
A Pattern-Based Approach to Parametric
Specification Mining

Giles Reger , Howard Barringer, David Rydeheard
University of Manchester

Abstract—This paper presents a technique for using execution
traces to mine parametric temporal specifications in the form
of quantified event automata (QEA) - previously introduced as
an expressive and efficient formalism for runtime verification.
We consider a pattern-based mining approach that uses a
pattern library to generate and check potential properties over
given traces, and then combines successful patterns. By using
predefined models to measure the tool’s precision and recall we
demonstrate that our approach can effectively and efficiently
extract specifications in realistic scenarios.

I. INTRODUCTION

This paper considers the mining of quantified event au-
tomata (QEA) [2] from execution traces. QEA were previously
introduced for runtime verification [5] and consist of first-
order quantification over variables occurring in a form of finite
automaton. This formulation allows us to describe properties
not just in terms of what events occur in a trace, but also how
data values associated with events are related within a trace.

We are concerned with temporal specifications over events
parameterised with data values, i.e. parametric specifications.
A specification may deal with data parameters in two orthog-
onal ways - in a quantified or free manner. An example of the
former would be to say that a file should only be read when
open by specifying that event open(f) occurs before read(f)
for every file f ; an example of the latter would be to say that
a counter is strictly increasing by specifying that if count(x)
follows count(y) then x > y. QEA addresses both approaches
but this paper only considers the quantified approach, leaving
methods for dealing with free variables to future work.

We consider whether QEAs can be used in specification
mining ([9], [17]), i.e. given a set of traces of events from
runs of a system, can we build QEA specifications of the
system. If so, we can mine specifications which previous
systems cannot, due to increased expressiveness. Previous
parametric specification mining approaches have extended
techniques such as stage-merging and active learning from the
propositional to parametric setting, either treating parameters
in a quantified or free manner. Here, we choose an approach
particularly suited to QEA, namely pattern-based mining [18],
[6], where a collection of patterns is checked against the traces.
This is a verification process: if the patterns are expressed as
QEA, the verification process is that described in [2].

Pattern-based specification mining usually considers only
small and simple patterns, so that the checking of traces is

Part of this work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/P505208/1].

sufficiently fast. However, we wish to mine specifications
of some complexity. To bridge this gap, methods by which
patterns may be combined to form complex specifications
are introduced [6]. We consider methods for combining QEA
using what we call “open automata” as our notion of pattern.

Our pattern-based approach to mining parametric specifica-
tions consists of three stages:

1) Generating. A pattern library and candidate alphabet are
combined to produce a set of possible patterns.

2) Checking. These patterns are checked against a set of
given traces.

3) Combining. The successful patterns are combined to
form a specification.

This general approach is not new (for example [6], [7], [18]),
however, we are the first to apply it in a parametric setting,
although the work of [12] is comparable as discussed in
Section VI. The part of this process that deals with quantified
parameters is the checking stage - based on a runtime verifi-
cation algorithm for QEA. This consists of projecting traces
of events into subtraces for given assignments to quantified
variables and detecting patterns in these. A similar projection-
based approach was taken in [8] using an automata-learning
instead of a pattern-based approach.

Contributions. We make two main contributions: firstly,
adapting the generate-and-check style approach to the quanti-
fied parametric setting in a general way, i.e. not specific to any
set of patterns; and secondly, introducing the concept of open
automata as a method for soundly combining small patterns to
build specifications. A more detailed presentation of this work
is given in [16].

Outline. We first present quantified event automata (Sec. II)
and then introduce our notion of pattern (Sec. III) and how this
is used to mine QEA (Sec. IV). We then evaluate our approach
(Sec. V) and discuss related work (Sec. VI).

II. QUANTIFIED EVENT AUTOMATA

We introduce QEA using an example we will use throughout
the paper and refer the reader to [2] and [16] for further details.

Figure 1 presents an example QEA for the usage of files
- they must be opened to be read or written to, should not
be left open, and if deleted should not be used again. Shaded
states represent final states and there is an implicit error state
q⊥ that is used if no transitions match. Consider the trace

τ = open(A).open(B).read(A).write(B).close(A).
close(B).delete(A)

1 2 3

∀f

open(f)

read(f), write(f)
close(f)

delete(f)

delete(f)

Fig. 1. A QEA for a resource-usage property.

To interpret this trace we find all values that f can take - here
A and B - and project the trace for each value:

[f 7→ A] : σ1 = open(A).read(A).close(A).delete(A)
[f 7→ B] : σ2 = open(B).write(B).close(B)

τ is accepted as both projections reach a final state in the au-
tomaton of Figure 1 with f appropriately replaced. Note how
the domain of f is extracted from the trace. In general, QEAs
can have multiple universal and existential quantifications.

III. A NOTION OF PATTERN

In this section we introduce a notion of pattern and pattern
libraries. Patterns are combinable predicates on traces. An ini-
tial suggestion might be to use standard finite state automata,
but it was shown [7] that these have an inadequate form of
combination and we address this with a new form of automata.

A. Open Automata

We introduce open automata as a formalism for patterns.
An open automaton is a non-deterministic finite automaton

that includes a special • symbol in its alphabet. Given a pattern
p and a mapping from symbols to events ϕ we write p(ϕ) for
the instantiated pattern obtained by applying ϕ to symbols in
p. The special hole symbol • can match any symbol not in
the alphabet - for example the pattern p1 in Fig. 2 with a
replaced by delete(A) accepts the projected traces σ1 and
σ2 in Sec. II as all symbols that are not delete(A) match •.

We can combine open automata by synchronizing on hole
symbols - this is equivalent to expanding each open automata
by adding transitions for symbols not in its alphabet where
there are • transitions and then performing standard intersec-
tion. This is sound and complete i.e. for any two open automata
p1 and p2 we have L(p1) ∩L(p2) = L(p1 ∩ p2) (see [16] for
a proof).

B. Pattern libraries

Our approach uses a predefined pattern library, which will
determine the specifications that may be mined. A k-pattern
library is a list of patterns over a fixed set of k symbols,
which we will take as the first k letters of the alphabet, i.e.
{a, b, c, . . .}. A pattern library is a set of k-pattern libraries.
We have built an initial library of (around 150) useful patterns.
This library is large as we need to capture many variations of
simple patterns - with holes in different positions.

1 2

Pattern p1

•

a
1 2

Pattern p2
a

•
b

1 2

Pattern p3
•

• a,b
•

Fig. 2. A very small pattern library.

C. Pattern Checkers

To allow us to check many patterns at once we introduce
the related concepts of pattern checkers and event pattern
checkers. We present these ideas informally here and give a
full description in [16]. We will demonstrate these constructs
and their use using the pattern library given in Fig. 2.

A pattern checker is a structure that we construct from a set
of k-patterns that realises a function from traces of symbols to
sets of patterns. As p2 and p3 have the same size alphabet we
can use them to construct the pattern checker given in Fig. 3.

{p2, p3} {p3}

{} {p2}

{p3} {p3}
a

•
b

a

•

•

a,b •

•

Fig. 3. A pattern checker for patterns p2 and p3.

An event pattern checker combines a pattern checker with a
map from symbols to events and realises a function from traces
of events to sets of instantiated patterns. Pattern checkers can
be precompiled from pattern libraries and then combined with
alphabets to produce event pattern checkers later.

Let the generation function G be a generation func-
tion that takes a pattern library and alphabet and pro-
duces a set of event pattern checkers for all values of k
and mappings of symbols to events in the alphabet. For
example, given the pattern library of Fig. 2 and alpha-
bet {open(f), read(f), write(f), close(f), delete(f)} the
generation function G generates 25 event pattern checkers - 5
for p1 and 20 for the p2 and p3 pattern checker.

IV. MINING PATTERNS

In this section we describe how we mine QEA using open
automata as patterns. Our approach is split into three main
stages, as outlined in Figure 4 and described in the following.
The mining process takes as input a pattern library P, an
alphabet of events A, a list of quantifications Λ over variables
X , a set of positive traces T+, and a (possible empty) set of
negative traces T−.

If Λ is not given we can explore all possible combinations
efficiently after the trace has been traversed, giving a separate
specification per quantification list. It is generally difficult to
generate negative traces and the monitoring process does not
require them. We include negative traces as they serve as a
an additional source of external knowledge that can contribute
towards the final specification.

2

Fig. 4. An overview of the tool.

The generation stage is performed by the generation func-
tion G introduced in the previous section.

A. Checker

The checker uses the notion of projection and acceptance
from QEA to produce sets of positive and negative successful
patterns for each binding of quantified variables. A scorecard
is a map from bindings to sets of patterns. We generate a
scorecard S(τ) for a trace τ as follows:

Definition 1 (Scoring). Given pattern library P, alphabet A,
set of quantified variables X and trace τ , let S(τ) be

〈θ 7→ G(P,A(θ))(τ ↓A(θ)) | dom(θ) = X ∧ τ ↓A(θ) 6= ε〉

where A(θ) is the alphabet instantiated with θ and τ ↓A(θ) is
τ with all events not in A(θ) removed.

This can be implemented directly to produce scorecards.
However, it requires passing over each trace multiple times. In
Runtime Verification, techniques have been introduced which
may be adapted here to produce more efficient implementa-
tions. We refer the reader to work discussed in [2].

Once scorecards have been constructed the list of quantifi-
cations is used to extract successful patterns.

Definition 2 (Successful patterns). Given a scorecard S, the
successful patterns for a list of quantifications Λ are given by
pat(S, 〈 〉,Λ), defined as

pat(S, θ,∀xΛ′) =
⋂
d in dom(τ)(x) pat(S, θ † 〈x 7→ d〉,Λ′)

pat(S, θ,∃xΛ′) =
⋃
d in dom(τ)(x) pat(S, θ † 〈x 7→ d〉,Λ′)

pat(S, θ, ε) = S(θ)

where dom(τ)(x) gives the values for x derived from τ .

The positive and negative successful patterns are therefore

sucα =
⋂
τ∈Tα

pat(S(τ), 〈 〉,Λ) for α ∈ {−,+}

Consider the projected traces σ1 and σ2 in Sec. II. The set
of positive successful instantiated patterns are:

p1(〈a 7→ delete〉), p2(〈a 7→ open, b 7→ close〉),
p3(〈a 7→ read, b 7→ write〉), p3(〈a 7→ write, b 7→ read〉),

B. Combiner

The notion of combination for open automata is used
to produce an instantiated open automaton that, with the
quantification list, forms a QEA.

Definition 3 (Combination). Given a set of positive successful
patterns suc+ and a set of negative successful patterns suc−.
Their combination is given as ⋂

p∈suc+

p

⋂ ⋂
p∈suc−

p

where the complement q of an open automaton q is given by
inverting accepting states.

The result is an open automaton with events as symbols -
the translation to QEA via removing holes is straightforward.
The size of the pattern library can affect combination time as
it will limit the number of successful patterns.

In our running example the combination of the successful
patterns given above gives the QEA in Fig. 1

C. Limitations of the mining technique

There are three limitations to our approach. Firstly, we
assume that all given traces are correct, therefore if a pattern is
satisfied by 99% of a trace it will not be recorded. There are a
number of statistical techniques that can be used to deal with
this issue. Secondly, we must provide a pattern library - if the
library is too general we may fail to extract a specification but
if the library is too specific we may fail to generalise from the
given traces. Thirdly, an alphabet must be supplied, requiring
some prior knowledge of the system under inspection. This
may be addressed with additional computation, as shown in
[8]. This need not be a restriction, as in many applications we
know the events whose behaviour we wish to mine.

Finally, [16] analyses the complexity of our approach. In
summary, this grows quickly with the size of the alphabet
and, to a lesser extent, the number of quantified variables -
therefore these are the two limiting factors for performance.

V. EVALUATION

In this section we establish the viability of our framework
(implemented in Scala) by measuring its ability to extract
specifications from traces generated from a range of models.

Experiments were carried out on an Apple Mac Pro with
two 2.26GHz quad-core Intel Xeon processors and 16GB of
memory. The pattern library used was built using a mixture
of automatic generation and intuition and was developed
independently from the chosen models and prior to evaluation.

A. Evaluation setup

Our evaluation will follow four steps:
1) Select a set of realistic reference models capturing a

range of different kinds of specifications.
2) Randomly generate training and test traces, with differ-

ent categories of training traces and both positive and
negative test traces.

3

3) Extract a specification for each category.
4) Use the test traces to compute the precision and recall

of the extracted specification.
We discuss these stages further below.

B. The models
We use ten models to represent realistic specifications we

might expect to extract, these are described in Table I and can
be grouped into the following domains:
• Communication. James is taken from [8] as a speci-

fication extracted from the Apache James mail server
program. Satellites and Commands are (simple) specifica-
tions of correct communication between planetary rovers,
inspired by the work of [3].

• Java API. SocketOutput and ColIter describe the correct
usage of data structures in the Java API.

• Concurrency. MutualExcl and LockOrder describe com-
mon desired concurrent behaviour.

• Drivers. The last three models are based on rules de-
scribed in the SDV tool [1] and were taken from [12] as
interesting specifications to address.

As well as covering a variety of domains, these ten models
also capture different levels of complexity in number of states,
size of alphabet and number of quantified variables. Satellites
is the only model that uses existential quantification.

C. Generating traces
We used the predefined models to generate traces for both

training (i.e. mining) and testing. To explore how the mining
process is effected by the quality of the data provided we
consider two coverage criteria for traces. This is similar to the
approach taken by [11], however is updated for our scenario
with quantifications and non prefix-closed automata.
• State coverage - All non-ultimately failing states are

visited at least once by a projection of the trace
• Path coverage - All paths to non-ultimately failing states

are visited at least once by a projection of the trace
As we might expect traces containing more information to lead
to more accurate specifications, we randomly generate short,
medium and long traces for each coverage level. The sizes are
chosen so that the short traces are minimal and long traces
represent realistic usage. We generate 10 traces for training
and 100 traces for testing. Table II gives the average length of
the generated traces - the dashes indicate that no traces were
produced as the coverage criteria could not be met.

D. Measurements
We evaluate our technique for accuracy and efficiency.
1) Accuracy: To measure the accuracy of the mining pro-

cess we use the common precision-recall evaluation measures
taken from the field of information retrieval. Recall measures
the mined specification’s ability to identify correct behaviours
and is defined as the fraction of positive traces that are
correctly accepted. Precision measures the extent to which
incorrect traces are rejected by the mined specification and is
defined as the fraction of accepted traces that were correctly
accepted.

2) Efficiency: It is necessary to demonstrate that the tech-
nique can be applied to realistic traces, therefore we measure
the time it takes to extract specifications, focussing separately
on checking and combining times.

E. Results

The results of our evaluation are detailed in Table II, giving
precision and recall results, and Table III, giving efficiency
results. Overall the results are positive, with even the more
complex specifications being reconstructed well.

There were only three cases where a specification was
not identified. In two cases this was due to short traces not
matching any patterns and in one case this was due to long
traces matching disjoint patterns.

In general, mined specifications are larger than their ref-
erence models. In the extreme, the mined specification for
ColIter with long traces and path coverage has 136 states,
compared to the reference model’s 10. This explosion in size
is due to capturing unintended orderings between events. The
mined specification for LockOrder with long traces and path
coverage achieves full recall and precision even though it has
5 states and the reference model has 12. The reference model
describes the order in which locks can be taken and contains
symmetric behaviour relating to which lock is taken first - this
introduces some non-determinism. The extracted model is a
minimised version that makes use of this non-determinism to
omit one half of the behaviours. This demonstrates that our
technique can extract concise specifications.

We now discuss results for recall, precision and efficiency.
1) Recall: Generally, path-cover leads to better recall than

state-cover, and longer traces lead to better recall. However,
there are a few cases where this does not hold. In all of
these cases the mined specification incorrectly conclude that
loops must be unfolded a number of times as there are no
short traces in their training sets. This demonstrates how
over-precise patterns in the pattern-library can prevent useful
generalisation, and the need for traces of varying lengths. In
the case of James we have very poor recall for state-cover, this
is because there is a single accepting state (when the protocol
completes) and not all paths to that state are covered. Path-
coverage only means that all paths are covered in the trace as
a whole, not each individual per-binding subtrace.

There are four cases where we have zero recall (and
precision) as the mined specifications reject all trace tests. In
all cases this was due to loops not being exercised in any trace
in the training set and then being used in every trace in the test
set. In practice these training traces were unrealisticly short.

2) Precision: Mined specifications are generally precise.
As expected, path coverage leads to better precision than state
coverage. In some cases shorter traces lead to better precision.
This is due to longer traces including ‘noise’ causing patterns
with irrelevant parts to be matched and included.

3) Efficiency: Table III focuses on the long traces, path
coverage category as it is the most complex. For checking
there is a correlation with the size of alphabet (not length of
traces) as this determines the number of event pattern checkers

4

TABLE I
TARGET SPECIFICATIONS, GIVING NUMBER OF STATES, SIZE OF ALPHABET AND NUMBER OF QUANTIFIED VARIABLES.

Name Description |Q| |A| |X|
James The SMTP protocol (without authentication) as used in the Apache JAMES mail server 7 5 1
Satellites There exists a satellite that has established a communication link with all known field units. 4 2 2
Commands Issued commands succeed and are only reissued after failure. 4 4 1
SocketOutput A stream is used after being connected to a socket and not after that socket is closed. 6 3 2
ColIter An iterator created from a collection is not used after the collection is updated. 10 5 2
MutualExcl No lock should be held by two threads at the same time. 4 4 3
LockOrder Locks are always taken in a consistent order. 12 4 2
IOCallDriver The I/O stack must be setup before calling the IOCallDriver 4 2 1
KeAcquireSpinLock Locks and releases of a spin lock alternate, with two alternate locking calls. 3 3 1
ZwRegistryCreate Registry keys are created before being used, open when used and not used after being deleted. 5 5 1

TABLE II
TRACE LENGTHS AND RESULTS (S=STATE,P=PATH).

Model

Trace lengths Results
Training Test Recall Precision

Short Medium Long Short Medium Long Short Medium Long
S P S P S P + - S P S P S P S P S P S P

Jam 12 22 31 23 410 140 137 829 0.55 0.56 0.23 0.75 0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Sat - 5 - 11 - 93 57 31 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0 - 1.0
Com - 12 - 44 - 1620 2526 2160 - 0.28 - 0.78 - 0.78 - 1.0 - 1.0 - 1.0
Soc 5 7 12 15 27 27 39 82 0.08 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.98 0.98 0.98 0.98
Col 10 - 68 43 709 94 39 122 0.01 - 0.82 0.97 0.87 0.4 1.0 - 0.94 0.82 0.94 0.97
Mut 1 3 - 26 - 100 10 40 - 1.0 - 0.64 - - - 1.0 - 1.0 - -
Loc 9 16 13 23 - 88 10 18 0.0 0.0 1.0 1.0 - 1.0 0.0 0.0 1.0 1.0 - 1.0
IOC 2 8 - 42 - 2036 1318 1462 0.0 1.0 - 0.67 - 0.67 0.0 1.0 - 1.0 - 1.0
KeA 5 12 - 56 - 1518 951 907 0.09 1.0 - 1.0 - 1.0 1.0 1.0 - 1.0 - 1.0
ZwR 25 39 44 66 554 666 356 798 0.44 0.4 1.0 0.56 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE III
EFFICIENCY RESULTS - TIMES IN SECONDS

Model Times Patterns passedCheck Combine
James 1.98 11.68 79
Satellites 0.365 0.209 144
Commands 4.474 19.77 39
SocketOutput 0.515 0.299 22
ColIter 3.818 175.0 33
MutualExcl 24.38 2.761 1824
LockOrder 2.627 0.044 8
IOCallDriver 1.145 0.142 78
KeAcquireSpinLock 1.833 0.043 20
ZwRegistryCreate 2.435 1.568 341

that must be updated for each event. Note that the number
of quantified variables also has an effect - demonstrated in
the case of MutualExcl. For combining there is not a strong
correlation with patterns passed. In this case of MutualExcl
it takes under 3 seconds to combine 1824 patterns, yet in the
case of ColIter it takes 175 seconds to combine 33 patterns (as
the resultant specification has 136 states these 33 patterns are
likely to be complex). Again this is due to the relative alphabet
sizes - combining two open automata with the same symbols
is linear and the likelihood of successful patterns sharing
symbols increases greatly with shorter alphabets. As expected,
the size of the alphabet plays a large part in deciding the
time it takes to extract a specification. However, the pattern-
library also plays a key part, it is likely that in the cases

1 23

∀t ,∀l1 ,∀l2 lock(t, l1)

unlock(t, l1)

lock(t, l2)

unlock(t, l2)

Fig. 5. The MutualExl property as a QEA.

where combination was very expensive many of the successful
patterns were redundant. One extension would be to detect and
remove these redundant specifications.

F. Real world traces

Additional tests reported in [16] show that the tool can
be applied to traces produced by real world applications. For
example, a trace consisting of 14 million events relating to the
usage of Java iterators was analysed in less than 20 minutes.

VI. RELATED WORK

The field of specification mining is growing and we briefly
consider related work - [16] gives a more thorough review.

There are two other approaches that focus on mining
parametric specifications with quantified variables. TARK [12]
uses techniques from data-mining to identify predetermined
quantified binary temporal rules with equality constraints
(QBEC). Their focus is on extracting sets of rules rather than
a single specification and therefore do not include a notion
of combination. However, the use of support and confidence

5

allows them to address imperfections in traces. JMINER [8]
mines parametric specifications with universally quantified
variables with the restriction that an event name may only
occur in the alphabet once. The sk-strings algorithm is used
to infer a probabilistic finite state automata from trace slices
using an approach similar to our trace projection. JMINER
provides functionality for automatically discovering likely
specification alphabets, whereas TARK considers all events in
the trace. Previous techniques [18] could abstract over a single
value by slicing the trace. Neither approach is able to mine the
MutualExcl model (Fig. 5), as JMINER’s underlying language
cannot represent it and it cannot be decomposed into the binary
rules of TARK. Additionally, neither could capture Satellites
as it uses existential quantification. Our evaluation included
examples of models that were mined by both of these tools.

There have also been approaches that extract unquantified
parametric specifications with free variables and guard transi-
tions from sets of traces. GkTail [13] combines the Daikon
invariant-detection tool [4] with a state-merging technique
based on the kTails approach to mine a form of Extended
Finite State Machine. KLFA [14] extracts data recurrence
patterns by augmenting the names of events with symbols
representing discovered recurrence patterns and then applying
the propositional kBehaviour [15] technique. Lo et al. [10]
mine live sequence charts enriched with invariants by first
identifying frequent charts and then using these to identify sub-
traces for invariant mining. In [11] Lo et al. explore whether
such techniques that necessarily produce higher quality models
than their propositional counterparts. They compare gkTail
and KLFA with their underlying propositional algorithms
kTails and kBehaviour and conclude that neither significantly
improves precision or recall. There is, however, a fundamental
difference between techniques that focus on free, rather than
quantified, uses of parameters. The free variable approach
augments a specification mined by a propositional technique,
whereas the quantified variable approach uses quantifications
to identify the propositional parts. Applying a propositional
technique to the trace open(1).open(2).open(3).close(1).
close(3).close(2) would not produce the specification that
correctly abstracts the data, i.e., ∀f.open(f).close(f).

The pattern-mining approach taken in this paper has been
previously explored in the context of propositional specifica-
tion mining. The approach was first taken by Yang et al. [18] in
the Peracotta tool and later extended by Gabel and Su [6], [7]
in the Javert tool. We extend these approaches by introducing
the concept of open automata.

VII. CONCLUSION

In this paper we demonstrate that QEA can be used in spec-
ification mining by describing and evaluating a pattern-based
technique. We have established that our technique is good at
extracting specifications that simulate complex scenarios.

This work is significant as the form of specifications that
can be mined are richer than previous approaches. Importantly,
this work also lays the foundations for further work allowing
us to extend our specification mining technique to the full

expressiveness of QEA, incorporating both free and quanti-
fied variables, along with transition guards and assignments.
Extending our technique to the form of QEA described in [2]
will involve updating our notion of open automata combination
to reason about how variables are updated in holes. Two
further extensions that should be considered are the automatic
identification of likely alphabets by applying heuristics to
traces or the source code that produces them, and introducing
techniques for dealing with imperfect traces.

REFERENCES

[1] Windows Driver Development. http://msdn.microsoft.com/en-us/library/
windows/hardware/ff551714\%28v=vs.85\%29.aspx.

[2] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard.
Quantified event automata: Towards expressive and efficient runtime
monitors. In FM, pages 68–84, 2012.

[3] H. Barringer and K. Havelund. Tracecontract: a Scala DSL for trace
analysis. In Proc. of the 17th international conference on Formal
methods, pages 57–72, Berlin, Heidelberg, 2011.

[4] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. In ICSE ’00: Proceedings of the
22nd international conference on Software engineering, pages 449–458,
New York, NY, USA, 2000. ACM.

[5] Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verifica-
tion. In M. Broy and D. Peled, editors, Summer School Marktoberdorf
2012 - Engineering Dependable Software Systems. IOS Press, 2013.

[6] M. Gabel and Z. Su. Javert: fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of software
engineering, SIGSOFT ’08/FSE-16, pages 339–349, New York, NY,
USA, 2008. ACM.

[7] M. Gabel and Z. Su. Symbolic mining of temporal specifications. In
ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 51–60, New York, NY, USA, 2008. ACM.

[8] C. Lee, F. Chen, and G. Roşu. Mining parametric specifications. In Pro-
ceeding of the 33rd International Conference on Software Engineering
(ICSE’11), pages 591–600. ACM, 2011.

[9] D. Lo, K. Cheng, and J. Han. Mining Software Specifications: Method-
ologies and Applications. Chapman and Hall/CRC Data Mining and
Knowledge Discovery Series. Taylor & Francis Group, 2011.

[10] D. Lo and S. Maoz. Scenario-based and value-based specification
mining: better together. Autom. Softw. Eng., 19(4):423–458, 2012.

[11] D. Lo, L. Mariani, and M. Santoro. Learning extended fsa from software:
An empirical assessment. J. Syst. Softw., 85(9):2063–2076, Sept. 2012.

[12] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani. Mining
quantified temporal rules: Formalism, algorithms, and evaluation. Sci.
Comput. Program., 77(6):743–759, 2012.

[13] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of
software behavioral models. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 501–510, New
York, NY, USA, 2008. ACM.

[14] L. Mariani and F. Pastore. Automated identification of failure causes
in system logs. In Proceedings of the 2008 19th International Sympo-
sium on Software Reliability Engineering, ISSRE ’08, pages 117–126,
Washington, DC, USA, 2008. IEEE Computer Society.

[15] L. Mariani, F. Pastore, M. Pezzè, and M. Santoro. Mining finite-
state automata with annotations. In D. Lo, S.-C. Khoo, J. Han, and
C. Liu, editors, Mining Software Specifications: Methodologies and
Applications, Data Mining and Knowledge Discovery. CRC Press, 2011.

[16] G. Reger, H. Barringer, and D. E. Rydeheard. A pattern-based approach
to parametric specification mining. www.cs.man.ac.uk/∼david/sm.html.

[17] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Transactions on
Software Engineering, 39(5):613–637, 2013.

[18] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining
temporal API rules from imperfect traces. In ICSE ’06: Proceedings of
the 28th international conference on Software engineering, pages 282–
291, New York, NY, USA, 2006. ACM.

6

