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Abstract. Runtime monitoring is the process of checking whether an execution
trace of a running system satisfies a given specification. For this to be effective,
monitors which run trace-checking algorithms must be efficient so that they intro-
duce minimal computational overhead. We present the MARQ tool for monitoring
properties expressed as Quantified Event Automata. This formalism generalises
previous automata-based specification methods. MARQ extends the established
parametric trace slicing technique and incorporates existing techniques for in-
dexing and garbage collection as well as a new technique for optimising run-
time monitoring: structural specialisations where monitors are generated based
on structural characteristics of the monitored property. MARQ recently came top
in two tracks in the 1st international Runtime Verification competition, showing
that MARQ is one of the most efficient existing monitoring tools for both offline
monitoring of trace logs and online monitoring of running systems.

1 Introduction

Runtime monitoring [14, 17] is the process of checking whether an execution trace pro-
duced by a running system satisfies a given specification. Here we present MARQ,
a new runtime monitoring tool that uses the QEA specification language. Over the
past few years a number of runtime monitoring approaches have been developed [2,
4, 6, 9, 11, 18, 19] but there has been little comparison of the relative efficiency and ex-
pressiveness of runtime monitoring tools; mainly due to a lack of agreed benchmarks.
This prompted the recently held 1st international Runtime Verification competition [5],
where MARQ won the offline monitoring and online monitoring for Java tracks [1].
This paper makes use of specifications and benchmarks from this competition.

Runtime monitoring. Whilst techniques such as model checking are concerned with
checking correctness against all possible runs of a system, runtime monitoring considers
traces observed on individual runs of a system. Although incomplete, in the sense that
only observed runs are checked, this approach has the advantage that actual behaviour
is analysed. Scalability issues are then restricted to deciding which runs to analyse.

Typically runtime monitoring consists of three stages: firstly, a property denoting a
set of valid traces is specified in a formal language. Secondly, the system of interest is
instrumented to produce the required events recording information about the state of the
system. Thirdly, a monitor is generated from the specification, which processes the trace
to produce a verdict. This monitoring can occur offline on recorded executions or online
whilst the monitored system is running. The offline case means that any system that
produces logs can be monitored; whereas the online case requires specific mechanisms



for receiving events at runtime. The MARQ tool is suitable for offline monitoring and
online monitoring of Java programs using AspectJ for instrumentation.

In both online and offline monitoring, efficiency is a key concern; monitoring a
system online may introduce computational overheads and also interference with the
monitored system. The aim is to produce monitors that minimise these effects. One ad-
vantage of online monitoring is that it can be included in production systems to guard
against incorrect behaviour and potentially take corrective action. However, this be-
comes impractical if the monitoring tool introduces excessive overhead.

To illustrate the runtime monitoring process, consider a system where different
services may be requested. A typical desired property is that every request should
receive a response; in first-order Linear Temporal Logic this might be specified as
∀s.�(request(s) → ♦response(s)). MARQ uses quantified event automata (QEA)
[4, 21] to specify such properties as they admit an efficient monitoring algorithm via the
parametric trace slicing approach discussed later. Fig. 1 gives a QEA for this property:
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Fig. 1. A QEA describing a request-response property for services (see Sec. 2.1).

This uses an automaton to capture the allowed ordering of events and a quantifica-
tion ∀s to indicate the property should hold for all services s. The trace request(A).
request(B).response(A) violates the property as service B has no response. As ex-
plained in Sec. 2.1, this verdict is computed by slicing the trace for values A and B and
inspecting the subtraces separately.

This is an example of a parametric or first-order property as it deals with events
containing data. QEA allows data to be treated in both a quantified and a free way
(see Sec. 2). Runtime monitoring approaches for parametric properties tend to focus
either on efficiency or expressiveness. Those focussing on efficiency typically employ
the parametric trace slicing technique [8, 23] illustrated above.

Contribution. As shown previously [4, 21], QEA is more expressive than the underlying
languages of comparably efficient monitoring tools i.e. those that make us of parametric
trace slicing [2, 8, 18]. Therefore, MARQ can monitor properties that make use of these
additional features e.g. existential quantification and free variables. As well as addi-
tional expressiveness, the MARQ tool implements a range of optimisations for efficient
monitoring, including a novel technique which selects optimisations according to the
structure of the specified property.

Availability. MARQ is available from

https://github.com/selig/qea

This includes instructions on how to perform online and offline monitoring and a col-
lection of specifications used in the 1st international runtime verification competition.



Structure. We first describe how MARQ can be used to specify properties (Sec. 2)
and perform monitoring (Sec. 3). This is followed by an overview of MARQ’s imple-
mentation (Sec. 4). Then we look at how changing the way a specification is written
can improve monitoring efficiency (Sec. 5). We finish by comparing MARQ with other
tools (Sec. 6) and giving conclusions (Sec. 7).

2 Writing specifications in QEA

We consider the problem of using QEA to write parametric specifications for MARQ.
This presentation is example-led, omitting details which can be found in [4, 21].

We are concerned with parametric properties in which events may carry data. A
parametric event is a pair of an event name and a list of data values, and a parametric
trace is a finite sequence of parametric events. A parametric property denotes a set
of parametric traces. Quantified event automata (QEA) determine such sets of traces -
those accepted by the automata.

A QEA is a list of quantified variables together with an event automata. An event au-
tomata is a finite state machine with transitions labelled with symbol parametric events,
where data values can be replaced by variables. Transitions may also include guards
and assignments over these variables.

2.1 The slicing approach

Let us revisit the QEA in Fig. 1. The event automaton consists of three states and five
transitions. The shaded states are final states. The square states are closed to failure i.e. if
no transition can be taken there is a transition to an implicit failure state; the alternative,
seen below, is to have a circular state that is closed to self i.e. if no transition can be
taken there is an implicit self-looping transition. The quantifier list ∀s means that the
property must hold for all values that s takes in the trace i.e. the values obtained when
matching the symbolic events in the specification with concrete events in the trace.

To decide the verdict given the trace

request(A).request(B).request(C).response(A).request(C).response(C)

we slice the trace based on the values that can match s, giving the slices

[s 7→ A] 7→ request(A).response(A)
[s 7→ B] 7→ request(B)
[s 7→ C] 7→ request(C).request(C).response(C)

Then we ask whether each slice is accepted by the event automaton instantiated with
the binding i.e. with s replaced by the appropriate value.The slice for [s 7→ B] does not
reach a final state, therefore the whole trace is not accepted.

2.2 Two different kinds of variables

In QEA variables can either be quantified or free. This is an important distinction and
we review the difference here. The variables of a QEA are those appearing in symbolic
events labelling transitions. For example, the QEA in Fig. 1 has the single variable s.
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∀m ∀c ∀i
create(m, c) iterator(c, i) update(m) use(i)

1 2∀i
iterator(i, size)

next(i) size>0
size=size−1

Fig. 2. Two QEAs demonstrating QEA features. unsafemapiter (top) specifies how iterators over
collections created from maps should be used. safeiter (bottom) restricts the maximum number
of calls to next on an iterator.

Quantified variables. A QEA may have zero or more variables that are universally
or existentially quantified. Quantifications have their usual interpretation i.e. universal
means for all values in the domain where the domain is determined by the trace (see
above). A quantification may be associated with a guard (a predicate over previously
quantified variables), which excludes some bindings of quantified variables from con-
sideration. A quantification list may be negated, which inverts the verdict obtained.

As an example, the unsafemapiter property in Fig. 2 uses multiple quantified vari-
ables. The property is that an iterator over a collection created from a map cannot
be used after the map is updated. The style of specification here is to specify the
events that lead to failure i.e. for every map m, collection c and iterator i if we see
create(m, c).iterator(c, i). update(m).use(i) then the property has been violated.
Note that the circular states are closed to self (see above) so any additional events are
ignored.

Free variables. Any variables in a QEA that are not quantified are called free. Quan-
tified variables indicate that the automaton should be instantiated for each binding of
those variables; free variables are local to each of these instantiations and are rebound
as the trace is processed. The purpose of free variables is to store data that can be ac-
cessed by guards and assignments on transitions. Guards are predicates that restrict the
availability of transitions and assignments can modify the values given to free variables.

The safeiter property in Fig. 2 uses a free variable size to track the size of a col-
lection being iterated over. The property is that the next method may only be called on
an Iterator object as many times as their are objects in the base collection. This is a
generalisation of the standard HasNext property often used in runtime monitoring [2,
18]. The value for size is bound on the iterator event and then checked and updated
in a loop on state 2; as this state is square if the guard is false there is an implicit failure.

2.3 Creating QEAs and Monitors in MARQ

To specify QEA as input to the MARQ system, we introduce a QEABuilder as il-
lustrated in Fig. 3. A builder object is used to add transitions and record information
about quantification and states. These are used to construct a QEA that is passed to the
MonitorFactory as discussed below.

Fig. 4 shows how QEABuilder can be used to construct the safeiter property QEA
seen in Fig. 2. First the builder object q is created. Then we declare the event names
and variables as integers; quantified variables are negative, free variables are positive.



Fig. 3. Using the QEABuilder and MonitorFactory

QEABuilder q = new QEABuilder ( ” s a f e i t e r ” ) ;

i n t ITERATOR = 1 ; i n t NEXT = 2 ;
f i n a l i n t i = −1; f i n a l i n t s i z e = 1 ;
q . a d d Q u a n t i f i c a t i o n (FORALL, i )

q . a d d T r a n s i t i o n ( 1 , ITERATOR , i , s i z e , 2 ) ;
q . a d d T r a n s i t i o n ( 2 ,NEXT, i , i s G r e a t e r T h a n C o n s t a n t ( s i z e , 0 ) , dec remen t ( s i z e ) , 2 ) ;

q . a d d F i n a l S t a t e s ( 1 , 2 ) ; q . s e t S k i p S t a t e s ( 1 ) ;

QEA qea = q . make ( ) ;

Fig. 4. Using QEABuilder to construct the safeiter QEA in Fig. 2

We then declare the universal quantification for i. The two transitions are added us-
ing addTransition. For the first transition we specify only the start state, event name,
parameters and end state. For the second transition we include the guard and assign-
ment. MARQ includes a library of guards and assignments. Additionally, it is possible
for the user to define a new guard or assignment by implementing a simple interface.
Currently MARQ supports the guards and assignments for dealing with equality and
integer arithmetic. The last stage of defining the QEA is to specify the final (accepting)
and the types of states, which can skip (circular) or next (square) as explained above.

Once we have constructed a QEA we can create a monitor object by a call to the
MonitorFactory. This will inspect the structure of the QEA and produce an opti-
mised monitor as described in Sec. 4.3. Optionally, we can also specify garbage and
restart modes on monitor creation.
Moni to r m o n i t o r = M o n i t o r F a c t o r y . c r e a t e ( qea ) ;
Moni to r m o n i t o r = M o n i t o r F a c t o r y . c r e a t e ( qea , GarbageMode . LAZY, Res ta r tMode .REMOVE) ;

Garbage mode determines how garbage objects should be treated. As explained in
Sec. 4.2 it is sometimes possible to remove bindings related to garbage objects in online
monitoring. The default is to not collect garbage as this allows us to use more stream-
lined data structures and is applicable to the offline case. Restart mode determines what
happens when an ultimate verdict is detected e.g. violation of a safety property. There
is the option to remove or rollback the status of the offending binding. Both achieve a
signal-and-continue approach used by other systems. The default is not to restart.

3 Running MARQ online and offline

Here we demonstrate how our tool can be used for offline and online monitoring. Fig. 5
illustrates the two different monitoring settings. In the first case, offline monitoring, a



Fig. 5. Two different monitoring modes.

trace is given as a log file and processed by a translator and the monitor to produce
a verdict. In the second case, online monitoring, a program is instrumented to emit
events which are consumed by the monitor. The monitor then produces a verdict on
each event. In the following we discuss how MARQ can be used in both settings. For
complete examples of how to run MARQ in either mode see the website.

3.1 Offline monitoring

Offline monitoring can be performed in five lines of code that will take a trace and
a translator to produce a verdict. MARQ can process traces in two different formats:
CSV and XML. Alternatively, a custom parser for a new format could call the monitor
directly as is done in online mode (see below).

The translator converts the string version of each event to the format used by the
monitor. The default translator maps a list of strings to successive integers. If a different
mapping is required, or it is necessary to ignore some parameters, a simple interface
can be implemented to achieve this.

To monitor a trace we simply create the component parts, construct an appropriate
FileMonitor (which reads in the trace) and call monitor() to produce a verdict.
S t r i n g t r a c e = ‘ ‘ t r a c e d i r / t r a c e . csv ’ ’ ;
QEA qea = b u i l d e r . make ( ) ; / / s e e S e c t i o n 2
O f f l i n e T r a n s l a t o r t r a n s l a t o r = new D e f a u l t T r a n s l a t o r ( ‘ ‘ i t e r a t o r ’ ’ , ‘ ‘ n e x t ’ ’ ) ;
CSVFi leMoni tor m = new CSVFileMoni tor ( t r a c e n a m e , qea , t r a n s l a t o r ) ;
V e r d i c t v = m. m o n i t o r ( ) ;

Calling getStatus() on the monitor after monitoring will print the final status of the
monitor, giving the configurations associated with each binding of quantified variables.

3.2 Online monitoring

For online monitoring it is necessary to submit each event to the monitor at the time it is
generated by the running system. Here we show how this can be done using AspectJ
[16] where aspects define code that is to be weaved into the object at specified points.
Weaving can occur at compile or load time, both are useful for runtime monitoring.

Fig. 6 gives an example aspect to be used to monitor the safeiter property from
Fig. 2. Firstly we specify the event names, ensuring they are the same as those used in
the QEA definition. We then create the monitor as described in the previous section.
Two pointcuts are used to relate the events of the QEA to concrete Java calls. Note
how we call size on the base collection of the iterator call to provide this information
in the event. Finally, we check the verdict returned by each step call for failure. It



p u b l i c a s p e c t S a f e I t e r A s p e c t {

p r i v a t e i n t ITERATOR = 1 ; p r i v a t e i n t NEXT = 2 ;
p r i v a t e Moni to r m o n i t o r ;

S a f e I t e r A s p e c t ( ){
QEA qea = S a f e I t e r . g e t ( ) ;
m o n i t o r = M o n i t o r F a c t o r y . c r e a t e ( qea ) ;

}

p o i n t c u t i t e r ( C o l l e c t i o n c ) : ( c a l l ( I t e r a t o r C o l l e c t i o n + . i t e r a t o r ( ) ) && t a r g e t ( c ) ) ;
p o i n t c u t n e x t ( I t e r a t o r i ) : ( c a l l (∗ I t e r a t o r . n e x t ( ) ) && t a r g e t ( i ) ) ;

a f t e r ( C o l l e c t i o n c ) r e t u r n i n g ( I t e r a t o r i ) : i t e r ( c ) {
synchronized ( m o n i t o r ){ check ( m o n i t o r . s t e p ( ITERATOR , i , c . s i z e ( ) ) ) ; }

}
b e f or e ( I t e r a t o r i ) : n e x t ( i ) {

synchronized ( m o n i t o r ){ check ( m o n i t o r . s t e p (NEXT, i ) ) ; }
}

p r i v a t e vo id check ( V e r d i c t v e r d i c t ){
i f ( v e r d i c t == V e r d i c t . FAILURE){ <r e p o r t e r r o r here> }

}
}

Fig. 6. AspectJ for monitoring the safeiter property.

should be noted that MARQ is not thread-safe. We therefore synchronize on the monitor
object for each call as we might be monitoring a concurrent program. One abstract
event in the specification may relate to many different concrete events produced by the
instrumentation, and vice versa. For example, in the unsafemapiter property in Fig. 2
we would relate the create event with the values and keySet methods from the Map
interface. In the withdrawal specification given later (Fig. 8) there are different abstract
events that would match with the same concrete event.

4 Efficient Monitoring

Details of the monitoring algorithm used in MARQ can be found in [21]. Here we
highlight the major optimisations that ensure efficiency.

4.1 Indexing.

Monitoring requires information to be attached to bindings of quantified variables.
When an event occurs in the trace, we need to find the relevant bindings and update the
information attached to them. The collection of bindings generated by runtime mon-
itoring can be very large and so efficient techniques to identify relevant bindings are
necessary. These often involve indexing.

Purandare et al. [20] discuss three different kinds of indexing that use different
parts of a parametric event to lookup the monitor state relevant to that event. The first
two - value-based, using the values of an event, and state-based, using the states of
the underlying propositional monitor - are used by JavaMOP [18] and tracematches [2]
respectively. MARQ implements the third, symbol-based. When a binding is created it is
used to partially instantiate the alphabet of the automaton and each partially instantiated



event is added to a map associating it with the binding. An observed concrete event is
then matched against these partially instantiated events to locate the relevant bindings.

4.2 Garbage and redundancy.

Early work [3] showed that removing monitored objects that are no longer used in the
monitored system can prevent memory leaks and improve performance. For example, in
the case of the safeiter property, if the iterator object is garbage-collected the property
cannot be violated for that iterator and the binding can be deleted. This can have a
significant impact as millions of monitored short-lived objects can be generated in a
typical run of a monitored system.

This idea belongs to a collection of optimisations for redundancy elimination - in-
formation about monitored objects can be safely omitted if it does not effect the out-
come of the monitoring process. MARQ supports garbage collection in the same way as
[15] i.e. when monitored objects are garbage collected it is checked whether the bind-
ings they participate in can be removed. MARQ also implements a form of redundancy
elimination that generalises the concept of enable sets [18]. Based on the automaton it is
possible to conservatively precompute a reachability relationship that indicates whether
recording a new binding will make an observable difference. This relationship is used
to decide whether to create a new binding or not.

A further form of redundancy elimination is that of early detection of success or
failure by identifying whether a certain verdict is reachable [7]. MARQ will return
a verdict as soon as it is guaranteed that the verdict cannot change given any future
events. To enable this the true and false verdicts are split into weak and strong variants.

4.3 Structural specialisations

Many common forms of specification use only a subset of available features i.e. con-
form to a particular structural restriction. Properties can be categorised according to
their structural characteristics and a custom monitor for each category can be built. At
first it might seem that the improvements will be insignificant. However, most monitor-
ing activities consist of the repeated execution of a small number of operations. There-
fore, when processing large event traces the small improvements accumulate, resulting
in a significant reduction in time overhead.

Specialisations. As detailed in [10], we implement a number of specialisations of the
monitoring algorithm that make assumptions about the structure of the monitored QEA.
The first assumption we make is about the number of quantified variables. If we
assume that a single quantified variable is used we can directly index on this value.
Currently specialisations are restricted to this setting.

The remaining specialisations simplify the monitoring algorithm by removing checks
and replacing complex data structures with simpler versions. The structural assumptions
are as follows:

– Use of free variables: if free variables are not used then the structures for storing
these, and support for guards and assignments, can be removed.
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request(r)

deny(r)

grant(r)

cancel(r)

rescind(r)

Fig. 7. A QEA giving the lifecycle of a resource object.

– Determinism/non-determinism: when the monitored QEA is deterministic we
only need to track a single state or configuration per binding.

– Fixed quantified variable: if the unique quantified variable (recall we only con-
sider one) always appears in a fixed position the matching process is simplified.

Whilst currently restricted to a single quantification, these specialisations cover a
large number of useful cases and commonly occurring specification patterns. Future
work will look at extending these to multiple quantifications.

Example. Let us illustrate this approach using the resourcelife property given as a
QEA in Fig. 7. This specifies the possible actions over a resource: it can be requested
and then either denied or granted, and when granted it can be rescinded before it is
cancelled. We randomly construct a valid trace of 1M events using 5k resources and
measure monitoring time for different monitor specialisations.

Monitoring this trace with the naive incremental monitoring algorithm described
in [4] takes 96k ms. By noticing that there is a single quantified variable and directly
indexing on this we can reduce this to 202 ms, which is 477 × faster. We expect this
large speedup as we have gone from a case without indexing to one using indexing.
Removing support for non-determinism we can reduce this further to 172 ms, 1.2 ×
faster than the previous monitor. Removing support for free variables reduces this to 106
ms, 1.6 × faster than the previous monitor. Overall we achieve a 913 × speedup, and
ignoring the vast speedup from moving to indexing we still achieve a 1.9× speedup.

5 Writing specifications for efficient monitoring

Many different QEAs can specify the same property. However, choosing the right spec-
ification can determine the efficiency of the monitoring process.

The time complexity of MARQ’s monitoring algorithm is dependent on charac-
teristics of the trace (length, distribution of events) and of the specification (types of
variables and transitions). One of the main factors is the number of quantified variables
used in the specification. If there are n quantified variables there are a maximum of∏n

i di bindings of quantified variables where di is the size of the domain of the ith
quantified variable; this is exponential in n. Redundancy elimination can reduce this
dramatically, but if it is possible to rewrite the specification to eliminate a quantified
variable it can dramatically improve the performance of monitoring.

Here we discuss optimisations that eliminate quantified variables. In the future we
plan to explore automatically simplifying a QEA to improve monitoring efficiency.
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∀u∀t
withdraw(u, a, t)a≤10k

s:=a

withdraw(u, a, t2)
s+a≤10k
s+=a

withdraw(u, a, t2)
t2−t>28

1 2 3

¬∃u

withdraw(u, a, t)

withdraw(u, a, t)a≤10k
s:=a

withdraw(u, a, t2)
t2−t≤28 ∧ s+a≤10k

s+=a

withdraw(u, a, t2)
t2−t≤28 ∧ s+a>10k

Fig. 8. Two QEAs for the property that a user must withdraw less than $10k in a 28 day period.

5.1 Introducing non-determinism

Consider the withdrawal property that states that a user does not withdraw more than
$10k from an account in a 28 day period. Fig. 8 gives two equivalent QEAs for this
property. The first QEA quantifies over a user u and a time point t that reflects the
beginning of a 28-day period. The second QEA introduces non-determinism on the first
state to remove the quantification over t. Whenever a withdraw event occurs this non-
determinism records the start of a new 28-day period by making a transition to state 2
but also taking a transition to state 1, allowing another period to start on the next event.

To make the translation it was necessary to invert the automaton and extend the
guards on transitions out of state 2. Adding the negation means that the event automaton
now accepts incorrect, rather than correct traces. State 3 in the new QEA is the implicit
failure state from the first QEA - the guard t2 − t ≤ 28 ∧ s + a > 10k is the negation
of the conjunction of guards labelling transitions out of state 2 in the old QEA. The
t2 − t ≤ 28 conjunct in the guard of the looping transition on state 2 ensures that we
discard the information for a time period when it exceeds 28 days; this is not necessary
for correctness but important for efficiency.

Even though support for non-determinism adds some overhead (see Sec. 4.3), this
is negligible in comparison to the savings made by removing bindings.

5.2 Introducing counters

The next example we consider is the persistenthash property that states that the hashCode
of an object should remain the same whilst it is inside a structure that uses hashing e.g.
a HashMap or HashSet. Fig. 9 gives two equivalent QEAs for this property. The
first QEA quantifies over the structure. To remove this quantification, the second QEA
introduces a counter to track how many structures the object is inside.

5.3 Stripping existential quantification

Finally, we consider the publishers property that every publisher p that sends messages
to subscribers s gets at least one reply. Fig. 10 gives two equivalent QEAs for this
property. The second strips the tailing existential quantification, making the variable
s a free variable. This has the same effect as any subscriber that led to a trace being
accepted by the first QEA would cause the trace to be accepted by the second.



1 2

∀s ∀o add(s, o)
h:=o.hashCode()

remove(s, o)h=o.hashCode()

observe(s, o)h=o.hashCode() ,
add(s, o)h=o.hashCode()

1 2

∀o add(o)
h:=o.hashCode();c:=1

remove(o)h=o.hashCode()∧c=0

observe(o)h=o.hashCode() ,
add(o)h=o.hashCode()

c:=c+1
,

remove(o)h=o.hashCode()∧c>0
c:=c−1

Fig. 9. Two equivalent QEAs for the persistence of hashes for objects in hashing structures.

1 2 3

∀p∃s
send(p, s) reply(s, p)

1 2 3

∀p
send(p, s) reply(s, p)

Fig. 10. Two equivalent QEAs for the property that every publisher has a subscriber.

5.4 Performance improvements

We briefly demonstrate that these translations achieve a significant performance im-
provement. Table 5.4 shows that this translation can speed monitoring up by an order of
magnitude, demonstrating that the way in which a property is specified can have a dra-
matic impact on efficiency. It should be noted that the exponential dependence on the
number of quantified variables is common to all tools that use parametric trace slicing.

Table 1. Performance improvements for translated QEAs

Property Trace length Runtime (milliseconds) Speedup
Original Translated

withdrawal 150k 3,050 2,106 1.44
persistenthash 4M 12,267 864 14.12
publishers 200k 355 37 9.59

6 Comparative evaluation

In this section we compare MARQ with other runtime monitoring tools. We make use
of benchmarks taken from the 1st international Runtime Verification competition [5].
We consider the performance of tools on selected benchmarks and reflect on the speci-
fication languages used by each tool. We also report the results of the competition [1].

6.1 Offline monitoring

We evaluate MARQ for its use in offline monitoring i.e. the processing of recorded logs.
We consider four properties, two previously introduced, and the two given in Fig. 11.



Table 2. Selected timing results for offline monitoring (in seconds).

Property Trace length RiTHM2 MonPoly STePr MARQ Speedup
Min Avg.

maxchunk (Fig. 11) 1.4M 0.59 8.4 8.86 3.58 0.16 1.66
withdrawal (Fig. 8) 315k - 1.53 3.67 2.57 0.6 1.01
processes (Fig. 11) 823k 2.39 2.0 2.91 0.63 3.17 3.86
resourcelife (Fig. 7) 10M 5.18 3405 9.96 2.04 2.54 558.8

Competition score 236.91 293.54 220.40 339.15

1 2

∀c event(c, chunkSize) chunkSize>10000

event(c, chunkSize) chunkSize≤10000

1 2 3 4

∀p groupStart(t)

groupEnd(t2)
t2−t<480

phaseStart

init(p) run(p)

finish(p)

Fig. 11. Two QEAs used for evaluation. The first ensures that the chunk size eventually drops be-
low 10k. The second captures a complex property about processes running in groups and phases.

We compare against three other competing tools in the offline track of the com-
petition. MonPoly [6] monitors properties in Metric First-Order Temporal Logic and
is designed to search for violating instantiations of a property. STePr is based on the
LOLA language [11], which is a functional stream computation language. RiTHM2
[19] monitors properties in LTL and is designed with real-time systems in mind.

Table 2 gives the monitoring runtime with minimum and average speedup using
MARQ. Firstly, note that these benchmarks involve very large traces, in some cases with
millions of events. RiTHM2 cannot express the withdrawal property. MARQ always
performs better on average. In the case of maxchunk, which has a very simple structure,
the RiTHM2 tool performs the best. MonPoly struggled with the liveness elements of
the resourcelife property.

The first three properties in Table. 2 were supplied by the teams behind RiTHM2,
MonPoly and STePr respectively. We compare how these properties are specified in
their native language with how they are specified in QEA. However, note that QEA
graphical models must currently be represented using Java code as shown in Fig. 4.

In the RiTHM2 tool the maxchunk property is specified as

For all Connections, �((Connection.Chunksize > 10000)⇒ ♦(Connection.Chunksize ≤ 10000))

which is very similar to the QEA specification given in Fig. 11. Response properties of
this kind are common specification patterns that most languages handle easily.

MonPoly specifies the withdrawal property as

ALWAYS FORALL s, u.
(s← SUM a;u ONCE[0, 28] withdraw(u, a) AND tp(i)) IMPLIES s ≤ 10000



which makes use of SUM and ONCE to capture the property concisely. The SUM ag-
gregate operator takes the sum of values for a for a given u over a specified period and
ONCE[0,28] defines the 28 day window. It should be noted that MonPoly cannot handle
true liveness, only finitely-bounded intervals. It deals with this by putting a very large
bound in the place to simulate infinity.

STePr specifies the processes property as

G(
groupStart⇒ WY(¬groupStart WS groupEnd)

∧ groupEnd⇒ Y(¬groupEnd S groupStart)
∧ phaseStart⇒ ¬groupEnd S groupStart)
∧ phaseStart⇒ ¬(init(x) ∨ run(x)) WS finish(x)
∧ run(x)⇒ Y(¬run(x) S init(x))
∧ finish(x)⇒ Y(¬finish(x) S run(x))
∧ init(x)⇒ WY(¬(init(x) ∨ run(x)) WS finish(x))
∧ (¬groupStart WS groupEnd)⇒ ¬finish(x) ∧ ¬init(x) ∧ ¬run(x)
∧ groupEnd ∧ (¬groupStart S (groupStart ∧ time = x))⇒ time− x < 480000

)

which is more complex than the QEA given in Fig. 11. MonPoly requires a similarly
complicated formalisation as both tools use temporal logic where each subproperty
must be specified separately; whereas QEA can capture the intuition of the property.

Table 2 also gives the scores from the competition (see http://rv2014.imag.
fr/monitoring-competition/results for a breakdown). This shows that
MARQ outperformed the other tools in this competition.

6.2 Online monitoring

We consider MARQ’s use in online monitoring for Java. We report the competition
results and compare specification languages.

The other tools competing in this track of the competition were as follows. Larva
[9] monitors properties specified as Dynamic Automata with Timers and Events. Java-
MOP [18], like MARQ, is based on the parametric trace slicing approach. Both Larva
and JavaMOP automatically generate AspectJ code. JUnitRV [12] extends the JUnit
framework to perform monitoring where events are defined via a reflection library; they
also include the monitoring modulo theories approach [13].

Table 3. Breakdown of results in CSRV14 online Java track (higher is better).

Tool Correctness Overhead Memory Total
Larva 165 7.79 38.43 211.22
JUnitRV 200 49.15 31.67 280.82
JavaMOP 230 88.56 77.89 396.45
MARQ 230 84.5 82.01 396.51

Table 3 gives a breakdown of the results from the CSRV14 competition. The cor-
rectness score reflects the properties that each tool was able to capture. On these bench-
marks, Larva and JUnitRV struggled with expressiveness and running time (overhead).
The results for MARQ and JavaMOP are similar, with JavaMOP running slightly faster



and MARQ consuming slightly less memory. Although the scores put MARQ just ahead
of JavaMOP the authors would argue that, given the variability in results, this shows that
the tools are equally matched on the kinds of benchmarks used in the competition.

Both Larva and JavaMOP divide specifications into a part that defines events and
a part that declares a property over these events. For each tool events are specified as
AspectJ pointcuts. JUnitRV uses a reflection library to capture events.

Larva supports free variables in its language, making the specification of safeiter
very similar to that of QEA. However, it has limited support for multiple quantifications
meaning that to capture the unsafemapiterator property Larva uses a free variable to
track the iterators created from each collection; although this could be seen as an optimi-
sation. JavaMOP provides multiple plugin languages for giving properties over events.
This means that the unsafemapiterator property can be specified using a regular ex-
pression as follows:

ere : createColl updateMap* createIter useIter* updateMap updateMap* useIter

The JavaMOP language has no native support for free variables, requiring program-
ming in the AspectJ part of the language to capture properties such as safeiter and
persistenthash. Both Larva and JavaMOP lack a natural way to relate a concrete event
to multiple abstract events. JUnitRV can use at least future time LTL or explicit Mealy
Machines but a description of the language is not available to the authors.

7 Conclusion

We have introduced the MARQ tool for runtime monitoring with QEA. We have shown
how to use MARQ in both online and offline monitoring. Efficiency of the tool is dis-
cussed at length, both how to produce efficient QEA specification and how the tool
performs relative to others that are available.

MARQ is an ongoing project and there is much work to be done. Firstly, we need
to introduce an external language for specifying QEAs. Secondly, we aim to extend the
notion of structural specialisations: considering properties with multiple quantifications
and automatically translating properties to remove features where possible. It will be
possible to use MARQ to continue research in specification mining for QEA [22].
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