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Abstract. In this work, synthesis of facial animation is done by mod-
elling the mapping between facial motion and speech using the shared
Gaussian process latent variable model. Both data are processed sepa-
rately and subsequently coupled together to yield a shared latent space.
This method allows coarticulation to be modelled by having a dynamical
model on the latent space. Synthesis of novel animation is done by first
obtaining intermediate latent points from the audio data and then using
a Gaussian Process mapping to predict the corresponding visual data.
Statistical evaluation of generated visual features against ground truth
data compares favourably with known methods of speech animation. The
generated videos are found to show proper synchronisation with audio
and exhibit correct facial dynamics.

1 Introduction

Synthesis of a talking face driven driven by speech audio has many applications
from cinema, games, virtual enviroments, online tutoring and in devising better
Human Computer Interaction (HCI) systems. Humans perceive speech by in-
terpreting both the sounds produced by speech movements and the visual cues
that accompany it. Suppression of one channel at the expense of the other re-
sults in ambiguities in speech perception as shown by McGurk and McDonald
[1]. Moreover, given the high fine tunement in the way humans perceive speech,
slight glitches in an animated character are very conspicuous. Thus, an animated
character needs to exhibit plausible speech movements without jerks and with
proper synchronisation with the audio.

The pioneering work on facial animation was done by Parke [2] where a 3D
model of the face was built using a polygon mesh which was texture-mapped and
animation was achieved by interpolating between prototypes or keyframes. Facial
animation can also be done using anatomical models of the face constrained by
the laws of physics [3], [4]. Whilst 3D models of the face offer a high level of
flexibility to the animator, they are very labour intensive and fail to achieve
very high levels of realism. Data-driven approaches to facial animation seek to
use text or audio data to directly synthesise animation with minimal manual
intervention. They can be grouped into text-to-visual synthesis [5] and audio-
to-visual synthesis [6], [7], [8], [9], [I0], [11]. Rendering for data-driven facial
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animation can be using 3D graphics-based models of the face [12], [I3]; 2D
image-based models [0], [7] or through hybrid appearance-based models [8], [9],
[10], [11].

The basic unit of spoken language is the phoneme and the corresponding
visual unit pertaining to different lip configuations is the viseme. The english
language has a total of 41 phonemes [14] and according to the MPEG-4 standard,
these are grouped into 14 visemes [I5]. Thus, the mapping from phonemes to
visemes is many-to-one. Moreover, the visual counterpart of speech is dependent
on the context of the speech signal, which means that the same phoneme may
produce a different visual output, depending on the phonemes preceeding and
following it. This phenomenon is known as coarticualtion.

Our focus is on a data-driven approach to speech animation using machine
learning techniques. Because the audio-visual mapping is many-to-one and mod-
elling coarticulation involves taking context into account, regression techniques
like artificial neural networks or support vector machines fail to produce appro-
priate results. Successful techniques that effectively model coarticulation include
hidden Markov models [7], Gaussian phonetic models [§] and switching linear
dynamical systems [I1]. In this work, we make use of the Gaussian Process La-
tent Variable Model [I6] (GPLVM) framework to learn a shared latent space
between audio and visual data. The GPLVM is a non-linear dimensionality re-
duction technique and has recently been applied to multimodal data by learning
a shared latent space between human silhouette features and 3D poses [17], [18].
This allows the inferrence of pose from silhouettes. We apply this framework
to learn an audio-visual mapping and compare the results with Brand’s Voice
Puppetry [7].

2 Background and Related Work

We begin by providing some background on the Shared GPLVM (SGPLVM) and
refer readers to [16] and [I8] for more information.

2.1 The GPLVM

The GPLVM is a probabilistic dimensionality reduction technique that uses
Gaussian Processes (GPs) to find a non-linear manifold of some data that seeks
to preserve the variance of the data in latent space. The latent space X =
[21,...,2n] is assumed to be related to the mean centered data set, Y =
[y1,.-.,yn]T through a mapping f that is corrupted by noise:

Yn = f(xn) +e€. (1)

By placing a GP prior of the mapping f and marginalising it, the likelihood
function is obtained, which is a product of D GPs and & are the hyperpa-
rameters of the covariance function, which is also referred to as the kernel.
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For non-linear mappings, a closed-form solution is not available and the like-
lihood function is optimised with respect to the latent values X using conjugate-
gradient optimisation. Maximising the marginal likelihood with respect to
the latent points and the hyperparameters @ results in the latent space repre-
sentation of the GPLVM.

(X, o} = ar%{maXP(Y|X,Q5) . (3)

)

Back Constraints The GPLVM, being a mapping from the latent space to
the data space, ensures that points that are close on the latent space are found
close on the data space. However, it does not ensure the opposite, i.e. points that
are close in the data space to be mapped close on the latent space. The aim of
the back constraints [19] is to enforce this distance preservation. It is done by
using an inverse parametric mapping that maps points from the data space to
the latent space. The mapping takes the following form:

z; = g(yi, W) . (4)

Where W are the parameters of the back-constraint kernel function, which
can be any non-linear kernel such as the Radial Basis Function (RBF) or the
Multilayer Perceptron (MLP). The optimisation in (3)) is then done with respect
to the back constraint parameters W:

{W,d} = argmaxP(Y|W,®) . (5)
W,

Dynamics Wang et al. [20] proposed an extension of the GPLVM which pro-
duces a latent space that preserves sequential relationships between points on the
data space, on the latent space. This is done by specifying a dynamical function
over the sequence in latent space:

Tty = h(l’t,l) + €dyn - (6)

Where €4y, ~ N(O, ﬁdfsz). This is a first-order dynamics kernel that assumes
that each latent point z; is only conditioned on the preceeding frame, x;_1. By
placing a Gaussian Process prior over the function h(z) and marginalising this
mapping, a new objective function is obtained. Optimising this objective function
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results in latent points that preserve temporal relationships in the data. The new
objective function is given by with @4y, being the hyperparameters of the
dynamics kernel.

(X, By, Bgyn} = argmax P(Y|X,Dy)P(X|Dayn) - (7)

Py, Payn

2.2 The SGPLVM

To construct a shared latent space between two sets of variables, Y and Z and
with a shared latent space X, the likelihood function is taken to the the product
of each individual likelihood function, conditioned on a common latent space.
This leads to the optimisation of two different sets of hyperparameters for the
two kernel functions. The joint likelihood of the two observation spaces is given
by:

P(Y,Z|X,8,) = P(Y|X,®y)P(Z|X, D) . (8)

Where &g = {&y, P} is a concatenation of the two different sets of hyper-
parameters.

Back-constraints can similarly be integrated, but with respect to only one
data space, because in practice, two separate mappings from two different data
spaces, that produce a common latent space cannot be defined. Moreover, a
dynamics prior can also be placed on the latent space, just like for the GPLVM.

The Shared GPLVM (SGPLVM) used by [I7] and [I8] has been used to learn
a mapping between pose and silhouette data. However, the mapping from sil-
houette to pose is one-to-many because silhouettes are ambiguous, especially
when the figure is turning around. Ek et al. have addressed ambiguity in [I§] by
putting a back constraint with respect to poses, which forces a one-to-one rela-
tionship between the data and latent space. In [21I], ambiguity has been catered
for by using a Non-Consolidating Components Analysis (NCCA) whereby a pri-
vate latent space for each of the observation spaces is learnt in addition to the
shared latent space. This allows for the disambiguation of human pose estimation
given silhouettes because the variance in both data spaces is retained. Thus, the
variance from the space pertaining to the test data can used in the inferrence as
a discriminant to resolve ambiguities. The same NCCA model has been used in
[22] for mapping human facial expression data, represented by facial landmarks
to a robotic face. The ambiguity in this case is with respect to robot poses, with
multiple robot poses corresponding to a given facial expression vector.

The SGPLVM can be viewed as a non-linear extension of Canonical Cor-
relation Analysis (CCA). CCA learns a correspondence between two datasets
by maximising their joint correlation. Theobald and Wilkinson [10] use CCA to
learn an audio-visual mapping. Modelling coarticulation is achieved by append-
ing speech features to the right and to the left of each frame. This, however, leads
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to a combinatorial explosion and requires large amounts of data to provide ad-
equate generalisation ability. Our approach, based on the SGPLVM framework
allows for coarticulation to be modelled in two ways. Placing a back constraint
with respect to audio features ensures distance preservation of speech features in
the latent space, thus ensuring a smooth transition of latent points for test audio
data. Moreover, placing a dynamical model on the latent space constraints the
optimisation of latent points to respect the data’s dynamics both in the training
and synthesis phases.

3 Building an Audio-Visual Corpus

The Democracy Now! dataset [11] has been used for our experiments. It features
an anchor giving news presentations under roughly the same camera and lighting
conditions. We use the dissected video sequences mentioned in [I1], featuring the
anchor speaking sentences delimited by pauses for breath. However, we perform
our own parameterisation of the visual and speech data. The video sequences
are converted into frames sampled at the rate of 25 frames per second and
cropped around the face region. High quality uncompressed audio has also been
made available separately by the authors of [I1], that match the dissected video
sequences. We now detail how a compact parameterisation is obtained for both
visual and audio data. A total of 236 video sequences, corresponding to about 20
minutes of video have been used, together with the corresponding uncompressed
audio.

3.1 Visual Data Pre-Processing

Active Appearance Models (AAMs) [23] have been chosen for facial parameter-
isation because they capture the statistical variation in shape and texture and
provide a generative model to extrapolate novel faces as a linear combination of
basis shape and texture vectors. They require a training set of annotated pro-
totype face images where the annotations provide for the shape data and the
texture data is sampled from the convex hull spanned by these shape vectors
(Figure . AAM training first normalises the shape vectors by removing rota-
tions and translations and aligns the the shape with respect to the mean shape
by a piecewise affine warp. This requires a triangulation of the landmarks to be
performed (Figure . In our case, 31 landmarks have been used. PCA is then
applied to the shape and texture data separately and then further on the con-
catenation of the PCA parameters for shape and texture. Ater training, AAM
parameters can be extracted from novel images by projecting the shape and tex-
ture data to the corresponding retained eigenvectors of the PCA and then again
on the combined eigenvectors. In addition, given a set of AAM parameters, novel
frames can be generated by first reconstructing the shape and texture separately
and then warping the texture to the shape (Figure . AAMs can also be used
for tracking landmarks on novel facial images (Figure [Lc). By retaining 95% of
the variance in the shape, texture and combined PCA, a 28-dimensional AAM
feature vector is obtained.
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(b)

(d)

Fig.1: (a) Annotations marked on a sample face image. (b) Triangulation of
the landmarks for warping. (c) Results of AAM search on a new image. (d)
Reconstruction of face from a set of AAM parameters

3.2 Speech Parameterisation

Speech needs to be parameterised so as to represent the acoustic variability
within and between the different phonemes. This is done by extracting fea-
tures from the speech signal that help distinguish between the phonemes. The
most common speech feature extraction techniques are: Linear Predictive Coding
(LPC), Mel-Frequency Cepstral Coefficients (MFCC), Line Spectral Frequencies
(LSF) and Formants [14]. MFCCs have been chosen for speech feature extraction
of our data because of its robustness to noise and also because we do not need
accurate reconstructions provided by linear prediction methods such as LPC and
LSF. The MFCC features have been computed at 25 Hz in order to match the
sampling rate of the image frames.

4 Audio-Visual Mapping

Taking Y to be the MFCC feature vector and Z to be the AAM feature vector,
an SGPLVM is learnt between Y and Z. Whilst in [21] and [22], the data to be
synthesised is ambiguous, in our case, we have a many-to-one mapping between
audio and visual data. This leads to more flexibility in building the model and
the NCCA model of [21I] and [22] brings no benefit to our system. However,
placing a back-constraint with respect to the audio favours the modelling of
coarticulation by constraining similar audio features to be mapped close on the
latent space. In addition, it allows the initialisation of latent points from novel
audio using the back-constrained mapping. We place an MLP back-constraint
with respect to the audio data. An autoregressive dynamics GP is also placed
on the latent space. The graphical model of our system is shown in Figure[2] All
the parameters of the model are optimised during training. The resulting latent
space can be viewed as a non-linear embedding of both audio and visual data
that can generate both spaces.
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b/ Fig. 2: Graphical model of the
shared GPLVM with a back-
constraint with respect to the
audio and an autoregressive dy-
namics model on the latent space

z
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4.1 Synthesis

Once the SGPLVM model is trained, audio-visual synthesis proceeds by first
extracting MFCC features from test audio. AAM parameters Z can then be
synthesised from the test MECC features Y by first obtaining the corresponding
latent points, X. The optimisation of latent points is done both with respect to
the GP mapping from X to Y as well as with respect to the dynamical model,
by formulating a joint likelihood given in @ The likelihood is then optimised
using conjugate gradient optimisation to find the most likely latent coordinates
for a sequence of audio features.

X = argmaxP (Y, X,|Y, X, By, Bgyn) . (9)

s

Where X, is an initialisation of the latent points. Once X is obtained, 7 is
obtained from the mean prediction of the GP from X to Z.

Z=kEX,X)TK'Z. (10)

4.2 Initialisation of Latent Points

Optimisation of @ is likely to be highly multimodal with multiple local optima.
Thus, a proper initialisation of the latent space, X, is required to get good
results. We use two initialisation techniques for X,. In the first method, the
latent points obtained from the SGPLVM training are taken to be the states
of a hidden Markov Model (HMM) and the training audio features are taken
to be the observations. The transition log likelihood is computed as the GP
point likelihood between each latent point and every other latent point and
the observation log likelihood is obtained by computing the GP point likelihood
between the test audio vector and each of the training latent points (states of the
HMM). The optimal sequence of latent points X, is obtained from the Viterbi
algorithm in log space. This is analogous to choosing a set of latent points from
the training set that best match the test audio. To speed computation when the
number of training data points for the SGPLVM is very high, a subset of the
points can be randomly chosen instead, for initialisation.
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The second method of initialisation is from the back-constrained mapping
from the audio space Y to the latent space X, which can be obtained as follows:

X, =g(Y,W). (11)

‘We shall call the method based on the back-constraint initialisation SGPLVM
A and the method based on the HMM initialisation SGPLVM B.

4.3 Experiments

GPLVM training is quite expensive and has a complexity O(N?3), where N is
the number of data points. Various sparsification methods have been proposed
[24] by making use of a subset of data at a time, called the active set. How-
ever, even with sparsification, optimisation of a GPLVM likelihood becomes
intractable when the number of data points exceeds a few thousands. This is in
contrast to other methods to audio-visual mapping such as HMMs, which can
cope with tens of thousands of data points. In our experiments, we have used a
repeated random subsampling method for choosing 50 sequences from the 236
audio-visual sequence pairs for training SGPLVM A and SGPLVM B, giving an
average of 6000 frames. We fix the dimensionality of the latent space to be 8
as further increasing the dimensionality does not improve the reconstructions
of AAM parameters. We then randomly choose 20 sequences for testing, such
that the training and testing sets do not overlap. Only the audio features from
this test set are used for inferring novel AAM parameters using SGPLVM A and
SGPLVM B.

We have used Brand’s Voice Puppetry [7] as a benchmark. We train the cross-
modal HMMs using the same subsets of audio and visual features as used for the
SGPLVM and use the same data for testing. The repeated random subsampling
experiment is done ten times for both the SGPLVM and Brand’s method.

4.4 Results

We present both quantitative and qualitative results from our experiments.
Quantitative results are obtained by finding the Root Mean Square (RMS) error
between test AAM feature vectors and ground truth. Figure [3] shows the results
obtained accross the ten runs of the experiment. The results show no statis-
tically significant difference between the errors obtained from Brand’s method
and the SGPLVM. In general, the errors for SGPLVM B are slightly higher than
those for SGPLVM A, mostly due to a smoother latent space obtained from the
back-constraint initialisation.

We also compare the trajectories of the first mouth landmark parameter
reconstructed from the AAM parameters, of the three approaches against ground
truth. Figures ] [6] and [7] shows the results for Brand’s Voice Puppetry, SGPLVM
A and SGPLVM B respectively. The results for Brand’s method show that the
trajectories are smoothed out as compared to the SGPLVM approaches. This is



Lecture Notes in Computer Science 9

I &ranc's Voice Puppetry
[ sapLvia A
JsapLvmB

R R TURey

0.025

RS error

0.01s

0.008

1 4 3 4 5 B 7 8 9 10
Experiment number

Fig.3: RMS errors obtained between ground truth AAM feature vectors and
1) SGPLVM A 2) SGPLVM B and 3) Brand’s Voice Puppetry. The plots also
include the standard deviation of the errors

because Brand’s approach involves synthesising AAM parameters from a state
sequence, which represents Gaussian clusters, and is thus very approximative.
The SGPLVM approaches, on the other hand, bypass this approximation and
make use of the full variance of the visual data in synthesis.

Qualitative results are obtained by rendering frames from the AAM parame-
ters in order to visualise the output. The videos show proper lip synchronisation
with the audio with smooth lip movements. The results from SGPLVM A ap-
pears to be the best whilst SGPLVM B gives proper lip synchronisation but
with a few jerks in the animation. The results from Brand’s Voice Puppetry are
overly smoothed with under articulation. Figure 4| shows ground truth frames
as well as frames generated from AAM features obtained from Voice Puppetry
and SGPLVM A. The audio contains a sentence which has 12 of the 14 visemes
from the MPEG-4 standard [I5].

5 Conclusions and Future Work

We have shown how the shared GPLVM can be applied to multimodal data
comprising of audio and visual features, in order to synthesise speech animation.
The results show that our methods are comparable to Brand’s Voice Puppetry
in terms of RMS errors of AAM features generated, but with more articulated
lip movements.

In future work, a perceptual evaluation of the animation will be carried out
where viewers would be asked to asses the realism of the generated videos as well
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Fig. 4: Reconstructions from AAM features obtained from: ground truth (top
row), Voice Puppetry (middle row) and SGPLVM A (bottom row). The audio
used for synthesis contains the sentence: “House of representatives has approved
legislation” . The frames correspond to ten different visemes from the test audio
sentence

as the intelligibility of the lip movements. Experiments will also be performed
with different parameterisations of speech, which favour speaker independence.
Moreover we would also investigate delta features in speech to more effectively
capture context in speech animation.
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Fig.5: Shape trajectories obtained from Brand’s Voice Puppetry and the corre-
sponding ground truth trajectories
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Fig.6: Shape trajectories obtained from SGPLVM A and the corresponding
ground truth trajectories
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Fig.7: Shape trajectories obtained from SGPLVM B and the corresponding
ground truth trajectories
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