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Data driven paradigm

q Traditionally, the main focus in machine learning has been model
generation through a data driven paradigm.

q Combine a data set with a flexible class of models and, through
regularization, make predictions on unseen data.

q Problems
– Data is scarce relative to the complexity of the system.
– Model is forced to extrapolate.
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Mechanistic models

q Models inspired by the underlying knowledge of a physical system are
common in many areas.

q Description of a well characterized physical process that underpins the
system, typically represented with a set of differential equations.

q Identifying and specifying all the interactions might not be feasible.

q A mechanistic model can enable accurate prediction in regions where
there may be no available training data
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Hybrid systems

q We suggest a hybrid approach involving a mechanistic model of the
system augmented through machine learning techniques.

q Dynamical systems (e.g. incorporating first order and second order
differential equations).

q Partial differential equations for systems with multiple inputs.
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Latent variable model: definition

q Our approach can be seen as a type of latent variable model.

Y = FW + E,

where Y ∈ RN×Q , F ∈ RN×R , W ∈ RR×Q (R < Q) and E is a matrix
variate white Gaussian noise with columns e:,q ∼ N (0,Σ).

q In PCA and FA the common approach to deal with the unknowns is to
integrate out F under a Gaussian prior and optimize with respect to W.
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Latent variable model: alternative view

q Data with temporal nature and Gaussian (Markov) prior for rows of F
leads to the Kalman filter/smoother.

q Consider a joint distribution for p (F|t), t = [t1 . . . tN ]>, with the form of a
Gaussian process (GP),

p (F|t) =
R∏

r=1

N
(
f:,r |0,Kf:,r ,f:,r

)
,

The latent variables are random functions, {fr (t)}R
r=1 with associated

covariance Kf:,r ,f:,r .

q The GP for Y can be readily implemented. In [?] this is known as a
semi-parametric latent factor model (SLFM).
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Latent force model: mechanistic interpretation (1)

q We include a further dynamical system with a mechanistic inspiration.

q Reinterpret equation Y = FW + E, as a force balance equation

YD = FS + Ẽ,

where S ∈ RR×Q is a matrix of sensitivities, D ∈ RQ×Q is diagonal matrix
of spring constants, W = SD−1 and ẽ:,q ∼ N

(
0,D>ΣD

)
.
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Latent force model: mechanistic interpretation (2)
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Latent force model: extension (1)

q The model can be extended including dampers and masses.

q We can write
YD + ẎC + ŸM = FS + Ê ,

where
Ẏ is the first derivative of Y w.r.t. time
Ÿ is the second derivative of Y w.r.t. time
C is a diagonal matrix of damping coefficients
M is a diagonal matrix of masses
Ê is a matrix variate white Gaussian noise.
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Latent force model: extension (2)
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Latent force model: properties

q This model allows to include behaviors like inertia and resonance.

q We refer to these systems as latent force models (LFMs).

q One way of thinking of our model is to consider puppetry.
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Second Order Dynamical System

Using the system of second order differential equations

mq
d2yq(t)

dt2 + Cq
dyq(t)

dt
+ Dqyq(t) =

R∑
r=1

Srq fr (t),

where
fr (t) latent forces

yq(t) displacements over time
Cq damper constant for the q-th output
Dq spring constant for the q-th output
mq mass constant for the q-th output
Srq sensitivity of the q-th output to the r -th input.
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Second Order Dynamical System: solution

Solving for yq(t), we obtain

yq(t) =
Bq

Dq
+

R∑
r=1

Lrq[fr ](t),

where the linear operator is given by a convolution:

Lrq[fr ](t) =
Srq

ωq
exp(−αq t)

∫ t

0
fr (τ) exp(αqτ) sin(ωq(t − τ))dτ ,

with ωq =
√

4Dq − C2
q/2 and αq = Cq/2.
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Second Order Dynamical System: covariance matrix

Behaviour of the system summarized by the damping ratio:

ζq =
1
2

Cq/
√

Dq

ζq > 1 overdamped system
ζq = 1 critically damped system
ζq < 1 underdamped system
ζq = 0 undamped system (no friction)

Example covariance matrix:

ζ1 = 0.125 underdamped
ζ2 = 2 overdamped
ζ3 = 1 critically damped

f(t) y
1
(t) y

2
(t) y

3
(t)

f(
t)

y 1(t
)

y 2(t
)

y 3(t
)
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Second Order Dynamical System: samples from GP
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Figure: Joint samples from the ODE covariance, cyan: f (t), red: y1 (t)(underdamped)
and green: y2 (t) (overdamped) and blue: y3 (t) (critically damped).
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Motion Capture Data (1)

q CMU motion capture data, motions 18, 19 and 20 from subject 49.

q Motions 18 and 19 for training and 20 for testing.
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Motion Capture Data (2)

q The data down-sampled by 32 (from 120 frames per second to 3.75).

q We focused on the subject’s left arm.

q For testing, we condition only on the observations of the shoulder’s
orientation (motion 20) to make predictions for the rest of the arm’s
angles.
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Motion Capture Results

Root mean squared (RMS) angle error for prediction of the left arm’s
configuration in the motion capture data. Prediction with the latent force model
outperforms the prediction with regression for all apart from the radius’s angle.

Latent Force Regression
Angle Error Error
Radius 4.11 4.02
Wrist 6.55 6.65

Hand X rotation 1.82 3.21
Hand Z rotation 2.76 6.14

Thumb X rotation 1.77 3.10
Thumb Z rotation 2.73 6.09
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Diffussion in the Swiss Jura
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Diffusion equation

q A simplified version of the diffusion equation is

∂yq(x, t)
∂t

=
d∑

j=1

κq
∂2yq(x, t)
∂x2

j
,

where yq(x, t) are the concentrations of each pollutant.

q The solution to the system is then given by

yq(x, t) =
R∑

r=1

Srq

∫
Rd

fr (x′)Gq(x,x′, t)dx′

where fr (x) represents the concentration of pollutants at time zero and
Gq(x,x′, t) is the Green’s function given as

Gq(x,x′, t) =
1

2dπd/2T d/2
q

exp

− d∑
j=1

(xj − x ′j )
2

4Tq

 ,
with Tq = κq t .
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Prediction of Metal Concentrations

q Prediction of a primary variable by conditioning on the values of some
secondary variables.

Primary variable Secondary Variables
Cd Ni, Zn
Cu Pb, Ni, Zn
Pb Cu, Ni, Zn
Co Ni, Zn

q Comparison bewteen diffusion kernel, independent GPs and “ordinary
co-kriging”.

Metals IGPs GPDK OCK
Cd 0.5823±0.0133 0.4505±0.0126 0.5
Cu 15.9357±0.0907 7.1677±0.2266 7.8
Pb 22.9141±0.6076 10.1097±0.2842 10.7
Co 2.0735±0.1070 1.7546±0.0895 1.5
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Discussion

q Hybrid approach for the use of simple mechanistic models with Gaussian
processes.

q Convolution processes not for multi-ouput regression but to augment
data-driven models with characteristics of physical systems.

q Gaussian process as meaningful prior distributions.

q Other applications considered:
Bioinformatics: transcription factor networks [AISTATS’09].
Financial time series: foreign currency exchange [Learning’09].

(University of Manchester) Latent Force Models 17/04/2009 22 / 24



Acknowledgments

DL has been partly financed by Comunidad de Madrid (project
PRO-MULTIDIS-CM, S-0505/TIC/0233), and by the Spanish government
(CICYT project TEC2006-13514-C02-01 and researh grant JC2008-00219).
MA and NL have been financed by a Google Research Award and EPSRC
Grant No EP/F005687/1 “Gaussian Processes for Systems Identification with
Applications in Systems Biology”. MA received a travel grant from Nokia.

(University of Manchester) Latent Force Models 17/04/2009 23 / 24



References I

Yee Whye Teh, Matthias Seeger, and Michael I. Jordan.

Semiparametric latent factor models.
In Robert G. Cowell and Zoubin Ghahramani, editors, AISTATS 10, pages 333–340, Barbados, 6-8 January 2005. Society for Artificial Intelligence
and Statistics.

(University of Manchester) Latent Force Models 17/04/2009 24 / 24


	Introduction
	Latent Variables
	Partial Differential Equations
	Discussion

