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The problem

formal

system specifications are useful

for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.
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The ‘solution’

Infer specifications from ‘correct’ programs
i.e. extract them don’t write them

Correct Program Formal Specification
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The more specific problem

Given a set of dynamic traces, passively infer a
temporal specification.

• Dynamic - The input will be recorded traces.

Traces have the advantage (over source code) that they
contain common behaviour.

• Passive - We cannot query or interact with the system.

• Temporal - We are only concerned with properties about the
ordering of events. In this work a specification denotes a set
of allowed traces of events.
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Where I’m coming from

• Last year I gave a talk on a runtime verification technique for
checking first-order temporal properties

• Today I’m using this technique for extracting specifications
rather than testing them against a trace

• The natural setting for this is a pattern-based technique
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The generate-and-check approach in action

• We use a set of abstract patterns and an alphabet to generate
a set of concrete patterns and then check these on the trace(s)

• For example, given these (abstract) patterns

(ab)∗ (ab+c)∗

and this trace

open.use.close.open.use.use.close

we can identify these (concrete) patterns

(open close)∗

(open use+ close)∗

• This is (roughly) what has been done previously in this space
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How to interpret data

• What do we do when events can carry data?

open(1).use(1).close(1).open(2).use(2).close(2)

• This looks fine - ignore the data! (using it in the alphabet will
quickly explode)

• There is a sense that the events for different data values can
be separated i.e.

file 1: open(1).use(1).close(1)
file 2: open(2).use(2).close(2)

• We can also do this with multiple pieces of data, i.e.

create(L1).add(L1,O1).create(L2).add(L2,O1).remove(L1,O1)

• becomes

list L1 with object O1: create(L1).add(L1,O1).remove(L1,O1)
list L2 with object O1: create(L2).add(L2,O1)
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Quantified Event Automata (QEA)

• The runtime verification technique mentioned earlier

• Also, our target temporal specification language

• Has this notion of slicing up the trace built in

• Good for this generate-and-check approach as efficient
checking algorithms have been developed
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What is it?

• A QEA defines a language of traces of events

• Events are defined as a name and a list of symbols i.e.

open(f ) login(user , pwd) send(msg , time, addr)

• A QEA consists of
• A list of quantifications of variables X
• A state machine over an alphabet of events using X
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An example : HasNext

A call of next to an iterator is safe if it is preceded directly by a
call of hasNext that returns true.

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

next(i)

hasNext(i , true)
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An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)
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Overview of mining process
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Defining what we mean by pattern

• Patterns need to be predicates on traces that can be combined

• It has been previously shown that using standard automata or
regular expressions is inadequate for combination

• This inadequacy (shown next) leads to over-generalised
combinations

• We therefore introduce a new kind of automata to use as a
pattern (shown shortly)
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The inadequacy

• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open
1 2

use

use

close

1 2

open

close
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The inadequacy
• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open

close close close

1 2

use

use

close

open open

1 2

open

close
use use

• Which uses the standard method of expanding alphabets

to
use standard automata intersection to give

1 2 3 4 5 6
open use

use

close

open

use

use
open

close

use
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The inadequacy

• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open
1 2

use

use

close

1 2

open

close

• When we should hope for

1 2 3
open use

use

close

• The problem is that we have no information about where
interleaving can happen
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Patterns = open automata

• For use as patterns we introduce open automata

• An open-automata is a state machine with a special • hole
symbol that can label transitions

• The hole symbol matches any symbol not in the state
machine’s alphabet

• To avoid undesired interleaving we define intersection so that
it expands alphabets only on holes
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An example pattern library

Let us assume our pattern library consists of these three patterns

1 2

Pattern p1

•

a
1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•
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Checking patterns

A = {open(f ), read(f ), write(f ),
close(f ), delete(f )}

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•
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Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1

X

open(f ) close(f ) p2

X

open(f ) delete(f ) p2

7

read(f ) write(f ) p3

X

read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1

X

open(f ) close(f ) p2

X

read(f ) write(f ) p3

X

write(f ) read(f ) p3

X

• There are four successful patterns
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Successful patterns

• Our four successful patterns become three due to symmetry

1 2

•
delete(f )

1 2 3
open(f) •

•

close(f)

1 2
•

• read(f ), write(f )

•

• Each of these tell us something about how their events order
with each other and other events not mentioned
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Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• First combining these two patterns

1 2 3
open(f) •

•

close(f)
1 2

•

• read(f ), write(f )

•

• Gives us

• Leading to the Quantified Event Automaton

1 2 3
open(f ) read(f ), write(f )

read(f ), write(f )close(f )
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Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• Then combining the result with

1 2

•
delete(f )

• Gives us

• Leading to the Quantified Event Automaton

1 2 3

4

open(f ) read(f ), write(f )

read(f ), write(f )close(f )

delete(f )

delete(f )

delete(f )
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Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• Leading to the Quantified Event Automaton

1 2 3

4

∀f : File

open(f ) read(f ), write(f )

read(f ), write(f )close(f )

delete(f )

delete(f )

delete(f )
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Something from the real world

• This example with files has been necessarily simple, here is an
example of a property mined from the Java standard library

• This states that an iterator created from a collection cannot
be used after the collection is updated

1

2 3 4

5

∀c : Collection,∀i : Iterator

create(c)

update(c), hasNext(i , ), next(i)

iterator(c , i)

hasNext(i , true)

hasNext(i , true)

next(i)

update(c)
hasNext(i , false)

update(c)
update(c)



Specification inference A specification language Mining with patterns What’s next

The approach I didn’t use

Automata-learning / regular-inference

• Passive via state merging
• Construct an automaton that accepts exactly the traces
• Merge ‘equivalent’ states for some notion of equivalence

• Active via L∗ (Angluin’s) - requires an oracle

• So why have I chosen to use this pattern-based approach?
There are two main reasons

1. Algorithms from runtime verification allow large traces to be
processed efficiently

2. The pattern-based approach supports a language with any
level of expressiveness - we only need a trace checking function
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The approach I didn’t use

Automata-learning / regular-inference

• Passive via state merging
• Construct an automaton that accepts exactly the traces
• Merge ‘equivalent’ states for some notion of equivalence

• Active via L∗ (Angluin’s) - requires an oracle

• So why have I chosen to use this pattern-based approach?
There are two main reasons

1. Algorithms from runtime verification allow large traces to be
processed efficiently

2. The pattern-based approach supports a language with any
level of expressiveness - we only need a trace checking function
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An overview of further work

• Extending to full expressiveness of QEA

• Developing a methodology for finding suitable pattern libraries

• Methods for identifying likely alphabets
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Conclusion

We have

• Introduced the idea of specification inference

• Outlined a pattern-based approach that deals with data
effectively and allows for efficient mining

• Presented an example of how this works

• Discussed some outstanding issues

Any Questions?
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Where do patterns come from?

• A pattern library needs to be defined before mining

• There are two interesting questions

1. How do we do this?
2. Does it matter?

• Let us consider the second by posing the question - Is there a
pattern library that will always give the desired specification?
i.e. one that gives a solution to the specification inference
problem

• To answer this we must consider what a solution looks like
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise
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open.read.write.save.close

• What property can we infer?
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open use close open use close

open use use save close
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open use close open use close

open use use save close

• Now we receive this trace

open.read.close.open.close

• Our specification is too specific
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open read, write, save

read, write, save

close
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open read, write, save

read, write, save

close

• But if we have to save after writing we incorrectly accept

open.read.write.save.write.close

• Our specification is too general
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Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• It is known that without negative information we cannot
exactly identify a language

• As combination is the straight-forward intersection of
languages the pattern library can cause

• over-specification, for example if it contains a pattern
accepting exactly the input traces

• over-generalisation, when the desired specification is very
specific

• Additionally, a pattern library may be too small or lack the
coverage to identify a specification at all
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Making patterns

• Intuition and experience
• There exist studies identifying common shapes in specifications
• There are also exist common methods for combining

specifications that can be formed as patterns

• Exploration
• Given a known specification we can perform the reverse of

combination to give us patterns

• Automatic generation/enumeration
• We can use different methods to automatically generate

patterns either by enumeration up to a certain size or by
performing operations on a set of existing patterns

• Disadvantage - likely to introduce noise

• A full methodology for pattern library definition remains
further work
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Where to start

• Our process begins having collected a set of traces

• But to do this we assume we already know the alphabet of the
specification (this is another input)

• This is similar to other processes like ours

• Identifying likely alphabets remains further work
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