
Specification inference A specification language Mining with patterns What’s next

Using patterns to infer first-order temporal
specifications

Giles Reger

University of Manchester

March 25, 2013



Specification inference A specification language Mining with patterns What’s next

Outline

Specification inference

A specification language

Mining with patterns

What’s next



Specification inference A specification language Mining with patterns What’s next

The problem

formal

system specifications are useful

for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful

for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write

and are therefore often missing or
incomplete.



Specification inference A specification language Mining with patterns What’s next

The problem

formal system specifications are useful for

testing, verification, maintenance,

understanding,...

but

are also difficult and costly to write
and are therefore often missing or

incomplete.



Specification inference A specification language Mining with patterns What’s next

The ‘solution’

Infer specifications from ‘correct’ programs
i.e. extract them don’t write them

Correct Program Formal Specification



Specification inference A specification language Mining with patterns What’s next

The more specific problem

Given a set of dynamic traces, passively infer a
temporal specification.

• Dynamic - The input will be recorded traces.

Traces have the advantage (over source code) that they
contain common behaviour.

• Passive - We cannot query or interact with the system.

• Temporal - We are only concerned with properties about the
ordering of events. In this work a specification denotes a set
of allowed traces of events.



Specification inference A specification language Mining with patterns What’s next

Where I’m coming from

• Last year I gave a talk on a runtime verification technique for
checking first-order temporal properties

• Today I’m using this technique for extracting specifications
rather than testing them against a trace

• The natural setting for this is a pattern-based technique



Specification inference A specification language Mining with patterns What’s next

Where I’m coming from

• Last year I gave a talk on a runtime verification technique for
checking first-order temporal properties

• Today I’m using this technique for extracting specifications
rather than testing them against a trace

• The natural setting for this is a pattern-based technique



Specification inference A specification language Mining with patterns What’s next

Where I’m coming from

• Last year I gave a talk on a runtime verification technique for
checking first-order temporal properties

• Today I’m using this technique for extracting specifications
rather than testing them against a trace

• The natural setting for this is a pattern-based technique



Specification inference A specification language Mining with patterns What’s next

The generate-and-check approach in action

• We use a set of abstract patterns and an alphabet to generate
a set of concrete patterns and then check these on the trace(s)

• For example, given these (abstract) patterns

(ab)∗ (ab+c)∗

and this trace

open.use.close.open.use.use.close

we can identify these (concrete) patterns

(open close)∗

(open use+ close)∗

• This is (roughly) what has been done previously in this space



Specification inference A specification language Mining with patterns What’s next

How to interpret data

• What do we do when events can carry data?

open(1).use(1).close(1).open(2).use(2).close(2)

• This looks fine - ignore the data! (using it in the alphabet will
quickly explode)

• There is a sense that the events for different data values can
be separated i.e.

file 1: open(1).use(1).close(1)
file 2: open(2).use(2).close(2)

• We can also do this with multiple pieces of data, i.e.

create(L1).add(L1,O1).create(L2).add(L2,O1).remove(L1,O1)

• becomes

list L1 with object O1: create(L1).add(L1,O1).remove(L1,O1)
list L2 with object O1: create(L2).add(L2,O1)



Specification inference A specification language Mining with patterns What’s next

How to interpret data

• What do we do when events can carry data?

open(1).open(2).use(1).use(2).close(2).close(1)

• But here we have two open events in a row - we won’t detect
our previous patterns

• There is a sense that the events for different data values can
be separated i.e.

file 1: open(1).use(1).close(1)
file 2: open(2).use(2).close(2)

• We can also do this with multiple pieces of data, i.e.

create(L1).add(L1,O1).create(L2).add(L2,O1).remove(L1,O1)

• becomes

list L1 with object O1: create(L1).add(L1,O1).remove(L1,O1)
list L2 with object O1: create(L2).add(L2,O1)



Specification inference A specification language Mining with patterns What’s next

How to interpret data

• What do we do when events can carry data?

open(1).open(2).use(1).use(2).close(2).close(1)

• But here we have two open events in a row - we won’t detect
our previous patterns

• There is a sense that the events for different data values can
be separated i.e.

file 1: open(1).use(1).close(1)
file 2: open(2).use(2).close(2)

• We can also do this with multiple pieces of data, i.e.

create(L1).add(L1,O1).create(L2).add(L2,O1).remove(L1,O1)

• becomes

list L1 with object O1: create(L1).add(L1,O1).remove(L1,O1)
list L2 with object O1: create(L2).add(L2,O1)



Specification inference A specification language Mining with patterns What’s next

How to interpret data

• What do we do when events can carry data?

open(1).open(2).use(1).use(2).close(2).close(1)

• But here we have two open events in a row - we won’t detect
our previous patterns

• There is a sense that the events for different data values can
be separated i.e.

file 1: open(1).use(1).close(1)
file 2: open(2).use(2).close(2)

• We can also do this with multiple pieces of data, i.e.

create(L1).add(L1,O1).create(L2).add(L2,O1).remove(L1,O1)

• becomes

list L1 with object O1: create(L1).add(L1,O1).remove(L1,O1)
list L2 with object O1: create(L2).add(L2,O1)



Specification inference A specification language Mining with patterns What’s next

Quantified Event Automata (QEA)

• The runtime verification technique mentioned earlier

• Also, our target temporal specification language

• Has this notion of slicing up the trace built in

• Good for this generate-and-check approach as efficient
checking algorithms have been developed



Specification inference A specification language Mining with patterns What’s next

What is it?

• A QEA defines a language of traces of events

• Events are defined as a name and a list of symbols i.e.

open(f ) login(user , pwd) send(msg , time, addr)

• A QEA consists of
• A list of quantifications of variables X
• A state machine over an alphabet of events using X



Specification inference A specification language Mining with patterns What’s next

An example : HasNext

A call of next to an iterator is safe if it is preceded directly by a
call of hasNext that returns true.

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

next(i)

hasNext(i , true)



Specification inference A specification language Mining with patterns What’s next

An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)



Specification inference A specification language Mining with patterns What’s next

An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)



Specification inference A specification language Mining with patterns What’s next

An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)



Specification inference A specification language Mining with patterns What’s next

An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)



Specification inference A specification language Mining with patterns What’s next

An example of (non)acceptance

1 2

3

∀i : Iterator

hasNext(i , false)

hasNext(i , true)

hasNext(i , true)

next(i)

Trace

hasNext(A,true)
hasNext(B,true)
next(A)
next(B)
hasNext(B,true)
next(A)

For i = A
hasNext(A, true).next(A).next(A)

For i = B

hasNext(B, true).next(B).hasNext(B, true)



Specification inference A specification language Mining with patterns What’s next

Overview of mining process



Specification inference A specification language Mining with patterns What’s next

Defining what we mean by pattern

• Patterns need to be predicates on traces that can be combined

• It has been previously shown that using standard automata or
regular expressions is inadequate for combination

• This inadequacy (shown next) leads to over-generalised
combinations

• We therefore introduce a new kind of automata to use as a
pattern (shown shortly)



Specification inference A specification language Mining with patterns What’s next

The inadequacy

• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open
1 2

use

use

close

1 2

open

close



Specification inference A specification language Mining with patterns What’s next

The inadequacy
• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open

close close close

1 2

use

use

close

open open

1 2

open

close
use use

• Which uses the standard method of expanding alphabets

to
use standard automata intersection to give

1 2 3 4 5 6
open use

use

close

open

use

use
open

close

use



Specification inference A specification language Mining with patterns What’s next

The inadequacy
• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open

close close close

1 2

use

use

close

open open

1 2

open

close
use use

• Which uses the standard method of expanding alphabets to
use standard automata intersection to give

1 2 3 4 5 6
open use

use

close

open

use

use
open

close

use



Specification inference A specification language Mining with patterns What’s next

The inadequacy

• Given the trace

open.use.use.close.open.use.close

• We might mine these patterns

1 2 3
open

use

use

open
1 2

use

use

close

1 2

open

close

• When we should hope for

1 2 3
open use

use

close

• The problem is that we have no information about where
interleaving can happen



Specification inference A specification language Mining with patterns What’s next

Patterns = open automata

• For use as patterns we introduce open automata

• An open-automata is a state machine with a special • hole
symbol that can label transitions

• The hole symbol matches any symbol not in the state
machine’s alphabet

• To avoid undesired interleaving we define intersection so that
it expands alphabets only on holes



Specification inference A specification language Mining with patterns What’s next

An example pattern library

Let us assume our pattern library consists of these three patterns

1 2

Pattern p1

•

a
1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

A = {open(f ), read(f ), write(f ),
close(f ), delete(f )}

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

A = {open(f ), read(f ), write(f ),
close(f ), delete(f )}

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

•

•

b

a

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a

•

b

•

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

b

•

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Checking patterns

σ = open(1).open(2).read(1).write(2).
close(1).close(2).delete(1)

Binding Pattern Passed
a b

[f 7→ 1] delete(f ) - p1

open(f ) close(f ) p2

open(f ) delete(f ) p2

read(f ) write(f ) p3

read(f ) close(f ) p3

write(f ) read(f ) p3

[f 7→ 2] delete(f ) - p1

open(f ) close(f ) p2

read(f ) write(f ) p3

write(f ) read(f ) p3

1 2

Pattern p1

Pattern Library

•

a

1 2 3

Pattern p2

a •

•

b

1 2

Pattern p3

•

• a,b

•



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1

X

open(f ) close(f ) p2

X

open(f ) delete(f ) p2

7

read(f ) write(f ) p3

X

read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1

X

open(f ) close(f ) p2

X

read(f ) write(f ) p3

X

write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2

X

open(f ) delete(f ) p2

7

read(f ) write(f ) p3

X

read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1 X
open(f ) close(f ) p2

X

read(f ) write(f ) p3

X

write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2 X
open(f ) delete(f ) p2

7

read(f ) write(f ) p3

X

read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1 X
open(f ) close(f ) p2 X
read(f ) write(f ) p3

X

write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2 X
open(f ) delete(f ) p2 7

read(f ) write(f ) p3

X

read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1 X
open(f ) close(f ) p2 X
read(f ) write(f ) p3

X

write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2 X
open(f ) delete(f ) p2 7

read(f ) write(f ) p3 X
read(f ) close(f ) p3

7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1 X
open(f ) close(f ) p2 X
read(f ) write(f ) p3 X
write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2 X
open(f ) delete(f ) p2 7

read(f ) write(f ) p3 X
read(f ) close(f ) p3 7

write(f ) read(f ) p3

X

[f 7→ 2] delete(f ) - p1 X
open(f ) close(f ) p2 X
read(f ) write(f ) p3 X
write(f ) read(f ) p3

X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Quantify

• The quantifications tell us to select the successful patterns for
all files

Binding Pattern Passed ∀f ?
a b

[f 7→ 1] delete(f ) - p1 X
open(f ) close(f ) p2 X
open(f ) delete(f ) p2 7

read(f ) write(f ) p3 X
read(f ) close(f ) p3 7

write(f ) read(f ) p3 X
[f 7→ 2] delete(f ) - p1 X

open(f ) close(f ) p2 X
read(f ) write(f ) p3 X
write(f ) read(f ) p3 X

• There are four successful patterns



Specification inference A specification language Mining with patterns What’s next

Successful patterns

• Our four successful patterns become three due to symmetry

1 2

•
delete(f )

1 2 3
open(f) •

•

close(f)

1 2
•

• read(f ), write(f )

•

• Each of these tell us something about how their events order
with each other and other events not mentioned



Specification inference A specification language Mining with patterns What’s next

Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• First combining these two patterns

1 2 3
open(f) •

•

close(f)
1 2

•

• read(f ), write(f )

•

• Gives us

• Leading to the Quantified Event Automaton

1 2 3
open(f ) read(f ), write(f )

read(f ), write(f )close(f )



Specification inference A specification language Mining with patterns What’s next

Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• Then combining the result with

1 2

•
delete(f )

• Gives us

• Leading to the Quantified Event Automaton

1 2 3

4

open(f ) read(f ), write(f )

read(f ), write(f )close(f )

delete(f )

delete(f )

delete(f )



Specification inference A specification language Mining with patterns What’s next

Combining successful patterns

• We can then construct an (open) automaton that accepts the
intersection of their languages

• Leading to the Quantified Event Automaton

1 2 3

4

∀f : File

open(f ) read(f ), write(f )

read(f ), write(f )close(f )

delete(f )

delete(f )

delete(f )



Specification inference A specification language Mining with patterns What’s next

Something from the real world

• This example with files has been necessarily simple, here is an
example of a property mined from the Java standard library

• This states that an iterator created from a collection cannot
be used after the collection is updated

1

2 3 4

5

∀c : Collection,∀i : Iterator

create(c)

update(c), hasNext(i , ), next(i)

iterator(c , i)

hasNext(i , true)

hasNext(i , true)

next(i)

update(c)
hasNext(i , false)

update(c)
update(c)



Specification inference A specification language Mining with patterns What’s next

The approach I didn’t use

Automata-learning / regular-inference

• Passive via state merging
• Construct an automaton that accepts exactly the traces
• Merge ‘equivalent’ states for some notion of equivalence

• Active via L∗ (Angluin’s) - requires an oracle

• So why have I chosen to use this pattern-based approach?
There are two main reasons

1. Algorithms from runtime verification allow large traces to be
processed efficiently

2. The pattern-based approach supports a language with any
level of expressiveness - we only need a trace checking function



Specification inference A specification language Mining with patterns What’s next

The approach I didn’t use

Automata-learning / regular-inference

• Passive via state merging
• Construct an automaton that accepts exactly the traces
• Merge ‘equivalent’ states for some notion of equivalence

• Active via L∗ (Angluin’s) - requires an oracle

• So why have I chosen to use this pattern-based approach?
There are two main reasons

1. Algorithms from runtime verification allow large traces to be
processed efficiently

2. The pattern-based approach supports a language with any
level of expressiveness - we only need a trace checking function



Specification inference A specification language Mining with patterns What’s next

The approach I didn’t use

Automata-learning / regular-inference

• Passive via state merging
• Construct an automaton that accepts exactly the traces
• Merge ‘equivalent’ states for some notion of equivalence

• Active via L∗ (Angluin’s) - requires an oracle

• So why have I chosen to use this pattern-based approach?
There are two main reasons

1. Algorithms from runtime verification allow large traces to be
processed efficiently

2. The pattern-based approach supports a language with any
level of expressiveness - we only need a trace checking function



Specification inference A specification language Mining with patterns What’s next

An overview of further work

• Extending to full expressiveness of QEA

• Developing a methodology for finding suitable pattern libraries

• Methods for identifying likely alphabets



Specification inference A specification language Mining with patterns What’s next

Conclusion

We have

• Introduced the idea of specification inference

• Outlined a pattern-based approach that deals with data
effectively and allows for efficient mining

• Presented an example of how this works

• Discussed some outstanding issues

Any Questions?



Specification inference A specification language Mining with patterns What’s next

Where do patterns come from?

• A pattern library needs to be defined before mining

• There are two interesting questions

1. How do we do this?
2. Does it matter?

• Let us consider the second by posing the question - Is there a
pattern library that will always give the desired specification?
i.e. one that gives a solution to the specification inference
problem

• To answer this we must consider what a solution looks like



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open use close open use close

open use use save close



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open use close open use close

open use use save close

• Now we receive this trace

open.read.close.open.close

• Our specification is too specific



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open read, write, save

read, write, save

close



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• We see two traces

open.read.close.open.read.close
open.read.write.save.close

• What property can we infer?

open read, write, save

read, write, save

close

• But if we have to save after writing we incorrectly accept

open.read.write.save.write.close

• Our specification is too general



Specification inference A specification language Mining with patterns What’s next

Why there is no solution

• Complete learnability requires an impracticable amount of
information - we must generalise

• It is known that without negative information we cannot
exactly identify a language

• As combination is the straight-forward intersection of
languages the pattern library can cause

• over-specification, for example if it contains a pattern
accepting exactly the input traces

• over-generalisation, when the desired specification is very
specific

• Additionally, a pattern library may be too small or lack the
coverage to identify a specification at all



Specification inference A specification language Mining with patterns What’s next

Making patterns

• Intuition and experience
• There exist studies identifying common shapes in specifications
• There are also exist common methods for combining

specifications that can be formed as patterns

• Exploration
• Given a known specification we can perform the reverse of

combination to give us patterns

• Automatic generation/enumeration
• We can use different methods to automatically generate

patterns either by enumeration up to a certain size or by
performing operations on a set of existing patterns

• Disadvantage - likely to introduce noise

• A full methodology for pattern library definition remains
further work



Specification inference A specification language Mining with patterns What’s next

Where to start

• Our process begins having collected a set of traces

• But to do this we assume we already know the alphabet of the
specification (this is another input)

• This is similar to other processes like ours

• Identifying likely alphabets remains further work


	Specification inference
	A specification language
	Mining with patterns
	What's next

