABox consistency is not yet sufficient for deciding the containment of con-
junctive queries w.r.t. a given conceptual model—an intermediate reduction step is required. For
unrestricted models, this problem was proven to be in 2-ExpTime[5], and it would be interest-
ing to find out whether this blow-up is avoidable, both for the unrestricted and the finite model
case.

Appendix A. Proofs for Section 3

We first prove Theorem 7 and then Lemma 10.

Theorem 7. A concept C0 and a TBox T have a finite pre-model iff C0 and T have a finite (standard)
model.



C. Lutz et al. / Information and Computation 199 (2005) 132–171 159

Proof. Since the “if” direction is trivial, we concentrate on “only if.” Thus, let I be a finite pre-model
for C0 and T . We use n to denote the maximum multiplicity of edges in I , i.e.

n := max{RI(d , e) | d , e ∈ 	I and R used in C0 or T }.
Since I is finite, n is clearly well defined. Next, define a (standard) interpretation J as follows:

• 	J := 	I × {0, . . . , n − 1};
• AJ := AI × {0, . . . , n − 1} for concept names A;
• RJ := {((d , i), (e, j)) | ∃k < RI(d , e) : j = i + k mod n} for role names R.

The following claim clearly implies that J is a model of C0 and T as desired:

Claim. for all C ∈ cl(C0, T ) and d ∈ 	I , d ∈ CI implies (d , i) ∈ CJ for all i � n.

The proof is by induction on the norm || · || of concepts C , which is defined inductively as follows:
||A|| := ||¬A|| := 0 for A concept name

||C1 � C2|| := ||C1 � C2|| := 1+ ||C1|| + ||C2||
||(�n R D)|| := ||(�n R D)|| := 1+ ||D||

The induction start and the Boolean cases are trivial by definition of J and using the induction
hypothesis. Hence we only treat the number restrictions explicitly:

• C = (�n R D). Let d ∈ CI and fix an i ∈ {0, . . . , n − 1}. We have to show that (d , i) ∈ CJ . From
the semantics, we obtain

∑
e∈DI

RI(d , e) � n (∗)

By construction, for each e ∈ 	I we have that

�{j ∈ {0, . . . , n − 1} | ((d , i), (e, j) ∈ RJ } = RI(d , e). (∗∗)

Since we are doing induction on the norm, the induction hypothesis yields that e ∈ ( ¬̇D)I im-
plies (e, j) ∈ ( ¬̇D)J for all e ∈ 	I and j � n. Together with (∗) and (∗∗), this clearly yields that
(d , i) ∈ CJ as desired.

• C = (�n R D). Similar to the previous case. �

Next, we prove the “if” direction of Lemma 10.

Lemma 20. If C0 is finitely satisfiable w.r.t. T , then the system of inequalities EC0,T has an admissible
solution.

Proof. Let I be a finite model of C0 w.r.t. T . From I , we can construct an admissible solution of
EC0,T . For e ∈ 	I , we use t(e) to refer to the unique type of which e is an instance, andm(e) to refer to
the uniquemosaic of which e is an instance, as has been defined in Definitions 3 and 5, respectively.



160 C. Lutz et al. / Information and Computation 199 (2005) 132–171

Moreover, we useMI to refer to {e ∈ 	I | m(e) = M } and T I to refer to {e ∈ 	I | t(e) = T }. Next,
we set x̂M := #MI and prove the following claim:

Claim. {x̂M | M a mosaic} is an admissible solution of EC0,T .

Eq. (E1) is satisfied since I is a model of C0: there is some e0 ∈ CI
0 implying, by definition of m(·),

that we have x̂m(e0) � 1 and C0 ∈ Tm(e0).
For (E2), let T , T ′ be types,R a role with limR(T , T ′) and not limInv(R)(T

′, T), and fix some eM ∈ MI
for each MI /= ∅ as follows:

• if TM = T , choose an eM ∈ MI with a minimal number of R-neighbours in T ′I , and
• if TM /= T , choose an arbitrary eM ∈ MI .

We claim that the following (in)equalities hold, which clearly implies (E2).
∑

{M |TM=T }
LM(R, T ′) · x̂M =

∑
{M |TM=T∧MI /=∅}

LM(R, T ′) · x̂M

�
∑

{M |TM=T∧MI /=∅}
#{e′ ∈ T ′I | 〈eM , e′〉 ∈ RI} · x̂M

�
∑

{M |TM=T ′∧MI /=∅}
#{e ∈ T I | 〈eM , e〉 ∈ Inv(R)I} · x̂M

=
∑

{M |TM=T ′}
EM(Inv(R), T) · x̂M

The first equality is obvious. The first inequality is due to the definition of m, which implies that,
for each instance e of M , LM(R, T ′) is a lower bound for the number of e’s R-neighbours in T ′I .
The second inequality holds mainly by a simple graph-theoretic reason: the number 1 of R edges

from T I into T ′I coincides the number of Inv(R) edges from T ′I into T I . Next, we have chosen eM
with TM = T to have a minimal number of R-neighbours in T ′I , and thus the left-hand term is a
lower bound for 1. Finally, since each e ∈ MI with TM = T ′ has the same number EM(Inv(R), T) of
incoming R-edges from T by definition of MI , the right-hand term coincides with 1, and thus the
second inequality holds. Finally, the last equality follows by definition of the setsMI .
Eq. (E3) is satisfiedwith a similar yet simpler argument: let T , T ′ be types,R a role with limR(T , T ′)

and limInv(R)(T
′, T), and fix some eM ∈ MI for each MI /= ∅. Then we have

∑
{M |TM=T }

EM(R, T ′) · x̂M =
∑

{M |TM=T∧MI /=∅}
#{e′ ∈ T ′I | 〈eM , e′〉 ∈ RI} · x̂M

=
∑

{M |TM=T ′∧MI /=∅}
#{e ∈ T I | 〈eM , e〉 ∈ Inv(R)I} · x̂M

=
∑

{M |TM=T ′}
EM(Inv(R), T) · x̂M

using similar arguments as for the (E2) case.
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Now for the admissibility of our solution. Obviously, it is a non-negative integer solution. For
(A1), consider types T , T ′ and a role R with limR(T , T ′), not limInv(R)(T

′, T), and
∑

{M |TM=T ′}
EM(Inv(R), T) · x̂M > 0.

Hence there is, by definition of MI , some 〈e′, e〉 ∈ Inv(R)I with e′ ∈ T ′I and e ∈ T I . Hence we
have

∑
{M |TM=T }

x̂M > 0,

and thus (A1) is satisfied.
Finally, for (A2), let M be a mosaic with x̂M > 0, (�nR.C) ∈ TM , and

m =
∑

{T |C∈T }
LM(R, T) +

∑
{T |C∈T }

EM(R, T) < n.

Hence there is some eM ∈ T I
M and e1, . . . , en with ei /= ej for all i /= j and, for all 1 � i � n, 〈eM , ei〉 ∈

RI and ei ∈ CI . By definition of m(e), m < n implies that there is some ( with 1 � ( � n such that
not limInv(R)(t(eM ), t(e()) and not limR(t(e(), t(eM )). Since C ∈ t(e(), the claim yields

∑
{M ′|C∈TM ′ , not limR(TM ,TM ′ ),

and not limInv(R)(TM ′ ,TM )}

x̂M ′ � 1,

and (A2) is satisfied. �
We now prove Proposition 11. In the proof, we use the following lemma that was established by

Calvanese in [4] and builds on results of Papadimitriou [24].

Lemma 21. [4] Let (V , E) be a system of m = #E linear inequalities in n = #V variables, in which all
coefficients and constants are from the interval [−a; a] of integers. Then, if (V , E) has a solution in Nn,
it also has one in {0, 1, . . . ,H(V , E)}n, where H(V , E) = (n + m)(ma)2m+1.

The proof of Proposition 11 is closely related to the proof of Lemma 6.1.5 in [4].

Proposition 11. Let (V , E) be a simple system of inequalities in which all coefficients and constants are
from the interval [−a; a] of integers, and let I be a set of side conditions for (V , E). Then the existence
of an integer, non-negative, and I -admissible solution for (V , E) can be decided in (deterministic) time
polynomial in #V + #E + #I + a.

Proof. For a positive integer k , we use EI (k) to denote the set of inequalities

{x � k · (x1 + · · · + xj) | x > 0 (⇒ x1 + · · · + xj > 0 ∈ I}.
It is readily checked that every non-negative solution of (V , E ∪ EI (k)) is a (non-negative and)

I -admissible solution of (V , E). We prove the following claim:
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Claim. There is an integer kE exponential in #V + #E + #I such that (V , E) admits a non-negative,
integer, and I -admissible solution iff (V , E ∪ EI (kE)) admits a non-negative (rational) solution.

Proof. Let n = #V , m = #E , and r = #I . Then we choose

kE = a · (2n + m + r)(n + m + r)2(n+m+r)+1.

It remains to show that kE is as required:

For the “if” direction, let S be a non-negative solution of (V , E ∪ EI (kE)). As noted above, S is also
a (non-negative and) I -admissible solution of (V , E). Since all inequalities in (V , E) are positive, we
can convert S into an integer solution by multiplying S with the smallest common multiplier of the
denominators in S .

Now for the “only if” direction: assume that there exists an integer, non-negative, and I -admissible
solution S of (V , E), and let S(x) denote the value S assigns to x. Set

ES = {x1 + · · · + xj > 0 | x > 0 (⇒ x1 + · · · + xj > 0 ∈ I and S(x) > 0}
∪{x = 0 | S(x) = 0}.

Obviously,S is alsoan (integer andnon-negative) solutionof the system (V , E ∪ ES). ByLemma21,
there exists a non-negative integer solutionS ′ of (V , E ∪ ES)which is boundedbyh = H(V , E ∪ ES). It
is readily checked that the solution S ′ is also an (integer and non-negative) solution of (V , E ∪ EI (n))
for any n � h. It remains to note that, since ES contains at most one inequality for each variable in
V and each implication in I , we have h � kE .
In view of the claim just established, it is now easy to show that the existence of a non-negative

integer and I -admissible solution for a simple systemof inequalities (V , E)anda set of side conditions
I can be decided in time polynomial in #V + #E + #I + a: we may clearly view (V , E ∪ EI (kE)) as a
linearprogrammingproblem.SincekE is exponential in#V + #E + #I + a, thebinaryrepresentation
of kE is polynomial in #V + #E + #I + a. Thus, the existence of a rational (non-negative) solution
for (V , E ∪ EI (kE)) can be checked in (deterministic) time polynomial in #V + #E + #I + a [29]. �

Appendix B. Proofs for Section 4

In this section, we prove Lemma 13. For the sake of readability, we split the two directions of this
lemma into two separate lemmas. To address individual concept equations of the TBox Aux(C , T )

displayed in Fig. 6, throughout this section we will use Ei to refer to the i’th concept equation and
Ei.j to refer to its j’th line.

Lemma 22. If ,(C) is finitely satisfiable w.r.t. ,(T ), then C is finitely satisfiable w.r.t. T .

Proof. The proof strategy is to take a finite model of ,(C) and ,(T ) and transform it into a finite
model of C and T . For this purpose, instead of taking an arbitrary model, we first select a special,
so-called singular one. We first define the notion of singularity. Let I be a finite model of ,(C) and
,(T ). For each domain element d ∈ RealI and each R ∈ rol(C , T ), we inductively define a sequence
of domain elements hd ,R0 , . . . , hd ,R(d ,R as follows:
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• set hd ,R0 = d ;
• set hd ,Ri+1 to the LR-neighbour of h

d ,R
i (which is unique due to E1.3) if it exists. Otherwise, (d ,R = i.

The constructed sequence is finite due to the use of the BR counter in E2.1, E3.3, and E3.6. More-
over, by E1.2 we have hd ,Ri ∈ HI

R for 0 < i � (d ,R, which we will often use (implicitly) throughout the
remaining proof. Themodel I is called singular if, for all roles R ∈ rol(C , T ) and nodes d , e ∈ RealI ,
we have

#{(i, j) | i � (d ,R, j � (e,Inv(R), and (h
d ,R
i , he,Inv(R)

j ) ∈ RI} � 1.

Intuitively, in a singular model, an LR-path and an LInv(R)-path are connected via at most one R
edge, and thus the operation of contracting LR edges always results in a simple graph, i.e., no two
vertices are connected by more than one edge. �
Claim 1. If ,(C) is finitely satisfiable w.r.t. ,(T ), then there is a finite, singular model of ,(C) and ,(T ).

Proof.LetI be afinitemodel of,(C)and,(T ). Fix an injectivemapping � from	I to {0, . . . , (#	I −
1)}. Then we construct a new (finite) interpretation J by copying I sufficiently often and “bending
R edges” from one copy of I into others. More precisely, J is defined as follows:

	J := {〈d , i〉 | d ∈ 	I and i < #	I};
AJ := {〈d , i〉 ∈ 	J | d ∈ AI} for all concept names A ∈ cnam(,(C), ,(T ));
LJ
R := {(〈d , i〉, 〈e, i〉) ∈ 	J × 	J | (d , e) ∈ LI

R}
for all role names LR with R ∈ rol(C , T );

RJ := {(〈d , i〉, 〈e, (�(d) + i mod#	I)〉) | (d , e) ∈ RI}
for all role names R appearing in C or T .

It is straightforward to check that J is a singular model of ,(C) and ,(T ), which finishes the
proof of Claim 1.
Now let I be a singular, finite model of ,(C) and ,(T ) and fix, for each d ∈ RealI and R ∈

rol(C , T ), a sequence of domain elements hd ,R0 , . . . , hd ,R(d ,R as above. We use I to define an interpreta-
tion J as follows:

	J := RealI

AJ := AI ∩ RealI

RJ := {(d , e) ∈ 	J × 	J | ∃i � (d ,R, j � (e,Inv(R) : (hd ,Ri , he,Inv(R)
j ) ∈ RI}

It remains to establish the following claim:

Claim 2. For all d ∈ 	J and D ∈ cl(C , T ), d ∈ �(D)I implies d ∈ DJ .

For assume that Claim 2 is true. Since I is a model of ,(C), by definition of , there exists a
d ∈ (�(C) � Real)I . Clearly we have d ∈ 	J and thus Claim 2 yields d ∈ CJ . Hence, J is a model
of C . By definition of ,(T ) and the semantics, we have RealI = (�(CT ) ∩ Real)I . Together with
Claim 2 and definition of J , we obtain 	J = CJ

T and thus J is a model of T .
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We prove Claim 2 by induction on the norm || · || of concepts D which is defined as in the proof
of Theorem 7.
Let d ∈ 	J ∩ �(D)I for some D ∈ cl(C , T ). Then d ∈ RealI . Since C and T are in NNF, D is

also in NNF. We only treat the interesting cases:

• Let D = (�n R E) and d ∈ �(D)I = (X(� n R)E)
I . By E1.4 and the choice of the elements hd ,R0 , . . . ,

h
d ,R
(d ,R
, we have hd ,Ri ∈ (X(� n R)E)

I for i � (d ,R. Hence, by exploiting the counter BE and its use in
E2.3, E2.5, E4, and E5, it is straightforward to show that there exists a subset I ⊆ {1, . . . , (d ,R}
of cardinality at least n such that, for each i ∈ I , there exists an ei ∈ 	I such that (hd ,Ri , ei) ∈ RI

and ei ∈ �(E)I . By E1.1, we have ei ∈ RealI or ei ∈ HInv(R) for all i ∈ I . Using the counter BInv(R)
and E3.2 to E3.6, it is thus readily checked that, for each i ∈ I , there exists an fi ∈ 	I such that
fi ∈ RealI and ei can be reached from fi by repeatedly travelling along Inv(R)-edges. Thus, ei can

be found among the elements hfi ,Inv(R)
0 , . . . , hfi ,Inv(R)

(fi ,Inv(R)
. Since I is singular, it follows that we have

fi /= fj for all i, j ∈ I with i /= j. Moreover, by definition ofJ we have (d , fi) ∈ RJ for each i ∈ I :
◦ if R is a role name, then this is an immediate consequence of the definition of J ;
◦ if R = S− for some role name S , then (fi, d) ∈ SJ by definition of J . The semantics yields
(d , fi) ∈ RJ .

It thus remains to verify that fi ∈ EJ for each i ∈ I . Clearly, �(E) is a Boolean formula over the
set of concept names

cnam(C , T ) ∪ {XF | F = ($% n R F ′) ∈ cl(C , T )}.
Since ei ∈ �(E)I , E1.4 and E1.5 thus yield fi ∈ �(E)I for each i ∈ I . Since fi ∈ RealI , it remains
to apply the induction hypothesis.

• LetD = (�n R E) and d ∈ �(D)I = (X(� n R)E)
I . Assume that there exists a subsetW ⊆ 	J of car-

dinality greater than n such that, for each e ∈ W , we have (d , e) ∈ RJ and e ∈ EJ . By definition of
J , this implies that, for each e ∈ W , there are se � (d ,R and te � (e,R such that (h

d ,R
se , h

e,Inv(R)
te ) ∈ RI :

◦ if R is a role name, then this is an immediate consequence of the definition of J ;
◦ if R = S− for some role name S , then (d , e) ∈ RI implies (e, d) ∈ SI . By definition of J , this
means that there are se � (d ,R and te � (e,R such that (h

e,S
te , h

d ,R
se ) ∈ SI . By semantics and since

S = Inv(R), we obtain (hd ,Rse , h
e,Inv(R)
te ) ∈ RI .

We clearly have W ⊆ RealI . We prove the following three Properties:

(1) e /= e′ implies hd ,Rse /= h
d ,R
se′ for all e, e′ ∈ W . By definition of the h

·,·
i -sequences of domain

elements and E2.2 and E3.2, e /= e′ implies he,Inv(R)
te /= h

e′,Inv(R)
te′ for all e, e′ ∈ W . Thus, E3.1

yields hd ,Rse /= h
d ,R
s′e

if e /= e′.
(2) he,Inv(R)

te ∈ �(E)I for each e ∈ W . Suppose that e /∈ �(E)I . Then e ∈ (¬�(E))I and, by E1.6,
e ∈ �( ¬̇E)I .
Since e ∈ RealI and we are performing induction on the norm of concepts rather than
standard structural induction, the induction hypothesis yields e ∈ ( ¬̇E)J , a contradiction
to e ∈ EJ . Thus, e ∈ �(E)I . Since �(E) is a Boolean formula, it follows from E1.4 and E1.5
that he,Inv(R)

te ∈ �(E)I .
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(3) se /= 0 for all e ∈ W . For assume that se = 0. Then hd ,Rse = d . By E2.4 and since d ∈ (X(� n R)E)
I

and (d , he,Inv(R)
te ) ∈ RI , this yields he,Inv(R)

te ∈ (¬(�(E)))I in contradiction to Property 2.

Properties 1 to 3 imply the existence of a subset I ⊆ {1, . . . , (d ,R} of cardinality greater than n

such that, for each i ∈ I , there exists an e ∈ 	I with (hd ,Ri , e) ∈ RI and e ∈ �(E)I . Exploiting the
concept X(� n R)E and the counter BE and their use in E1.4, E2.3, E5, and E6, it is readily checked
that this is a contradiction to I being a model of Aux(C , T ). �

Lemma 23. If C is finitely satisfiable w.r.t. T , then ,(C) is finitely satisfiable w.r.t. ,(T ).

Proof. Now for the “only if” direction: let I be a finite model of C and T . For each d ∈ 	I and
each R ∈ rol(C , T ), fix a subset Wd ,R ⊆ 	I of cardinality at most depthR such that the following
conditions are satisfied:

(1) (d , e) ∈ RI for all e ∈ Wd ,R;
(2) for all (�n R D) ∈ cl(C , T ) with d ∈ (�n R D)I , we have

#{e ∈ Wd ,R | e ∈ DI} � n;
(3) for all (�n R D) ∈ cl(C , T ) with d ∈ (�n R D)I , we have

{e ∈ 	I | (d , e) ∈ RI and e ∈ DI} ⊆ Wd ,R;

Using the semantics and the definition of depthR, it is easy to show that such subsets indeed exist.
Next, fix a linear ordering on Wd ,R, i.e., an injective mapping 0d ,R : Wd ,R −→ {0, . . . , #Wd ,R − 1}.
We use these mappings to define a finite model J of ,(C) w.r.t. ,(T ) as follows:

	J = 	I ∪ {xd ,R,e | d ∈ 	I , R ∈ rol(C , T ), and e ∈ Wd ,R};
AJ = AI ∪ {xd ,R,e | d ∈ AI , R ∈ rol(C , T ), and e ∈ Wd ,R}

for all A ∈ cnam(C , T );
X J
($% n R D) = ($% n R D)I ∪ {xd ,R,e | d ∈ ($% n R D)I and e ∈ Wd ,R}

for all ($% n R D) ∈ cl(C , T );
RealJ = 	I;

HJ
R = {xd ,R,e | d ∈ 	I and e ∈ Wd ,R} for all R ∈ rol(C , T );
LR = {(d , xd ,R,e) | d ∈ 	I , e ∈ Wd ,R, and 0d ,R(e) = 0} ∪

{(xd ,R,e, xd ,R,e′) | d ∈ 	I , e, e′ ∈ Wd ,R, and 0d ,R(e′) = 0d ,R(e) + 1}
for all R ∈ rol(C , T );

RI = {(xd ,R,e, xe,R−,d ) | d , e ∈ 	I with e ∈ Wd ,R and d ∈ We,R−} ∪
{(xd ,R,e, e) | d , e ∈ 	I with e ∈ Wd ,R and d /∈ We,R−} ∪
{(d , xe,R−,d ) | d , e ∈ 	I with d ∈ We,R− and e /∈ Wd ,R}
for all R ∈ rnam(C , T ).

for each R ∈ rol(C , T ), the counter BR is defined as follows: BR = 0 for all instances of RealJ ; for
the instances of HJ

R , we define BR as follows:

BR = i for those xd ,R,e ∈ HJ
R with 0d ,R(e) = i;
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for each concept D ∈ cl(C , T ) that appears inside a qualifying number restriction ($% n R D) ∈
cl(C , T ), the counter BD is defined as follows: BD = 0 for all instances of RealJ ; for instances xd ,R,e
of HJ

R , we set

BD = #{e′ ∈ Wd ,R | 0d ,R(e′) < 0d ,R(e) and e′ ∈ DI};

Since the translation ,(C) of an ALCQI-concept C is a Boolean formula, it is trivial to prove
the following claim by structural induction (using the definition of J ):
Claim 3. For all d ∈ 	I and D ∈ cl(C , T ), d ∈ DI implies d ∈ �(D)J .

Since I is a model of C , Claim 3 clearly implies that there is a d ∈ 	I such that d ∈ �(C)J . By
definition of RealJ , we thus have d ∈ ,(C)J and thus J is a model of ,(C). Moreover, also by
Claim 3 J is a model of the TBox {� .= Real → �(CT )}. It is tedious but straightforward to verify
that J is also a model of the TBox Aux(C , T ). Hence J is a model of ,(T ). �

Appendix C. Proofs for Section 5

The goal of this section is to prove Lemma 18. Before we do this, we first establish a technical
lemma showing that finitely satisfiable reduction concepts have finite models with certain, desirable
properties.
Throughout this section, we will identify types T with the conjunction �

C∈T C and write, e.g.,

d ∈ T I for d ∈ ( �
C∈T C)

I .

Lemma 24. Let A be an ABox, T a TBox, t a reduction candidate for A and T , and a an object name
used in A. If the reduction concept CA

t (a) is finitely satisfiable w.r.t. T , then there exists a finite model
J ofCA

t (a) and T , and some d ∈ (CA
t (a))

J such that, for all roles R, a ∈ NA(a,R) implies (d , d) ∈ RJ .

Proof.Let I be a finite model ofCA
t (a) and T and let d ∈ (CA

t (a))
I . By definition ofCA

t (a), we have
d ∈ t(a)I . We construct a new interpretation J that satisfies the condition given in the lemma. For
each role name R with a ∈ NA(a,R), fix

(1) a domain element eR ∈ 	I with (d , eR) ∈ RI and eR ∈ t(a)I ;
(2) a domain element eR− ∈ 	I with (d , eR−) ∈ (R−)I and eR− ∈ t(a)I .

Such domain elements exist by construction of the reduction concept CA
t (a), and since a ∈

NA(a,R) implies a ∈ NA(a,R−). We construct the new interpretation J in two steps:

(1) Define a new interpretation I ′ as follows:

	I ′ = 	I × {0, 1};
AI ′ = {(e, i) | e ∈ AI and i ∈ {0, 1}} for all concept names A;
RI ′ = {((e, i), (e′, j)) | (e, e′) ∈ RI , i, j ∈ {0, 1}, and i /= j}

for all role names R.
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Using structural induction, it is readily checked that, for each e ∈ 	I and C ∈ cl(A, T ),

e ∈ CI implies (e, i) ∈ CI ′
for each i ∈ {0, 1}. (∗)

Thus we have (d , 0) ∈ (CA
t (a))

I ′
, where d is the initially chosen instance of CA

t (a) (the same
holds for (d , 1)). From now on, we focus on (d , 0) as the “relevant” instance of CA

t (a). Clearly,
(∗) implies that I ′ is a model of T .

(2) The interpretation J is now defined as follows:

	J = 	I ′ ;
AJ = AI ′

for all concept names A;
RJ = RI ′

for all role names R with a /∈ NA(a,R);
RJ = (RI ′ \ {((d , 0), (eR, 1)), ((eR− , 1), (d , 0))})

∪ {((d , 0), (d , 0)), ((eR− , 1), (eR, 1))}
for all role names R with a ∈ NA(a,R).

Using structural induction, we may check that, for each x ∈ 	J and each C ∈ cl(A, T ),

x ∈ CI ′
implies x ∈ CJ . (∗∗)

Note that we can show (∗∗) despite the different interpretation of the role names R with a ∈
NA(a,R), which, intuitively, is due to the following reasons: (i) due to the choice of d , eR, and eR−
and to Property (∗), all of (d , 0), (eR, 1), and (eR− , 1) have type t(a) in I ′. Thus, in constructing J we
only remove and add R-neighbours and R−-neighbours that have type t(a); (ii) we do not change
the number of R-neighbours or R−-neighbours of type t(a) for any domain element: in particular,
by construction of I ′ the removed edges really exist in I ′, and the newly added edges are really new.
By (∗∗), (d , 0) ∈ (CA

t (a))
J and J is a model of T . To prove the lemma, it thus remains to show

that, for each role R with a ∈ NA(a,R), we have ((d , 0), (d , 0)) ∈ RJ . This is true by definition of RJ
if R is a role name. If R = S− for some role name S , then a ∈ NA(a,R) implies that a ∈ NA(a, S). Thus
((d , 0), (d , 0)) ∈ SJ by definition of J . By semantics, we obtain ((d , 0), (d , 0)) ∈ RJ as required. �
We are now ready to prove Lemma 18.

Lemma 18.Let A be an ABox and T a TBox. A is finitely consistent w.r.t. T iff there exists a realisable
reduction candidate for A and T .

Proof.The “only if” direction is simple: let I be a finite model ofA and T . We construct a reduction
candidate t as follows:

for each object a in A, set t(a) = {D ∈ cl(A, T ) | aI ∈ DI}.

Exploiting the unique name assumption, it is then easily checked that, for every object a inA, we
have aI ∈ (CA

t (a))
I , i.e., I is a finite model of CA

t (a) and T . Thus, t is realisable.
For the “if” direction, assume that there exists a realisable reduction candidate t for A and T .

This implies that, for each object name a used in A, there is a finite model Ia of CA
t (a) and T .

For each such model Ia, fix a domain element da ∈ 	Ia such that da ∈ (CA
t (a))

Ia . By Lemma 24,
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we may w.l.o.g. assume that, for all object names a used in A and all roles R, a ∈ NA(a,R) implies
(da, da) ∈ RIa . Moreover, we assume w.l.o.g. that a /= b implies 	Ia ∩ 	Ib = ∅.
In the following, we use the models Ia to construct a (finite) model I of A and T . First fix, for

each object name a used in A and each role R ∈ rol(A, T ), an injective function 6Ra from NA(a,R)
to 	Ia such that, for all b ∈ NA(a,R), we have the following:

(1) 6Ra (b) ∈ t(b)I ;
(2) (da, 6Ra (b)) ∈ RIa ;
(3) if b = a, then 6Ra (b) = da.

To show that such functions indeed exist, fix an object name a and a roleR. It suffices to construct,
for each type T ∈ ran(t), an injective function 6R,Ta from NA(a,R) ∩ {b | t(b) = T } to 	Ia satisfying
Properties (1) to (3), and then take the union of these individual functions since Property (1) en-
sures that the resulting function is still injective. Observe that, for each T ∈ ran(t), we can indeed
find an injective function 6R,Ta satisfying Properties (1) to (3) since (i) CA

t (a) contains the conjunct
(�#A

t (a,R, T) R ( �
C∈T C)), where #

A
t (a,R, T) obviously is the cardinality of the set

NA(a,R) ∩ {b | t(b) = T } = dom(6R,Ta ); and (ii) if a ∈ NA(a,R),

then (da, da) ∈ RIa by choice of Ia.
Then define the interpretation I as follows:

	I := ⋃
a∈obj(A)

	Ia;
AI := ⋃

a∈obj(A)

AIa for all concept names A;

RI :=
⋃

a∈obj(A)

[(
RIa \ (

⋃
b∈NA(a,R)

{(da, 6Ra (b))} ∪ ⋃
b∈NA(a,R−)

{(6R−
a (b), da)})

)

∪ ⋃
b∈NA(a,R)

{(da, db), (6R−
b (a), 6Ra (b))}

]
for all role names R;

aI := da for each object name a used in A.

Note that the interpretation of role names is well-defined: if b ∈ NA(a,R), then a ∈ NA(b,R−),
and thus 6R

−
b (a) is defined.

We explain the idea behind the definition of RI with the help of Fig. 8. Here we consider the
connection of two interpretations Ia and Ib, where a and b are ABox objects such that b ∈ NA(a,R)
(and thus also a ∈ NA(b,R−)). The non-dashed edges are removed from Ia and Ib in Line 1 of the
definition of RI , and are thus not part of the connected model. To compensate for this, we add the
dashed edges to the connected model in Line 2 of the definition of RI . In the figure, all domain
elements displayed as filled circles have the same type, and so do all domain elements displayed as
non-filled circles (this is due to Property 1 of the 6Ra (b) elements). It is thus readily checked that, after
the modification, each domain element has the same number of R-neighbours and R−-neighbours
of any given type as before.
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Fig. 8. Connection of the models Ia and Ib.

Special care was taken in the case a ∈ NA(a,R): if we had allowed 6Ra (a) /= da and (da, da) ∈ RIa ,
then we would remove the edge between da and 6Ra (a) in Line 1, but not compensate for this removal
in Line 2: there, we only “add” an edge from da to itself that does already exist in Ia. Clearly, such a
modification might decrease the number of R-neighbours of a given type, which we want to avoid.
This is the reason why we need Property 3 of the 6Ra (b) elements (and Lemma 24, which ensures
that setting 6Ra (a) = da is always possible).
Using these arguments, it is not hard to prove the following claim using structural induction:

Claim. for each object name a used in A, d ∈ 	Ia , and C ∈ cl(A, T ), d ∈ CIa implies d ∈ CI .

Using the claim, it is readily checked that I is indeed a (finite) model of A and T :

(1) Let a : C ∈ A. Then the claim together with da ∈ (CA
t (a))

Ia yields aI = da ∈ CI since t(a) is a
conjunct of CA

t (a) and a : C ∈ A implies C ∈ t(a).
(2) Let (a, b) : R ∈ A. Then b ∈ NA(a,R). IfR is a role name, we thus have (aI , bI) ∈ RI by definition

of RI (second line). If R = S− for some role name S , then we have a ∈ NA(b, S). Thus, (bI , aI) ∈
SI by definition of I , implying (aI , bI) ∈ RI by the semantics.

(3) Finally, the claim together with the fact that, for each object name a used inA, Ia is a model of
T clearly implies that I is also a model of T . �
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